动态可重构基本理论
基于路径依赖的可重构制造单元构建与布局研究

基于路径依赖的可重构制造单元构建与布局研究基于路径依赖的可重构制造单元构建与布局研究摘要:随着人工智能和自动化技术的不断发展,制造业正面临着生产方式的变革。
可重构制造单元(Reconfigurable Manufacturing Cell,简称RMC)作为一种新型的制造单元,具有可快速更换部件和工艺的特点,能够适应不同产品的生产需求。
本文通过对路径依赖理论的研究,探讨了基于路径依赖的可重构制造单元的构建与布局方法,并提出了相关的设计原则和策略。
1. 引言随着全球制造业的竞争日益激烈,传统的大规模生产模式已经不能满足市场对多样化和个性化产品的需求。
为了适应快速变化的市场需求,制造业需要寻找新的生产模式并引入新的制造技术。
可重构制造单元作为一种新型的制造单元,具备快速灵活的生产特性,已经成为制造业改进生产方式的重要研究领域。
2. 可重构制造单元的概念与特点可重构制造单元是一种灵活可变的制造单元,它能够通过快速更换部件和工艺来满足不同产品的生产需求。
它具有以下特点:1)模块化设计,能够方便地更换和组合不同部件;2)可编程控制,能够根据产品要求进行工艺变换;3)灵活适应,能够根据市场需求快速调整生产能力。
3. 路径依赖理论及其在制造单元布局中的应用路径依赖理论是一种描述过程中路径选择对结果产生影响的理论。
在制造单元的构建和布局中,路径依赖理论可以用来分析和解决以下问题:1)如何选择合适的工艺流程和布局方式;2)如何利用历史数据和经验知识进行决策;3)如何适应市场需求的变化。
4. 基于路径依赖的可重构制造单元构建与布局方法基于路径依赖的可重构制造单元构建与布局方法包括以下步骤:1)数据收集与分析,通过收集和分析历史数据和经验知识,评估不同工艺流程和布局方式的适应性;2)路径选择与优化,根据评估结果选择合适的路径和优化布局方式;3)系统改进与优化,不断改进系统性能和生产效率。
5. 设计原则和策略基于路径依赖的可重构制造单元的设计原则和策略包括以下方面:1)模块化设计,使得单元的部件可以方便地更换和组合;2)可编程控制,使得单元的工艺可以根据产品要求进行变换;3)灵活适应,使得单元可以根据市场需求调整生产能力;4)数据驱动,通过收集和分析数据来指导决策和改进。
天津大学下属的研究所

制造装备与系统研究所方向一:并联构型装备(Parallel Kinematic Machines)是以并联机构为全部或部分进给机构的机器人或机床系统。
设计理论与关键技术在并联机构的拓扑结构创新设计,运动学分析与尺度综合,精度设计与运动学标定,静、动态刚度分析与动态设计,轨迹规划,开放式数控系统开发以及装备的可重构布局设计等方面做了大量研究工作,取得一批理论成果。
样机建造与产业化Stewart型并联机床受到国家863高技术发展计划和国家自然科学基金资助,与清华大学合作,于1997年在国内率先开展Stewart 型并联机床设计理论、关键技术和原型样机建造工作,内容涉及工作空间分析与综合等方面,为原型样机的设计提供了理论依据。
该项目通过国家教育部鉴定,发表高水平论文多篇,1999年获中国高校科技进步2等奖。
三平动自由度并联机床3-HSS并联机床是在天津市科技攻关和天津大学211工程项目资助下研制成功的我国首台商品化三坐标并联机床,该机床采用平行四边形原理,具有刚度和精度高等特点。
该项目后得到天津市重大科技攻关项目支持,开发基于主模块的5坐标加工中心,目前已开发出立式和卧式两种机型并出售2台。
球面并联机构三自由度球面并联机构是在国家“863”计划资助下研制成功的新型数控装置,能够实现绕三个正交轴的转动,可作成各种高速跟踪装置。
高速轻型并联机械手Diamond机构是国家“863”计划资助下,由天津大学发明的2平动自由度并联机构,是国际著名Delta并联机械手的一种2维形式,具有速度高、制造成本低等优点,特别适合在完成电子、轻工、食品和医药行业中的高速抓取操作,目前已出售4台,并在电池制造企业得到应用。
5坐标可重构混联机械手TriVariant 机械手是在国家自然基金资助下,由天津大学发明的5坐标混联机械手,其结构突破了国际著名的Tricept 机械手的知识产权,具有速度高、结构简单、操作空间体积比大、可重构性强等优点,可广泛应用于汽车、航空、建筑等行业的焊接、切割、喷涂、高速加工和装配等操作。
机器人学-并联机构的基础理论

并联机构的逆解软件
机床尺寸 标准C程序
控制系统界面操作步骤
• 进入控制系统界面后,先进行文件管理操作,完成数控 文件录入;
• 然后进行回零操作,建立机床坐标系; • 接着进行文件操作,将第一步完成的数控程序装入; • 通过单步或连续运行,完成原定机床的运动。 • 完成运动后,进行回零操作,使机床回到初始位置。
2.2 运动学方程建立-正解方程
2.3 速度方程
2.3 速度方程
3. 并联机构终端的自由度数确定
3. 并联机构终端的自由度数确定
3. 并联机构终端的自由度数确定
M 3(8 9 1) 9 3
空间可重构并联机构搭建
实际装置RPKM(II)
实际装置RPKM(II)
实际装置RPKM(II)
并联机构的分析和搭建 ——基础理论
1. 并联机构的定义
定义:只要是多自由度,驱动器分配在不同环路上的闭 式多环机构均可称为并联机构(Parallel manipulator; Parallel mechanism; Stewart platform)。 特点: (1)多自由度, (2)闭式,多环机构
并联机构的基本分析方法
1. 一种六自由度并联机构
1.1 机构模型
B3 B4
Y
B2 B
B1 X
B5
B6
T3 T4
T5
y
T2
T1
T
x
T6
1.2 运动学方程建立
动静平台坐标表示
1.2 运动学方程建立-逆解方程
旋转矩阵(欧拉角表示方法)
根据旋转变换,动平台坐标系中动平台各铰链位置矢量在基础坐标系中表示为 运动平台上各铰接点在基础坐标系中坐标为: 支链矢量表示为: 运动学逆解:
基于FPGA的可重构性数字逻辑实验方法

() 5 在实验板上按照上图将所需的器件用导线连接在一起 , 并用示波器观察输 出信号 的波形 , 即可 验证设计电路的准确性。 2 基 于 IA的计数 器 的设计 G 方法一 : 用原理图输入法设计 其 步骤 为 :
() 1 根据设计要求 , 按照传统的异步时序电路的设计方法 , 即得到状态表达式和时钟脉冲信号 , 利
作者简介 :江晋剑 , , 男 安徽枞 阳人 , 安庆师范学 院计算机与信息学院讲师 , 主要研究嵌人式 系统应用与模式识别。
・
1 8・ 2
安庆师范学院学 报( 自然科学版 )
-_ ____● _
1 1 1 1 10H 1 1 0 10 10 H 10 10 1 1 H O H 1 0H 1 1 0 0 0 0 I
方法 二 : 文本 文件输 入设 计 用
将方法一中的原理图输入法改为用文本输入法设计时, 只有输入方法的变化 , 其设计编译与设计校 验是相同的。在 H L D 编辑界面下, 键人如下 V D H L代码 :
l r r e e; i ayie b 1 u e ie . t l gc 1 6 al s e e sd o i 4. l;
图如 图 3所示 。
图 3 全部变量 的次态卡诺 图
为了便于说明, 将上述综合次态卡诺 图分解为各变量的次态卡诺图, 如图 4 所示。
t
Q Q 2 3 \
…旦 一一 。. 。 !
。
l o Q
∞ 0 1 ll l0
o o l l 0 l
0 I 1
l
k
;
l
图 8 时序仿 真波形
从校验仿真后得到的波形来看 , R s 为低 电平时 , 当 et e 计数器输出(3 2 10 恒为 00 。当 R s q qq q ) 00 et e 为高电平时 , 当下一个时钟上升延来临时 , 计数器开始计数。原理图输入法要求学生对所设计题 目的逻 辑功能有深刻的理解 , 在此基础上列出真值表( 或状态图)经化简等过程之后才能得到其原理 图, , 从而 巩 固 了本 课程所 学 的基本 理论 。
国家自然科学基金委员会关于发布空间信息网络基础理论与关键技术重大研究计划项目指南的通告-

国家自然科学基金委员会关于发布空间信息网络基础理论与关键技术重大研究计划项目指南的通告正文:---------------------------------------------------------------------------------------------------------------------------------------------------- 国家自然科学基金委员会关于发布空间信息网络基础理论与关键技术重大研究计划项目指南的通告国家自然科学基金重大研究计划遵循“有限目标、稳定支持、集成升华、跨越发展”的总体思路,围绕国民经济、社会发展和科学前沿中的重大战略需求,重点支持我国具有基础和优势的优先发展领域。
重大研究计划以专家顶层设计引导和科技人员自由选题申请相结合的方式,凝聚优势力量,形成具有相对统一目标或方向的项目群,通过相对稳定和较高强度的支持,积极促进学科交叉,培养创新人才,实现若干重点领域或重要方向的跨越发展,提升我国基础研究创新能力,为国民经济和社会发展提供科学支撑。
国家自然科学基金委员会(以下简称自然科学基金委)现公布空间信息网络基础理论与关键技术重大研究计划2013年度项目指南(见附件)。
一、申请条件本重大研究计划项目申请人应当具备以下条件:1.具有承担基础研究课题的经历;2.具有高级专业技术职务(职称);正在博士后站内从事研究、正在攻读研究生学位以及《国家自然科学基金条例》第十条第二款所列的科学技术人员不得申请。
二、限项规定1.具有高级专业技术职务(职称)的人员,申请或参与申请本次发布的重大研究计划项目与正在承担(包括负责人和主要参与者)以下类型项目合计限为3项:面上项目、重点项目、重大项目、重大研究计划项目(不包括集成项目和指导专家组调研项目)、联合基金项目(指同一名称联合基金项目)、青年科学基金项目、地区科学基金项目、优秀青年科学基金项目、国家杰出青年科学基金项目(申请时不限项)、国际(地区)合作研究项目(特殊说明的除外)、科学仪器基础研究专款项目、国家重大科研仪器设备研制专项(自由申请项目)、优秀国家重点实验室研究专项项目,以及资助期限超过1年的委主任基金项目和科学部主任基金项目等。
空间信息网络基础理论与关键技术重大研究计划

空间信息网络基础理论与关键技术重大研究计划年度项目指南空间信息网络是以空间平台(如同步卫星或中、低轨道卫星、平流层气球和有人或无人驾驶飞机等)为载体,实时获取、传输和处理空间信息的网络系统。
作为国家重要基础设施,空间信息网络在服务远洋航行、应急救援、导航定位、航空运输、航天测控等重大应用的同时,向下可支持对地观测的高动态、宽带实时传输,向上可支持深空探测的超远程、大时延可靠传输,从而将人类科学、文化、生产活动拓展至空间、远洋、乃至深空,是全球范围的研究热点。
空间信息网络的发展,受频谱和轨道等资源的限制,难以通过增加空间节点数量和提高节点能力来扩大时空覆盖范围。
为从根本上解决现有信息网络全域覆盖能力有限、网络扩展和协同应用能力弱的问题,亟需开展空间信息网络基础理论与关键技术研究,通过新理论、新方法探索,有力支持空间信息服务能力的大幅提升。
一、科学目标本重大研究计划的总体科学目标是:瞄准信息网络科学的学科发展前沿,针对空间信息网络大时空跨度网络体系结构、动态网络环境下的高速信息传输、稀疏观测数据的连续反演与高时效应用等基础性重大挑战,研究大尺度时空约束下空间网络及空间信息传输处理等机理,重点突破动态网络容量优化、高速信息传输及多维数据融合应用等技术难题,通过传输网络化、处理智能化和应用体系化等方法,将网络资源动态聚合到局部时空区域,解决空间信息网络在大覆盖范围、高动态条件下空间信息的时空连续性支持问题,为提升全球范围、全天候、全天时的快速响应和空间信息的时空连续支撑能力,实现我国空间网络理论与技术高起点、跨越式发展,并有效支撑高分辨率对地观测、卫星导航、深空探测等国家重大专项的发展奠定理论基础。
同时,通过重大研究计划的实施,培养空间信息网络理论与技术领域领军人才及优秀科研群体。
二、核心科学问题本重大研究计划面向网络理论与空间信息科学发展前沿,瞄准空间网络体系结构、动态网络信息传输理论、空间信息表征与时空融合处理等重大基础科学理论,围绕高分辨率对地观测、中国卫星导航系统、载人航天与探月工程等国家重大专项发展需求,重点解决以下三个核心科学问题:(一)空间信息网络模型与高效组网机理。
软件无线电技术综述

软件无线电技术综述一、概述随着信息技术的飞速发展,无线通信技术在现代社会中扮演着越来越重要的角色。
传统的硬件主导的无线通信系统由于其固有的局限性,已无法满足日益增长的多样化、个性化通信需求。
在这一背景下,软件无线电技术应运而生,以其独特的优势引领着无线通信领域的新一轮变革。
软件无线电技术是一种基于数字信号处理(DSP)和现场可编程门阵列(FPGA)等先进技术的无线通信体系。
它的核心理念在于构建一个通用的硬件平台,通过加载不同的软件来实现各种无线通信功能。
这种技术范式不仅使得硬件平台能够兼容多种无线标准,如GSM、CDMA、WLAN等,还显著提高了系统的灵活性和可扩展性。
软件无线电技术的核心原理在于将模拟信号进行数字化处理,并在数字域上执行信号处理操作。
具体实现过程中,需要构建可编程的数字信号处理器(DSP)和FPGA等硬件平台,并开发相应的数字信号处理算法和软件模块。
通过这些技术和手段,软件无线电技术能够实现无线信号的收发和处理,从而满足不同的无线通信标准和功能需求。
软件无线电技术的应用领域广泛,涵盖了军事、移动通信、无线传感器网络、广播通信等多个领域。
在军事领域,软件无线电技术有助于构建灵活的军事通信系统,提高作战指挥效率和协同能力。
在移动通信方面,该技术能够实现多模多频的通信功能,支持多种无线标准,提升移动设备的通信能力和互联互通性。
在无线传感器网络和广播通信等领域,软件无线电技术也发挥着重要作用,推动着这些领域的持续创新和发展。
软件无线电技术以其独特的优势在无线通信领域展现出了广阔的应用前景。
本文将对软件无线电技术的定义、原理、发展历程、应用领域以及未来发展趋势进行全面综述,以期为相关研究和应用提供参考。
1. 软件无线电技术的定义软件无线电技术,是一种引领无线通信领域的技术革新。
它的核心理念在于利用现代化软件来操纵、控制传统的“纯硬件电路”,打破了传统通信设备仅仅依赖硬件来实现通信功能的局限。
可重构制造单元控制系统设计_张友良

可重构制造单元控制系统设计张友良,徐骏善,汪惠芬(南京理工大学机械工程学院,江苏南京 210094)摘要:网络化制造将是信息时代的主要生产模式,制造系统可重构是网络化制造的关键单元技术。
在分析了网络化制造环境对可重构制造系统体系结构要求的基础上,提出了一种支持制造系统可重构的单元控制器设计方案,并详细介绍了该控制器的软件框架结构、功能模块和实现技术。
关键词:网络化制造;可重构制造单元;组件中图分类号:TP273 文献标识码:A 文章编号:1007-9483(2001)06-0011-03Design of Control System of Reconfigurable Manufacturing C ellZHANG You -liang ,XU Jun -shan ,WANG H ui -fen(N anjing University of Science &T echnology ,Jiangsu Nanjing ,210094,China )A bstract :Netwo rked manufacturing will be the main paradigm in information age .Reco nfiguration of manufacturing resource is the key element technology of ne tw orked manufacturing .Based on requirements analyzing of architecture of reconfigurable manufactur -ing sy stem in this environment ,the paper puts forward a design scheme of reconfigurable manufacturing cell controller supporting rapid reconfig uration of manufacturing resource .It gives the detail about the sof tw are frame ,functio n module and implementing technology of this controller .Key words :N etworked M anufacturing ;Reconfigurable M anufacturing Cell ;Component 1 制造单元重构问题的提出在网络化制造环境下,制造系统如何快速、敏捷、柔性地响应市场的需求,成为提高企业竞争力的关键技术之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
论文阅读理论方法总结 Yongfu feng
一. FPGA动态可重构基础理论 严格来讲,系统重构的概念可分为静念系统重构和动态系统重构。静态系统重构是指目标系统的逻辑功能静态重载,即FPGA芯片功能在外部逻辑的控制下,通过存贮于存贮器中不同的目标系统数据重新下载,而实现芯片逻辑功能的改变。也就是指系统中PLD逻辑的静态重载,在系统空闲期间通过各种方式进行在线编程,而不是在其他部分动态运行时重载。 1. 1动态可重构概念及原理 动态重构系统概念的提出早于FPGA动态可重构技术的提出。动态重构系统指对于时序变化的数字逻辑系统,其时序逻辑的发生,不是通过调用芯片内不同区域、不同逻辑资源来组合而成的,而可通过对具有专门缓存逻辑资源的FPGA,进行局部的和全局的芯片逻辑的动态重构而快速实现。也就是指在系统实时运行当中对FPGA的逻辑功能实时地进行动态配置,能够只对其内部需要修改的逻辑单元进行重新配置,没有被修改的逻辑单元将不受影响,正常工作。一般由传统处理器执行主程序,特定的任务赋给以FPGA为基础的协处理器以加速它们的执行。事实上,在大部分处理时间内,只有相对较小的一部分用来计算内部任务,而硬件可以显著加速执行的时间。在重构的过程中,根据需要,任务可以交换进入协处理器进行处理。 所谓FPGA动态可重构技术,是指基于静态存储器(SRAM)编程和专门结FPGA,在一定的控制逻辑的驱动下,不仅能实现系统重新配置电路功能,还能对芯片逻辑功能实现系统的高速动态变换。大多数FPGA都是基于SRAM查找表结构,它们一般只适用于静态重构,向SRAM一次下载全部配置数据而设定FPGA的逻辑功能。根据FPGA的、配置方式等不同,全部重构时间为几毫秒到几秒不等。过去大家普遍进行重构研究的FPGA主要有,Xilinx的XC6200系列、以及Atmel的AT6000等。它们也是基于SRAM结构,但是SRAM的各单元能够单独访问配置,分重构。它们的功能互不影响,因而具有部分重构的特征。这样做的优点显但也会付出增大硬件电路规模和功耗的代价。要最终实现电子系统的完全实构,应采用结构上具有动态部分重构功能的FPGA器件,如现在Xilinx的Virtex—II系列。 从动态可重构的特征可以引出一种新的设计思想: 1,以小规模硬件逻辑资源来实现大规模系统时序功能,将传统设计的空间分布的硬件逻辑,分为器件外部特征不变,而内部逻时间上交替变换,并共同在时问空间上构成系统整体逻辑功能。 FPGA动态可重构技术主要特征是将整体按功能或按时序分解为不同的组合,并根据实际需要,分时对芯片进行动态重构,以较少的硬件资源,去实现较大的时序系统整体功能。图1给出了一种典型的FPGA动态可重构原理示意图。从图1中可以看出,在外部逻辑的控制下,可以实时动态地对芯片逻辑实现全部重构或局部重构,通过控制布局、布线的资源,来实现系统的动态重构。
图1.1典型的FPGA动态可重构原理图 要使FPGA有效地实现实时系统动态重构, FPGA结构上必须满足以下要 求: 1,不仅具有可重新编程能力,同时可动态进行系统资源地重新配置,而不 会破坏器件中全局或局部逻辑操作能力。 2,FPGA内部配置信息对称,即在任何时刻、任何通用的基本逻辑功能可以 配置于器件地任何一个位置,运行用简单模型组合去实现设计中的复杂功能。 1.2 FPGA配置架构 FPGA的配置文件通过数据总线传输到FPGA的数据缓冲区,下载处理器处理缓冲区中每一帧配置数据,并把其下载到FPGA的配置RAM中,也就是逻辑配置层。逻辑配置层的中RAM的取值决定了FPGA的功能。也就是说,在常见的FPGA中,其配置电路的结构原理图如
图1.2 FPGA配置电路结构图 从上图中反映的配置过程我们不难发现,制约FPGA配置速度的因素有两个; 一个是配置数据的下载速度;一个是FPGA内部的数据处理速度。FPGA的配置 速度是动态可重构系统中一个非常重要的指标,快速高效的下电路设计是可重构 系统的一个关键问题。一般说来,加快重配置过程方法有三种: 第一、优化FPGA配置电路总线,使配置文件能够以更快的速度下载到FPGA 配置单元当中; 第二、减小配置文件,在配置速度不变的情况下这也是一个十分有效的办法; 第三、优化FPGA的重配置流程,简化FPGA的配置步骤,减少不必要的时间 开销。
二.动态部分可重构的两种模式 Xilinx Virtex系列一个最重要的特性就是动态可重构。当器件的同一个区域要载入不同的设计功能并且又不需要重新配置整个电路,也不影响其他电路的行时就需要部分动态可重构。这样既可以降低电路能量消耗又可以提高板子利率、加快下载速度。Virtex器件的有效部分动态可重构可以使用Selectmap模式或者Boundary scan(JTAG)模式下载。不需要重新配置器件也不需要下载完整的配置,新的据只需下载到器件的可重构部分。对于目前的FPGA器件来说,数据是以栅(column)为基础下载,最小的可下载单元是一帧(frame)的配置比特流,它据目标器件的不同而有不同的大小。 FPGA的动态可重构有两种不同的方式: 基于模块(Module-based)的部分可重构。 基于差异(Difference-based)的部分动态可重构。 2.1基于模块的部分可重构 部分可重构定义了一些特殊的区域,这些区域可以在器件的其他部分还在运行的情况下进行重构,这些特殊区域称作可重构区域。基于模块的部分可重构就是将电路功能划分成一个个的模块,这些模块包括可重构模块(可以实现重构的特殊区域)和固定模块(功能不变不能实现重构的区域)。 可重构模块具有以下的一些特性: 1. 重构模块的高度是整个器件的高度。 2. 重构模块的宽度最小可以是四个slice最大可以到整个器件的宽度,但必须以四的整数倍的slice增加。 3. 重构模块放置的水平坐标必须是四的整数倍的slice的边界,例如:左边边界可以放置在x--0,4,8,⋯⋯ 4. 模块宽度范围内包括的所有逻辑资源都被看作是可重构模块的一部分,包括slice、TBUF、RAM块、乘法器、lOB和布线资源。 5. 时钟逻辑和可重构模块是相互分离的,时钟和比特流是相互独立的。 6. 可重构模块上部和下部的IOB是可重构模块资源的一部分。 7. 如果一个可重构模块贯穿了整个板子的左部和右部,那么每一边的IOB都是可重构模块资源的一部分。 8. 为了降低设计难度,要尽量减少可重构模块的个数(理想状况下,如果可能的话,最好只有一个可重构模块),所以说slice的数目能被四整除是可重构模块区域的唯一约束。 9. 可重构模块的边界不能改变。任何一个可重构模块的位置、所占据的区域都是固定的。 10.可重构模块和其他模块之间的通信(包括可重构模块和普通固定模块之间、可重构模块和可重构模块之间)都是通过使用特殊的总线宏,如图2.1。
图2.1线宏用作模块内部通信 11. 为了保证重构的时候实现合适的操作,需要外在的握手逻辑。在可重构过程之前和之后,要保存可重构模块内的存储元素的状态。如图2.2所示,是一个具有两个部分可重构模块的设计,各模块间都是通过总线宏来进行通信的。 图2.2具有两个可重构模块的设计布局图
图2.3 可重构模块的设计流程图 图5.3基于模块化的配置文件生成流程 基于模块化的配置文件生成流程与模块化设计方法紧密联系,并要求系统是按照模块化设计方法开发的。在模块化设计方法中,系统首先被划分为一些具有特定功能、相互之间比较独立的模块,并且模块之间的接口和互连关系已经被预先定义好。随后,各个模块被不同的开发人员并行地设计并实现。最后,各个模块按照最初定义的互连关系被组装起来,形成一个完整的系统。当需要动态改变某个模块的功能时,开发人员仍然需要按照模块化设计方法的流程得到该模块的布局布线文件,但是不需要进行模块的组装工作。取而代之的是:直接根据布局布线文件得到该模块所对应的硬件区域的配置数据文件。 2.1.1总线宏的通讯 为了促进可重构模块之间的通信,需要保证穿过可重构模块边界的布线资源是完全固定而且必须是静态的,这就需要一种特殊的总线宏。总线宏的主要作用足保证穿过可重构模块边界的布线资源固定,使可晕构模块边界的布线资源不被改变。目前使用如图2.3就是所需的这种总线宏:其中,左边的A是一个模块,右边的B是另一个模块,A或者B是可重构模块,或者AB全是可重构模块。A和B中间的总线宏,就是支持AB之间通信的特殊总线宏。它保证AB间布线资源的不变性。也就是说当一个模块进行重构时模块内部信号用到的布线资源不能改变。如图2.3,总线宏是两个模块问的一个固定的布线桥。它是一个事先已经布线好的用来确定精确布线轨道的宏,并且在编辑改变的时候保持不变。对于每个不同的设计应用来说,它是一个绝对固定不变的总线宏。目前使用的总线宏由八个三态缓冲器(TBUF)组成,能够实现4个比特宽度的数据通路。其如图2.4。
图2.4总线宏 图2.5总线宏的物理执行 总线宏允许信息双向传递,一个比特的信息使用一个三态缓冲器的长线。Virtex器件的每一行支持一个总线宏的四个比特。总线宏的位置精确的跨骑在模块A和模块B之间,其中四栅三态缓冲器在A内,另外四栅三态缓冲器在B内。由三态缓冲器长线输出所组成的固定桥确保两个模块问固定的通信。总线宏的信息通讯是双向的,既可以从左到右也可以从右到左。但是对于这个设计来说,一旦信息通信方向确定以后就不能再改变。 2.1.2 总线宏的基本设计方式 总线宏的基本设计方式为: 1) 在设计初期将可重构硬件资源规划好,重构模块和固定模块划分好. 2) 在模块功能划分好后,将总线宏的位置锁定在固定模块和重构模块的边界. 3) 总线宏的设计工具是使用FPGA底层编辑器FPGA Editor。FPGA Editor是一个手工布局布线设计工具,需要设计者具有一定设计经验才能完成设计,单是FPGA Editor的使用灵活性也更高。通过FPGA Editor可以编辑或者查看可配置逻辑功能块(CLB),I/O功能块等一些FPGA内部的基本单元。 使用总线宏约束重构模块和固定模块之间的布线资源使其不被改变。总线宏的设计需要消耗额外的硬件资源,造成一些资源浪费;另外总线宏固定了重构模块和固定模块之间的布线,即固定模块之间的通信,模块之间不再可以进行任意通信,这在一定程度市内过降低了部分重构系统在实现上的灵活性。但是在当前技术条件下,基于模块的部分重构设计使用总线宏的通讯机制是目前最佳的解决方案。 2.2 基于差异的部分可重构