摄像头智能循迹小车

摄像头智能循迹小车
摄像头智能循迹小车

智能摄像头小车的设计与制作 一.设计思想与总体方案 1,设计思想 小车行驶过程中,通过摄像头探测前方的黑线,将采集到的信息传回单片机, 通过判断黑线的形状和曲率调整舵机转角,使小车沿黑线行驶,达到循迹功能。 2,总体设计方案 本设计以 Freescale16 位单片机、MC9SXS128 作为检测和控制核心,用 CCD 摄像头探测黑线,飞思卡尔车体。 3 摄像头选择
由于对车体的控制方法都是基于对赛道黑线的准确提取与判断上的,所以对 外界信息采集的唯一入口的摄像头传感器选择就显得尤为重要。本次实验所选用 的摄像头为 CCD 摄像头相比较而言,CMOS 数字摄像头硬件电路相对简单,工作 电压低,电流小,功耗小,工作稳定。但是在动态图像的现实中不如 CCD 摄像 头清晰,而且噪音比较大,灵敏度低。小车在高速运动情况下,不仅有小车沿赛 道延伸方向的速度,还有位置校正带来的横向摆动,这样一来,黑线在曝光时间 内不稳定,产生了图像不实。在这一点 CCD 摄像头有更大的优势,它噪音小, 灵敏度高,信噪比大,所以我们选择 CCD 摄像头,以适应小车高速运动的情况。
二.系统硬件结构设计
本系统硬件结构主要由 HCS12 控制核心、电源管理单元、摄像头模拟信号 采集电路、车速检测模块、转向伺服电机控制电路和直流驱动电机控制电路组成, 其系统硬件结构如图 1.1 所示。

图 1.1 系统硬件框图 1,单片机单元 XS128 最小系统
我们采用了自己设计制作的最小系统板,采用 MC9SXS128 芯片作为控制芯 片。具有体积小,性能稳定的特点。主频最高可达到 90M,图 2.8 为系统版原理 图。

3, 测速电路设计
图 2.8 最小系统板原理图
由于今年的车模是双电机,要对小车进行很好的控制就必须实时的监测 小车的运行状态,即检测小车的运行速度。MC9SXS128 系统板自带一路脉冲捕捉 电路,可以测出一个电机的速度,另一个电机的速度我们采用 74HC161 芯片来计 数测出电机的当前速度,其电路原理图如图 2.11 所示。
图 2.11 电机测速电路

4 智能车整体硬件电路设计
源有 口 接 板 主
表 2.1 车模硬件电路技术参数
驱动电机 驱动舵机 两个测速传感器
摄像头 串口 控制板
速度控制 电源
转向控制 电源
速度反馈
电源 图像采集
电源 和电脑、SD 卡数据传输
2 个程序开始按键 8 位拨码开关一个
复位按键
4 路 8 位的 PWM 输出 PWM0、PWM1、PWM2、PWM3
7.2V 1 路 16 位 PWM 输出 PWM45
6V 1 个脉冲累加器外部引脚 PT7 和 74HC161 的 CLK 输 入引脚
5V PORTB 口
PT0、PT1、PT2 口
12V
SCI0、SPI 2 个 I/O 端口
PJ6、PJ7 8 个 I/O 端口
PE0~PE7
1个
8 个 I/O 输出口

整体电容 三.软件设计
电源系统 最小系统板 主控板
PAD0~PAD7 1758uF 61uF
10uF
软件部分主要包括:路径识别、方向控制、速度控制、速度测量和速度控制 四个模块。这里先介绍了总程序流程,然后重点介绍了 CCD 摄像头图像信息的 数据采集与处理软件设计流程图。 1 整体程序介绍 图 5.1 为程序流程图。

图 5.1 整体程序流程图 四 控制算法
在经过几届比赛的总结,我们得出一个结论:在智能车这个控制系统中,控 制算法用 PID 足够达到其极限速度,盲目追求较高级的控制算法是一种错误的 观点。除非现有的控制算法不足以支撑现有速度下的控制策略,在本科阶段我们 现在自认为不足以达到这个高度,所以我们在准确提取赛道的基础上依然采用用 分段 PID 算法作为控制算法。
极品 1 号的控制方法为 PID 控制方法。它由速度闭环控制和位置闭环控制 两个部分组成,以下简称速度环和位置环。速度环使用传统的 PI 控制算式,为

了提高车模对速度的阶跃信号的快速响应,采用自己设计制作的 H 桥。同时,算 式中的比例系数 Kp 被设置的较大,用以改善电机的硬度。位置环负责对车模在 赛道中的行进位置进行调节。使用了 PD 算式,并作了改进。传统的 PD 算式中微 分项的响应时间仅为一个采样周期,可能还没有达到好的控制效果时,微分输出 已经消失。车模在高速行驶过程中,需要灵活的应对各种路况,这就需要在低速 状态下具有快速的转向性能。因此对微分部分进行改进是十分必要的。 4.1 PID 控制算法及其改进形式的应用 4.1.1PID 算法简介
PID 控制是工业过程控制中历史最悠久,生命力最强的控制方式。这主要是 因为这种控制方式具有直观、实现简单和鲁棒性能好等一系列的优点。位置式 PID 算式连续控制系统中的 PID 控制规律是
5.1 其中 x0 是偏差信号为零时的控制作用,是控制量的基准;利用外接矩形法 进行数值积分,一阶后向差分进行数值微分,当选定采样周期为 T 时,式 5.1 可离散为下面的差分方程
5.2 增量式 PID 算式。 根据式 5.2 得出
5.3 于是

5.4 式 5.3 的计算结果,反映了第 k 和第 k-1 次输出之间的增量,所以称为 增量算式。这个算式的结果是可正可负的。利用增量算式控制执行机构,执行机 构每次只增加一个增量,因此执行机构起了一个累加的作用。对于整个系统来说, 位置和增量式两种算式并无本质区别,只是将原来全部由计算机完成的工作,分 出一部分由其他元件去完成。然而,虽然增量式算式只是算法上的一点改进,却 带来了不少优点: 算式只与最近几次采样值有关,不需要进行累加,不易引起误差累积,因此 容易获得较好的控制效果。计算机只输出增量,误动作时影响小,必要时可加逻 辑保护,限制或禁止故障时的输出。手动于自动切换时,由于步进电机具有保持 作用,所以容易实现无扰动切换,机器故障时,也可以把信号保持在原位。由于 增量算式有上述优点,在实际控制中,应用得比位置式更为广泛。式 5.4 还可进 一步改写为
5.5 其中:
5.6
5.7
5.8 于是编程和计算可以得到进一步的简化。 4.1.2 积分饱和及其抑制

控制系统在开工、停工,或者大幅度提降给定值等情况下,系统输出会出现 较大的偏差。这种较大的偏差,不可能在短时间内消除,经过积分项积累后,可 能会使控制量 x(k)很大,甚至超过执行机构由机械或物理性能所决定的极限。 当负偏差的绝对值较大时,也会出现 x(k)xmax(或 x(k)假定设定值从 0 突变到 R:
首先假定执行机构不存在极限,则当有 R 突变量时,便产生很大的偏差 e, 从而使控制量很大,输出量 c 因此很快上升。然而在相当一段时间内,由于 e 保持很大,因此控制量 x 保持上升。只有当 e 减小到某个值后,x 才不再增加, 然后开始下降。当 c 等于 R 时,由于控制作用 x 很大,所以输出量继续上升, 使输出量出现超调,e 变负,于是使积分项减少,x 因此下降较快。当 c 下降 到小于 R 时,偏差又变正,于是 x 又有所回升。之后,由于 c 趋向稳定,因 此 x 趋向于 x0。但是 x 是存在极限值 xmax 的,因此当设定值突变时,x 只能 取 xmax。在 xmax 的作用下,系统输出将上升,但不及在计算值 x 下作用迅速, 从而使 e 在较长时间内保持较大的正值,于是又使积分项有较大的积累值。当 输出达到设定值后,控制作用使它继续上升。之后,e 变负,Σ ej 不断减小, 可是由于前面积累得太多,只有经过相当长的时间 t 后,才可能使 x可见,主要是由于积分项的存在,引起了 PID 运算的“饱和”,因此这种饱 和称为积分饱和。积分饱和增加了系统的调整时间和超调量,称为“饱和效应”, 对控制系统显然是不利的。有许多克服积分饱和的方法,这里介绍应用较多的两 种方法。
(1)积分分离法。

将 5.2 式改写为 5.9
其中
A 为门限电压式 5.9 称为积分分离 PID 算式。
其控制思想是,当偏差大于某个规定的门限值时,删去积分作用,从而使Σ ej 不至于过大。只有当e较小时,才引入积分作用,以消除静差。引入积分分离后, 控制量不易进入饱和区,即使进入了也能较快退出,所以系统的输出特性比单纯
PID 控制得到改善。门限值的选取,对克服积分饱和有重要影响,门限值可通过 试验确定。
(2)遇限削弱积分法。
遇限削弱积分法的思想是,当控制量进入饱和区后,只执行削弱积分项的累 加,而不进行增大积分项的累加。为此计算 x(k)时,先判断 x(k-1)是否超过 xmax 或 xmin,若已超过 xmax,值累计负偏差;若小于 xmin,只累计正偏差。这种 方法也可避免控制量长时间停留在饱和区。和位置算式相比,增量式算法没有累 加和式,因此不会由于积分项引起饱和。但是在增量算式中,当给定值突变时, 比例微分项的计算值也可能引起控制量超过极限值的情况,从而减慢系统的动态 过程。
4.1.3 PID 算法的其他改进形式
对于干扰除了采用抗干扰措施,进行硬件软件滤波外,还可以通过对 PID 算法进行改进,进一步克服干扰的影响。在 PID 算式中,差分项(特别是二阶差 分项)对数据误差和干扰特别敏感,因此在数值 PID 控制中,干扰主要是通过微 分项起影响的。但是由于微分作用的重要性,不能因噎废食,去掉微分项。通常 是用四点中心差分法,或采用不完全微分的 PID 算式,对微分项进行改进,降低 其对干扰的敏感程度。

四点中心差分法
在四点中心差分法中,一方面将 Td/T 取得略小于理想情况;另一方面,在 组成差分时,不是直接引用现实偏差 ek,而是用过去四个时刻的偏差的平均值 作基准。
在通过加权平均和构成近似微分项
5.10
将式 5.11 代替式 5.2 中的微分项,就得到修正后的 PID 算法
5.11
5.12
其中: PID 增量算式的改进形式,可用和式 5.12 相应的式子代替式 5.4 中的差 分 项及二阶差分项而得
不完全微分的 PID 算式
5.13

不完全算法的思想是依照模拟调节器的实际微分调节器,以克服完全微分的 缺点。不完全微分的 PID 算法的传递函数
其中 Kd 称为微分增益 不完全微分的 PID 位置算式为
5.14
其中 x0 是偏差为 0 时的控制作用。 不完全微分的 PID 增量算式为
5.15
5.16 将完全 PID 算式和不完全微分型 PID 算式的控制作用比较,在 e(t)发生阶 跃变化时,完全微分作用自在扰动发生的一个周期内起作用;而不完全微分作用 按指数规律逐渐衰减到零,可以延续几个周期。延续时间的长短与 Kd 的选取有 关,Kd 大,延续时间短;Kd 小,延续时间长。Kd 一般取 10~30。从改善系统动 态性能的角度看,不完全微分的 PID 算式较好。因此在控制质量要求较高的场 合,常采用不完微分的 PID 算法。当然,完全微分型算式比较简单,系数设置

方便,计算过程占用的内存也少,不完全微分算式则相反。
4.1.4 针对智能车的 PID 算法改进
极品 1 号的控制算法中,速度环和位置环都采用的 PID 控制方法。速度环 使用的是基本的 PI 算式,在积分项处理上,积分项智能在积分限内变化。整个 控制算式的比例系数 Kp 较大,给调速系统带来较好的相应速度,虽然在空载下 调节时间较长,但是车模本身对于调速系统来说是一个很大的惯性负载,系统的 带载特性的调节时间主要取决于电池的供电能力。对于速度环,由于需要对高速 行驶过程中突然出现的大的微分信号即赛道的特性发生变化说出快速的相应,因 此不仅需要对积分部分加入积分限,还要有一个性能稳定的微分项的支持。微分 项的作用是获知 e 的变化趋势,以提前做出反映。那么通过增大舵机的连杆长 度和增加前瞻距离达到同样的效果,相当于给系统增加两个固有的微分环节。

基于单片机的智能寻迹小车毕业设计

基于单片机的智能寻迹小车毕业设计 系统主要由红外避障模块、声控模块、光电寻迹、电机驱动及语音播报模块组成。 采用P89V51单片机作为智能小车控制核心。系统能实现对线路进行寻迹,小 车可以 前进或后退,遇到障碍物可以自行停止并可以实现反向运行,系统可以利用声 音控 制小车的启停。整个系统小巧紧凑,控制准确,性价比高,人机互动性好。 P89V51单片机;红外避障;线路寻迹;直流减速电机 ABSTRACT System is mainly by infrared obstacle avoidance module, voice module, opto-electronics and motor drive tracing module. Used as a single- chip smart car P89V51 control core. System can realize the tracing lines, cars can go forward or backward, encountered obstacles can stop and reverse operation can be achieved, the system can use voice to control the start and stop car. Compact the entire system to control the accurate, cost-effective, good human-computer interaction. KEYWORD: P89V51MCU;Infrared obstacle avoidance;Tracing;DC motor speed 1

智能循迹避障小车设计

毕业设计(论文) 课题名称智能循迹避障小车设计 学生姓名 XXX 学号00000000000000 系、年级专业 XXXXXXXXXXXXXXXXXXX 指导教师 XXX 职称讲师 2016年5月18日

摘要 自从首个工业智能设施诞生以来,智能设施的发展已经扩展到了包括机器、刻板、电子、冶金、交通、宇航、国防等产业领域。近年来智能设施水平迅速上升,大大的改变了大多数人类的生活方式。在人类的智能化技术不断飞速进步的过程中,能够取代手动的机器人在更加人性化的同时也越来越智能化。 本文主要讨论了基于单片机的智能循迹避障小车的设计。智能自动循迹制导系统在驱动电路的基础上,实现自动跟踪汽车导线,而智能避障是使用红外传感器测距系统来实现功能来规避障碍。智能寻光避障小车是一种采用了多种传感器,以单片机为核心,电力马达驱动和自动控制为技术,根据程序预先确定的模式,而不是人工管理来实现避障导航的自动跟踪高新技术。这项技术已广泛应用于智能无人驾驶、智能机器人、全自动工厂等许多领域。 这个设计使用STC89C52单片机[1]作为小车的智能核心,使用红外传感器对智能小车跟踪模块识别引导线跟踪,收集模拟信号并将信号转换成为数字信号,使用C 语言编写程序,设计的电路结构简单,易于实现,时效性高。 关键词:智能化;单片机最小系统;传感器;驱动电路

ABSTRACT From the first level of industrial intelligent facilities since birth, the development of intelligent facilities has been broadened to include machinery, electronics, metallurgy, transportation, aerospace, defense and other fields. Intelligent facilities level rising in recent years, and rapidly, significantly changed the way people live. People in the process of thinking, improvement, learning and intelligence of replace the manual machine is more and more. This paper mainly discusses the intelligent tracking based on single chip microcomputer control process of the obstacle avoidance car. Intelligent automatic tracking is based on the driving circuit of the guidance system, to achieve automatic tracking car line; obstacle avoidance is the use of infrared sensor ranging system to realize the function to evade obstacles. Intelligent tracking obstacle avoidance car is a use different sensor , motor drive for power and automatic control technology to realize according to the procedures predetermined mode, not by artificial management can realize the automatic tracking of obstacle avoidance navigation of high and new technology. The technology has been widely used in unmanned intelligent unmanned line, intelligent robot and so on many fields. Using infrared sensors for car tracking module to identify the guide line tracking, collecting analog signal and converts the signal into digital signal; Using C language to write the program, the design of the circuit structure is simple, easy to implement,timeliness is high. Keywords: Intelligent; Single chip microcomputer minimum system; The Sensor; Driver circuit

智能循迹小车___设计报告

智能循迹小车___设计报告

智能循迹小车设计 专业:自动化 班级:自动化132 姓名:罗植升莫柏源梁 桂宾 指导老师: 2014年4月——2010年6月

本课题是基于STC89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 STC89C52单片机为系统控制处理 器; 采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。

当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。 作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车(特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。 无容置疑,机电一体化人才的培养不论是在国外还是国内,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛(ABU ROBCON)、全国大学生“飞思卡尔”杯智能汽车竞赛等众多重要竞赛都能很好的培养大学生对于机电一体化的兴趣与强化机电一体化的相关知识。但很现实的状况是,国内不论是在机械还是电气领域,与国外的差距还是很明显的,所以作为机电一体化学生,必须加倍努力,为逐步赶上国外先进水平并超过之而努力。 为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。所以立“智能循迹小车”一题作为尝试。 此项设计是在以杨老师提供的小车为基础上,采用AT89C52单片机作为控制核心,实现能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。

智能循迹小车程序

#include #define uchar unsigned char #define uint unsigned int //D0-D7:f,b,a,e,d,h,c,g 共阴依次编码 //74LS04反相器驱动数码管 uchar code table[10] = {0x5F,0x42,0x9E,0xD6,0xC3,0xD5,0xDD,0x46,0xDF,0xD7}; uchar i = 0; //用于0-3数码管轮流显示 uint j = 0; //计时的次数 uint time=0; //计时 uint pwm=16; //占空比 uint speed; //调制PWM波的当前的值 sbit R=P3^2; //右边传感器P3^2 sbit L=P3^3; //左边传感器P3^3 //电机驱动口定义 sbit E NB=P1^0; //前轮电机停止控制使能 sbit E NA=P1^1; //后轮控制调速控制端口 sbit I N1=P1^2; //前轮 sbit I N2=P1^3; //前轮 sbit I N3=P1^4; //后轮 sbit I N4=P1^5; //后轮 void Init() { TMOD = 0x12; //定时器0用方式2,定时器1用方式1 TH0=(256-200)/256; //pwm TL0=(256-200)/256; TH1 = 0x0F8; //定时2ms TL1 = 0x30; EA = 1; ET0 = 1; ET1 = 1; TR0 = 1; TR1 = 1; } void tim0(void) interrupt 1 //产生PWM { speed ++; if(speed <= pwm) //pwm 就相当于占100的比例 { ENA = 1; } else if(speed < 100) { ENA = 0; }

智能循迹小车详细制作过程

(穿山乙工作室)三天三十元做出智能车 基本设计思路: 1.基本车架(两个电机一体轮子+一 个万向轮) 2.单片机主控模块 3.电机驱动模块(内置5V电源输出) 4.黑白线循迹模块 0.准备所需基本元器件 1).基本二驱车体一台。(本课以穿山乙推出的基本车体为 例讲解) 2).5x7cm洞洞板、单片机卡槽、51单片机、石英晶体、红 色LED、1K电阻、10K排阻各一个;2个瓷片电容、排针40 个。 3).5x7cm洞洞板、7805稳压芯片、红色LED、1K电阻各一 个;双孔接线柱三个、10u电解电容2个、排针12个、9110 驱动芯片2个。 4).5x7cm洞洞板、LM324比较器芯片各一个;红外对管三 对、4.7K电阻3个、330电阻三个、红色3mmLED三个。 一、组装车体

(图中显示的很清晰吧,照着上螺丝就行了) 二、制作单片机控制模块 材料:5x7cm洞洞板、单片机卡槽、51单片机、石英晶体、红色LED、1K电阻、10K排阻各一个;2个瓷片电容、排针40个。 电路图如下,主要目的是把单片机的各个引脚用排针引出来,便于使用。我们也有焊接好的实物图供你参考。(如果你选用的是STC98系列的单片机在这里可以省掉复位电路不焊,仍能正常工作。我实物图中就没焊复位)

三、制作电机驱动模块 材料:5x7cm洞洞板、7805稳压芯片、红色LED、1K电阻各一个;双孔接线柱三个、10u电解电容2个、排针12个、9110驱动芯片2个。 电路图如下,这里我们把电源模块与驱动模块含在了同一个电路板上。因为电机驱动模块所需的电压是+9V左右(6—15V 均可),而单片机主控和循迹模块所需电压均为+5V。 这里用了一个7805稳压芯片将+9V电压稳出+5V电压。

智能循迹小车设计报告

电子作品设计报告 项目名称:智能小车 学院:机电工程学院 专业:应用电子技术 班级:09应电(1)班 组别:第三组 姓名:杨磊赖焕宁梁广生 指导老师:杨青勇玉宁

目录 摘要: (3) 关键词: (3) 引言: (3) 一、系统设计 (3) 1.1设计要求 (4) 1.2车体方案认证与选择 (4) 二、硬件设计及说明 (5) 2.1原理图设计 (5) 2.1.1稳压电源 (5) 2.1.2基本系统 (5) 2.1.3电机驱动 (5) 2.1.4液晶显示部分 (6) 2.1.5RS485数据总线 (6) 2.1.6循迹部分 (7) 2.2PCB设计 (7) 2.2.1主板PCB (7) 2.2.2循迹板PCB (8) 三、软件设计及说明 (8) 四、系统测试过程 (10)

五、总结 (11) 六、附录 (11) 附录一:系统元器件清单 (11) 附件二:系统测试源程序 (12) 摘要:本组的智能小车是采用凌阳的车架,是以两个电机来驱动小车,主板部 分自行设计。通过接收器MAX1483来采集信息,传送进主控芯片PIC16F886单片机,进行数据处理后,送进驱动芯片L293D以完成相应的操作。采用反射式红外光电传感器ST178来实现小车自动循迹功能,并且整个过程采用液晶显示屏RT1602来显示相应的数据。 关键词:PIC16F886 L293D 反射式红外光电传感器ST178 自动循迹引言: 近现代,随着电子科技的迅猛发展,人们对技术也提出了更高的要求。汽车的智能化在提高汽车的行驶安全性,操作性等方面都有巨大的优势,在一些特殊的场合下也能满足一些特殊的需要。智能小车系统涉及到自动控制,车辆工程,计算机等多个领域,是未来汽车智能化是一个不可避免的大趋势。本文设计的小车以PIC16f886 为控制核心,用反射式红外光电传感器作为检测元件实现小车的自动循迹前行,并显示等功能。 一、系统设计 本组智能小车的硬件主要有以PIC16f886 作为核心的主控器部分、自动循迹部分、显示部分、电机驱动部分。其中电机驱动部分和其他部分分别由两个不同的电源分开供电。 小车硬件系统结构示意图如下:

智能循迹小车___设计报告

智能循迹小车设计 专业:自动化 班级:自动化132 姓名:罗植升莫柏源梁桂宾 指导老师: 2014年4月——2010年6月 摘要:

本课题是基于STC89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 STC89C52单片机为系统控制处理器;采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。 引言

当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。 作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车(特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。 无容置疑,机电一体化人才的培养不论是在国外还是国内,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛(ABU ROBCON)、全国大学生“飞思卡尔”杯智能汽车竞赛等众多重要竞赛都能很好的培养大学生对于机电一体化的兴趣与强化机电一体化的相关知识。但很现实的状况是,国内不论是在机械还是电气领域,与国外的差距还是很明显的,所以作为机电一体化学生,必须加倍努力,为逐步赶上国外先进水平并超过之而努力。 为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。所以立“智能循迹小车”一题作为尝试。 此项设计是在以杨老师提供的小车为基础上,采用AT89C52单片机作为控制核心,实现能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。

毕业设计智能循迹避障小车设计

毕业设计智能循迹避障 小车设计 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

单片机系统课程设计 轮式移动机器人的设计 学院:通信与电子工程学院 班级:电子131 姓名:初清晨 学号: 13 同组成员:孟庆阳张轩 指导老师:王艳春 日期:2015年12月24日

组员分工 1、组长:张轩,实物焊接,报告整理,程序设计 2、组员:孟庆阳,实物焊接,仿真测试,报告整理 3、组员:初清晨,实物焊接,报告整理,仿真测试

目录

摘要 随着计算机、微电子、信息技术的快速进步,智能化技术的开发速度越来越快,智能度越来越高,应用范围也得到了极大的扩展。智能作为现代的新发明,是以后的发展方向,它可以按照预先设定的模式在一个环境里自动的运作,不需要人为的管理,可应用于科学勘探等用途。智能电动小车就是其中的一个体现。设计者可以通过软件编程实现它的行进、循迹、停止的精确控制以及检测数据的存储、显示,无需人工干预。因此,智能电动小车具有再编程的特性,是机器人的一种。 本设计采用AT89S52单片机加电机驱动电路和红外遥控及循迹模块还有红外接收一体化传感器设计而成,采用模块化的设计方案,运用红外遥控器控制小车的前进、后退、左转、右转、启动和停止。 关键词:智能小车;STC89C52单片机;L9110;红外对管 Intelligent tracking and obstacle-avoid car Abstract:Based infrared detection of black lines and the road obstacles, and use a STC89C52 MCU as the controlling core for the speed and direction, A electronic drived, which can automatic track and avoid the obstacle, was designed and fabricated. In which, the car is drived by the L298N circuit, its speed is controlled by the output PWM signal from the STC89C52. Keywords: Smart Car; STC89C52 MCU; L298N; Infrared Emitting Diode 第一章绪论 智能小车的意义和作用 自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。 随着科学技术的发展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单的目标。视觉传感器的核心器件是摄像管或CCD,目前的CCD已能做到自动聚焦。但CCD传

智能循迹小车设计与实现

智能循迹小车设计与实现 摘要本文介绍的是基于单片机STC89C52控制智能循迹小车的设计。利用红外对光管检测黑线与障碍物,并以STC89C52单片机为控制芯片控制电动小汽车的运动,从而实现自动循迹避障的功能。其中小车的电机由LG9110驱动,整个系统的电路结构简单,可靠性高。 关键词STC89C52 LG9110 红外对光管循迹小车

The manufacture of intelligent tracking car Abstract This articale introduces the design of intelligent tracking car based on the STC89C52 single chip computer.Based infrared detection of black lines and the road obstacles,and use a STC89C52 MCU as the controlling core for the movement.A electronic drived,which can automatic track and avoid obstacle,was designed and fabricated.In which,the electric machinery of car is drived by the LG9110.The electric circuit stuction of whole system is simple,and the function is dependable. Keywords STC89C52 LG9110 Infrared emitting diode Tracking car

智能寻迹小车设计报告

~ 目录 1.项目设计目的 (1) 2.项目设计正文 (3) .项目分析及方案制定 (3) .设计步骤及流程图 (4) 寻迹设计步骤 (4) 流程图 (4) ( .主要模块介绍 (4) LM393的主要特点 (4) LM393引脚图及内部框图 (5) LM393 功能简介 (5) 89C2051 (5) 89C2051简介 (5) 89C2051 主要性能参数 (5) 89C2051 功能特性概述 (6) 。 .电路设计及PCB绘制 (6) 电源电路 (6) 红外收发电路 (6) 电机驱动电路 (7) 单片机最小系统 (7) 整体电路 (8)

PCB板的绘制 (8) . 成品展示 (9) \ 3.项目设计总结 (9) 4.参考文献 (10) 智能寻迹小车 ——CDIO三级项目 王君杰 (电子信息工程 1501 6) 一、项目设计目的 在科技飞速发展的今天,智能化的概念已经渗入到各行各业,自动控制系统也出现在生活的方方面面,早到工厂的机械化生产,近到目前的自动驾驶。越来越多的领域涉及到电控制技术。特别是使用单片机一类的MCU的控制,在生活中越来越常见。因此,基于单片机控制的电路的学习和时间对于我们来说就显得尤为重要。同时,对于单片机作为软件主控单元,结合模电数电的硬件电路支持的综合项目开发,也是作为大学生需要了解并且熟练运用的基础。掌握了这些知识,对于我们以后的职业发展也有着莫大的帮助。 二、? 三、项目设计正文 、项目分析及方案制定 首先对于“智能寻迹小车”这个标题而言,我们可以分为两个部分:小车和智能寻迹。“小车”决定了硬件电路的大致构成:电源、电容、电阻、开关、电机、LED。而“智能”则决定了一些高级电路的选用:MCU、传感器、电机驱动、电位器及一些IC。 其次,假如去掉“智能”两字,仅关注如何做成一个能够行驶的小车,那么电路的搭建将会变得尤为简单。假如做一个“上电即跑”的小车,那么连开关都不需要,仅需要电源(干电池即可),两个电机 (3V/100mA)和两个限流电阻按图一方式连接即可。当然,这样的 小车只能实现向一个方向前进,无法实现跑道的自动识别和转向。 不过,这个电路也是所有行驶工具的基础,所有的行驶工具,都是 在这个电路的基础上按照想要实现的功能进行拓展开发。 接着让我们来到“智能”的环节。所谓智能,也就是需要小车 有人的思想,正如同课题所述——寻迹。智能的小车需要具备自动识别跑道的能力。同时,在采集到跑道信息后要做出相应的处理。在我们这个课题中,也就是需要及时并

智能循迹避障小车方案设计书

封面

作者:PanHongliang 仅供个人学习 目录 摘要………………………………………………………………………………………2 ABSTRACT………………………………………………………………………………

…2 第一章绪论 (3) 1.1智能小车的意义和作用 (3) 1.2智能小车的现状 (3) 第二章方案设计与论证 (4) 2.1 主控系统 (4) 2.2 电机驱动模块 (4) 2.3 循迹模块 (6) 2.4 避障模块 (7) 2.5 机械系统 (7) 2.6电源模块 (8) 第三章硬件设计 (8) 3.1总体设计 (8) 3.2驱动电路 (9) 3.3信号检测模块 (10) 3.4主控电路 (11) 第四章软件设计 (12) 4.1主程序模块 (12) 4.2电机驱动程序 (12) 4.3循迹模

块 (13) 4.4避障模块 (15) 第五章制作安装与调试 (18) 结束语 (18) 致谢……………………………………………………………………………………… 19 参考文献 (19) 智能循迹避障小车 摘要:利用红外对管检测黑线与障碍物,并以STC89C52单片机为控制芯片控制电动小汽车的速度及转向,从而实现自动循迹避障的功能。其中小车驱动由 L298N驱动电路完成,速度由单片机输出的PWM波控制。 关键词:智能小车;STC89C52单片机; L298N;红外对管 Intelligent tracking and obstacle-avoid car Abstract:Based infrared detection of black lines and theroad obstacles, and use a STC89C52 MCU as the controlling core for the speed and direction, A electronic drived, which can automatic track and avoid the obstacle, was designed and fabricated. In which, the car is drived by the L298N circuit, its speed is controlled by the output PWM signal from the STC89C52. Keywords: Smart Car。STC89C52 MCU。L298N。Infrared Emitting Diode 第一章绪论 1.1智能小车的意义和作用 自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。 随着科学技术的发展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单的目标。视

毕业设计+智能循迹避障小车设计之令狐文艳创作

单片机系统课程设计 令狐文艳 轮式移动机器人的设计 学院:通信与电子工程学院 班级:电子131 姓名:初清晨 学号:2013131013 同组成员:孟庆阳张轩 指导老师:王艳春 日期:2015年12月24日

组员分工 1、组长:张轩,实物焊接,报告整理,程序设计 2、组员:孟庆阳,实物焊接,仿真测试,报告整理 3、组员:初清晨,实物焊接,报告整理,仿真测试

目录 摘要1 第一章绪论2 1.1智能小车的意义和作用2 1.2智能小车的现状3 第二章方案设计与论证3 2.1 主控系统3 2.2 电机驱动模块4 2.3 循迹模块5 2.4 避障模块6 2.5 机械系统7 2.6电源模块7 第三章硬件设计7 3.1 AT89S52单片机的简介8 3.2总体设计11 3.3驱动电路12 3.4信号检测模块13 3.5主控电路14 第四章软件设计15 4.1主程序框图15 4.2电机驱动程序15 4.3循迹模块16 4.4避障模块20 结束语25 致谢26 附录一循迹加红外避障综合程序28 附录二实物图32

摘要 随着计算机、微电子、信息技术的快速进步,智能化技术的开发速度越来越快,智能度越来越高,应用范围也得到了极大的扩展。智能作为现代的新发明,是以后的发展方向,它可以按照预先设定的模式在一个环境里自动的运作,不需要人为的管理,可应用于科学勘探等用途。智能电动小车就是其中的一个体现。设计者可以通过软件编程实现它的行进、循迹、停止的精确控制以及检测数据的存储、显示,无需人工干预。因此,智能电动小车具有再编程的特性,是机器人的一种。 本设计采用AT89S52单片机加电机驱动电路和红外遥控及循迹模块还有红外接收一体化传感器设计而成,采用模块化的设计方案,运用红外遥控器控制小车的前进、后退、左转、右转、启动和停止。 关键词:智能小车;STC89C52单片机;L9110;红外对管 Intelligent tracking and obstacle-avoid car Abstract:Based infrared detection of black lines and theroad obstacles, and use a STC89C52 MCU as the controlling core for the speed and direction, A electronic drived, which can automatic track and avoid the obstacle, was designed and fabricated. In which, the car is drived by the L298N circuit, its speed is controlled by the output PWM signal from the STC89C52. Keywords: Smart Car; STC89C52 MCU; L298N;Infrared Emitting Diode 第一章绪论 1.1智能小车的意义和作用 自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。 随着科学技术的发展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单的

智能循迹小车C程序(完美-详尽)

-----------------------小车运行主程序------------------- -------------------------------------------------------- 简介:@模块组成:红外对管检测模块----五组对管,五个信号采集端口 直流电机驱动模块----驱动两个直流电机,另一个轮子用万向轮 单片机最小系统------用于烧写程序,控制智能小车运动 @功能简介:在白色地面或皮质上用黑色胶带粘贴出路线路径宽度微大于相邻检测管间距。 这样小车便可在其上循迹运行。 @补充说明:该程序采取“右优先”的原则: 即右边有黑线向右转, 若无,前方有黑线,向前走, 若无,左边有黑线,向左转, 若全无,从右方向后转。 程序开头定义的变量的取值是根据我的小车所调试选择好的, 如果采用本程序,请自行调试适合自己小车的合适参数值。 编者:陈尧,黄永刚(江苏大学电气学院二年级,三年级) 1.假定:IN1=1,IN3=1时电机正向转动,必须保证本条件 2.假定:遇到白线输出0,遇到黑线输出1; 如果实际电路是:遇到白线输出1,遇到黑线输出0, 这种情况下只需要将第四,第五句改成: #define m0 1 #define m1 0 即可。 3.说明1:直行---------------速度full_speed_left,full_speed_right. 转弯,调头速度------correct_speed_left,correct_speed_right. 微小校正时---------高速轮full_speed_left,full_speed_right; 低速轮correct_speed. 可以通过调节第六,七,八,九,十条程序,改变各个状态 下的占空比(Duty cycle ),以求达到合适的转弯,直行速度 4.lenth----------length检测到黑线到启动转动的时间间隔 5.width----------mid3在黑线上到脱离黑线的时间差 6.mid3-----------作为判断中心位置是否进入黑线的标志,由于运行的粗糙性和惯性, 常取其他对管的输出信号作为判断条件 7.check_right----若先检测到左边黑线,并且左边已出黑线,判断右端是否压黑线时间拖延

智能循迹小车总体设计方案

智能循迹小车总体设计方案 整体设计方案 本系统采用简单明了的设计方案。通过高发射功率红外光电二极管和高灵敏度光电晶体管组成的传感器循迹模块黑线路经,然后由AT89S52通过IO口控制L298N驱动模块改变两个直流电机的工作状态,最后实现小车循迹。 系统设计步骤 (1)根据设计要求,确定控制方案; (2)将各个模块进行组装并进行简单调试; (3)画出程序流程图,使用C语言进行编程; (4)将程序烧录到单片机内; (5)进行调试以实现控制功能。 系统基本组成 智能循迹小车主要由AT89S52单片机电路、循迹模块、L298N驱动模块、直流电机、小车底板、电源模块等组成。 (1)单片机电路:采用AT89S52芯片作为控制单元。AT89S52单片机具有低成本、高性能、抗干扰能力强、超低功耗、低电磁干扰,并且与传统的8051单片机程序兼容,无需改变硬件,支持在系统编程技术。使用ISP可不用编程器直接在PCB板上烧录程序,修改、调速都

方便。 (2)循迹模块:采用脉冲调制反射红外发射接收器作为循迹传感器,调制信号带有交流分量,可减少外界的大量干扰。信号采集部分就相当于智能循迹小车的眼睛,有它完成黑线识别并产生高、低平信号传送到控制单元,然后单片机生成指令来控制驱动模块来控制两个直流电机的工作状态,来完成自动循迹。 (3)L298N驱动模块:采用L298N作为点击驱动芯片。L298N具有高电压、大电流、响应频率高的全桥驱动芯片,一片L298N可以分别控制两个直流电机,并且带有控制使能端。该电机驱动芯片驱动能力强、操作方便、稳定性好,性能优良。L298N的使能端可以外接电平控制,也可以利用单片机进行软件控制,满足各种复杂电路的需要。另外,L298N的驱动功率较大,能够根据输入电压的大小输出不同的电压和功率,解决了负载能力不够的问题。

智能循迹小车

智能循迹小车 This model paper was revised by the Standardization Office on December 10, 2020

课程设计报告课程名称嵌入式系统原理与设计 课题名称智能循迹小车 专业通信工程 班级 学号 姓名 指导老师乔汇东胡瑛 2014 年 1 月 5 日

目录

1.系统总设计 功能说明 本课题是基于MSP430单片机循迹智能小车的设计与实现,小车系统以MSP430单片机为系统控制处理器,采用红外传感器对赛道进行道路检测,单片机根据检测到的信号的不同状态判断小车的当前状态,通过电机驱动芯片L298N发出控制命令,控制电机的工作状态以实现对小车的控制,最终在黑色跑道上完成循路行走。 任务分配情况 参与此次项目制作的一共七人,分别是:张振凤,冯志成,肖新加,代小敏,杨小林,谢鹏华和张莹任务分配情况如表1所示: 表1 任务分配情况 使用说明书 产品名称:智能循迹小车 技术参数: L298N基本参数: 类型:半桥输入类型:非反相输出数: 4 电流输出/同道:2A 电流峰值输出:3A 工作温度:-25~135°C 器件型号:L298N 产品的使用方法: 用六节干电池9V直流电压作为供电电源,接通电源,在有黑线的跑道上行走。 注意事项:1、所用电源不能超过9V,以免电压过大,把电机烧坏。 2、小孩使用时,应在大人的陪同下使用,以免被小车的尖锐部分弄伤。

3、轻拿轻放,以免损坏小车器件。 4、长期不使用时,应把电池取出。 生产日期:20xx年xx月xx日 2.硬件设计 此次项目中硬件部分的设计主要包含以下模块:电源模块,红外循迹模块,电机驱动模块和MSP430f149单片机。 电源模块 模型车通过自身系统,采集赛道信息,获取自身速度信息,加以处理,由芯片给出指令控制其前进转向等动作,各部分都需要由电路支持,电源管理尤为重要。在本设计中,在本设计中,msp430单片机使用5V电源,电机使用5V电源。用了6节的电池,为单片机和电机供电。如图所示: 图1 电源实物图 其红线接电机驱动模块上的VDD接口,绿线连接GND接口。 红外循迹模块 采用光敏二极管作为光源探测模块的传感器,由于光敏二极管感光后,内阻有较大的变化,通过一定的电路转化为电压的变化。其实物图为: 图2 红外循迹模块实物图 图中的SSI至SS5分别连接单片机I/O接口的到。分别控制五个光敏二极管,当没有检测到黑线,则指示灯不亮,则为高电平。有检测到黑线,则指示灯亮,为低电平。从而判断出小车是否能够循迹走。 红外循迹模块原理图 采用比较器对 5 个二极管的输出电压进行比较,光敏二极管引起的电压变化送

智能循迹小车详细制作过程

(穿山乙工作室) 三天三十元做出智能车 0.准备所需基本元器件 1).基本二驱车体一台。(本课以穿山乙推出的基本车体为例讲解) 2).5x7cm 洞洞板、单片机卡槽、51单片机、石英晶体、红色LED 、1K 电阻、10K 排阻各一个;2个瓷片电容、排针40个。 3).5x7cm 洞洞板、7805稳压芯片、红色LED 、1K 电阻各一个;双孔接线柱三个、10u 电解电容2个、排针12个、9110驱动芯片2个。 4).5x7cm 洞洞板、LM324比较器芯片各一个;红外对管三对、4.7K 电阻3个、330电阻三个、红色3mmLED 三个。 一、组装车体 基本设计思路: 1.基本车架(两个电机一体轮子+一个万向轮) 2.单片机主控模块 3.电机驱动模块(内置5V 电源输出) 4.黑白线循迹模块

(图中显示的很清晰吧,照着上螺丝就行了) 二、制作单片机控制模块 材料:5x7cm洞洞板、单片机卡槽、51单片机、石英晶体、红色LED、1K电阻、10K排阻各一个;2个瓷片电容、排针40个。 电路图如下,主要目的是把单片机的各个引脚用排针引出来,便于使用。我们也有焊接好的实物图供你参考。(如果你选用的是STC98系列的单片机在这里可以省掉复位电路不焊,仍能正常工作。我实物图中就没焊复位)

三、制作电机驱动模块 材料:5x7cm洞洞板、7805稳压芯片、红色LED、1K电阻各一个;双孔接线柱三个、10u电解电容2个、排针12个、9110驱动芯片2个。 电路图如下,这里我们把电源模块与驱动模块含在了同一个电路板上。因为电机驱动模块所需的电压是+9V左右(6—15V 均可),而单片机主控和循迹模块所需电压均为+5V。 这里用了一个7805稳压芯片将+9V电压稳出+5V电压。 +9V

智能循迹小车程序

智能循迹小车程序 Document number:BGCG-0857-BTDO-0089-2022

#include<> #define uchar unsigned char #define uint unsigned int //D0-D7:f,b,a,e,d,h,c,g 共阴依次编码 //74LS04反相器驱动数码管 uchar code table[10] = {0x5F,0x42,0x9E,0xD6,0xC3,0xD5,0xDD,0x46,0xDF,0xD7}; uchar i = 0; //用于0-3数码管轮流显示uint j = 0; //计时的次数 uint time=0; //计时 uint pwm=16; //占空比 uint speed; //调制PWM波的当前的值 sbit R=P3^2; //右边传感器 P3^2 sbit L=P3^3; //左边传感器 P3^3 //电机驱动口定义 sbit ENB=P1^0; //前轮电机停止控制使能 sbit ENA=P1^1; //后轮控制调速控制端口 sbit IN1=P1^2; //前轮 sbit IN2=P1^3; //前轮 sbit IN3=P1^4; //后轮

sbit IN4=P1^5; //后轮 void Init() { TMOD = 0x12; //定时器0用方式2,定时器1用方式1 TH0=(256-200)/256; //pwm TL0=(256-200)/256; TH1 = 0x0F8; //定时2ms TL1 = 0x30; EA = 1; ET0 = 1; ET1 = 1; TR0 = 1; TR1 = 1; } void tim0(void) interrupt 1 //产生PWM { speed ++; if(speed <= pwm) //pwm 就相当于占100的比例{ ENA = 1; }

相关文档
最新文档