(人教版)八年级数学上册:12.2《三角形全等的判定2》ppt课件(2)

合集下载

12.2 全等三角形的判定第1课时(课件)-八年级上册(人教版)

12.2 全等三角形的判定第1课时(课件)-八年级上册(人教版)

想一想:
已知△ABC ≌△ A′B′ C′,找出其中相等的边与角:
A
A′
B
AB =A′B′ ∠A =∠A′
C B′
BC =B′C′ ∠B =∠B′
C′
AC =A′C′
∠C =∠C′
思考:满足这六个条件可以保证△ABC≌△A′B′C′吗?
• 学习目标: 1.通过三角形的稳定性,体验三角形全等的 “边边边”条件. 2.会运用“边边边”定理判定两个三角形的 全等.
∴△AEB ≌ △ADC (SSS).
2.已知AC=FE,BC=DE,点A,D,B,F在一条直线上,
AD=FB(如图),要用“边边边”证明△ABC ≌△ FDE,
除了已知中的AC=FE,BC=DE以外,还应该有什么条件?
怎样才能得到这个条件? 【解析】要证明△ABC ≌△FDE,还 应该有AB=FD这个条件. ∵DB是AB与DF的公共部分,且 AD=FB, ∴AD+DB=BF+DB,即AB=FD.
判定两个三角形全等:
三边对应相等的两个三角形全等.简写为
“边边边”或“SSS”.
课后练习
A
1.如图,AB=AC,AE=AD,BD=CE,
求证:△AEB ≌ △ ADC.
B ED C
【证明】在△∵BADEB=和CE△,A∴DBCD中-,ED=CE-ED,即BE=CD.
AB=AC,
AE=AD,
BE=CD,
解:作图如图所示:
作法:(1)以点O为圆心,任 意长为半径画弧,分别交OA, OB于点D,E; (2)以点C为圆心,OD长为半 径画弧,交OB于点F; (3)以点F为圆心,DE长为半 径画弧,与第2步中所画的弧相 交于点P ; (4)过C,P两点作直线,直线 CP即为要求作的直线.

人教版数学八年级上册第十二章12.2三角形全等判定—斜边、直角边课件

人教版数学八年级上册第十二章12.2三角形全等判定—斜边、直角边课件

证明:∵AD,AF分别是△ABC和△ABE的高
∴∠D=∠F=90°,
在Rt△ADC和Rt△AFE 中, AC=AE, AD=AF .
∴Rt△ADC≌Rt△AFE(HL). ∴CD=EF.
在Rt△ADB和Rt△AFB 中, AB=AB, AD=AF .
∴Rt△ADB≌Rt△AFB(HL). ∴BD=BF,
D
C
AB=BA, 这是应用“HL”判 A
B
AC=BD .
定方法的书写格式.
∴ Rt△ABC≌Rt△BAD (HL). ∴ BC=AD.
利用全等证明两条线段相 等,这是常见的思路.
新知应用
例2 如图,已知AD,AF分别是两个钝角△ABC和△ABE的高, 如果AD=AF,AC=AE. 求证:BC=BE.
A
Hale Waihona Puke A′证明两个直角三角全等方法有:
SSS、SAS 、ASA 、 AAS 、HL
B
C B′
C′
课堂总结
内容
斜边和一条直角边对应相等的两个直角三角形全等.
“斜边、 直角边”
前提条件
使用方法
在直角三角形中
只须找除直角外的两个条件即可(两个条件中至 少有一个条件是一对对应边相等)
(3)一个锐角和斜边对应相等; 利用全等证明两条线段相等,这是常见的思路. ∴CD=EF. ∴∠D=∠F=90°, ∴Rt△ABC ≌ Rt△A′B′C′ (HL). 证明线段相等可通过证明三角形全等解决,而“HL”则是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时一定要抓住“直角”这个隐含的已知条件. 在 Rt△ABC 和Rt△BAD 中, 两个直角三角形中,两直角边对应相等,这两个直角三角形全等吗?为什么? ∴AE+EF=CF+EF,即AF=CE. 求证:(1)BF=DE; 应用“HL”的前提条件是在直角三角形中. ∴BD-CD=BF-EF,∴BC=BE.

八年级数学上册三角形全等的判定课件

八年级数学上册三角形全等的判定课件

画法:(1)画∠MC′N=90°; (2)在射线C′M上截取B′C′=BC; (3)以点B′为圆心,AB为半径画弧, 交射线C′N于点A′; (4)连接A′B′.
A
B
C
N
A′
M B′
C′
新知探究
知识点1
判定5:斜边和一条直角边分别相等的两个直角三角形全等.(可以简写成“斜
边、直角边”或者“HL”) A
∴△ABC≌△A′B′C′(AAS).
学习目标
1、理解并掌握直角三角形全等判定“斜边、直角边”条件的内容. (重点) 2、熟练利用“斜边、直角边”条件证明两个直角三角形全等.(难 点) 3、通过探究判定三角形全等条件的过程,提高分析和解决问题的 能力.
课堂导入
思考:两个直角三角形中,已经有一对相等的直角,还需要满足几个条件就可 以说明两个三角形全等?
知识回顾
3、两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或 者“SAS”).
符号语言表示:在△ABC和△A′B′C′中, AB=A′B′, ∠B=∠B′, BC=B′C′,
∴△ABC≌△A′B′C′(SAS).
知识回顾
4、两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或 者“ASA”).
符号语言表示:在△ABC和△A′B′C′中, ∠B=∠B′, BC=B′C′, ∠C=∠C′,
∴△ABC≌△A′B′C′(ASA).
知识回顾
5、两角和其中一个角的对边分别相等的两个三角形全等(可以简写成“角角 边”或者“AAS”).
符号语言表示:在△ABC和△A′B′C′中, ∠A=∠A′, ∠B=∠B′, BC=B′C′,
A
B┐
C
A′

人教版数学八年级上册 12.2三角形全等的判定——第4课时(HL) 课件(共19张PPT)

人教版数学八年级上册 12.2三角形全等的判定——第4课时(HL) 课件(共19张PPT)
【解析】BD=CD. ∵∠ADB=∠ADC=90°, AB=AC AD=AD ∴Rt△ABD≌Rt△ACD(HL), ∴ BD=CD.
通过本课时的学习,需要我们掌握:
直角三角形是特殊的三角形,所以不仅有一般三角形 判定全等的方法: SSS、SAS、ASA、AAS,还有直角三角形 特殊的判定方法:HL.
证明:∵AC⊥BC,BD⊥AD,
D
C
∴∠C与∠D都是直B=BA,
这是应用“HL”判定方法
AC=BD。
的书写格式。
∴Rt△ABC≌Rt△BAD(HL)。 ∴BC﹦AD(全等三角形的对应边相等)。
利用全等证明两条线 段相等,这是常见的思路。
例2 如图,有两个长度相同的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角 ∠ABC和∠DFE的大小有什么关系?
∴BC=BD.
(全等三角形对应边相等).
勤奋工作,勇于实践;始终坚持学习; 做一个有德行的人;富有创新精神。
—— 富兰克林
【解析】在Rt△ABC和Rt△DEF中, BC=EF, AC=DF ,
∴ Rt△ABC≌Rt△DEF (HL). ∴∠ABC=∠DEF (全等三角形对应角相等).
∵ ∠DEF+∠DFE=90°, ∴∠ABC+∠DFE=90°.
【跟踪训练】
1.如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF.求证:BF=DE.
AAS
B
A
A'
C B' A
A' C'
C B' A
C' A'
C B' A
C' A'
C B'

全等三角形的判定(SAS)(课堂PPT)

全等三角形的判定(SAS)(课堂PPT)

∴AM=BN
2020/4/1
20
在△AMD与△BND中
AM=BN ∠A=∠B AD=BD
(已证) (已证) (已知)
∴△AMD≌△BND(SAS) ∴DM=DN.
2020/4/1
21
全等三角形与其他图形的综合
• 如图,四边形ABCD、DEFG都是正方形,连接AE、CG. 求证:(1)AE=CG;(2)AE⊥CG. 证明:(1)∵四边形ABCD、DEFG都是正方形,
2020/4/1
17
3.如图,点E、F在AC上,AD//BC,AD=CB,AE=CF.
求证:△AFD≌△CEB.
证明: ∵AD//BC,
A
∴ ∠A=∠C,
E
∵AE=CF,
∴AE+EF=CF+EF,
D F
即 AF=CE.
B
C
在△AFD和△CEB中,
AD=CB (已知),
∠A=∠C (已证),
AF=CE (已证),
A
△ABC和△ABD满
足AB=AB ,AC=AD,
∠B=∠B,但△ABC
与△ABD不全等. B
C
D
2020/4/1
14
画一画:
画△ABC 和△DEF,使∠B =∠E =30°, AB =DE
=5 cm ,AC =DF =3 cm .观察所得的两个三角形是
否全等?
M
D
C
A
B
结论 有两边和其中一边的对角分别相等的两个
(2)设AE与DG相交于M, AE与CG相交于N, 在△GMN和△DME中, 由(1)得∠CGD=∠AED 又∵∠GMN=∠DME, ∠DEM+∠DME=90° ∴∠CGD+∠GMN=90° ∴∠GNM=90°,∴AE⊥CG.

12.2 课时3 三角形全等的判定方法-ASA、AAS 初中数学人教版八年级上册课件

12.2 课时3 三角形全等的判定方法-ASA、AAS 初中数学人教版八年级上册课件

三角形全等的判定
思考:如果已知一个三角形的两角及一边,那么有几种可能的情
况呢?
A
A
B
图一
C
“两角及夹边”
B
图二 C
“两角和其中一角的对边”
学习目标
新课讲授
当堂检测
课堂总结
先任意画出一个△ABC,再画一个△A ′ B ′ C ′ , 使A ′ B ′ =AB, ∠A ′ =∠A, ∠B ′ =∠B (即使两角和它们的夹边对应相等).把画好 的△A ′ B ′ C ′剪下,放到△ABC上,它们全等吗?
C
A
B
学习目标
新课讲授
C
当堂检测
E
课堂总结
D
通过实验
C′
你发现了 什么规律?
A 作法:
B
A′
B′
(1)画A'B'=AB;
(2)在A'B'的同旁画∠DA'B '=∠A,∠EB'A '=∠B,A'D,
B'E相交于点C'.
学习目标
新课讲授
当堂检测
课堂总结
归纳总结
“角边角”判定方法
文字语言:有两角和它们夹边对应相等的两个三角形全等(简
∠ B=∠D(已证),
AC=AC (公共边),
B
D
∴ △ABC≌△ADC(AAS),
∴AB=AD.
C
学习目标
新课讲授
当堂检测
ห้องสมุดไป่ตู้
课堂总结
1. 在△ABC和△DEF中,AB=DE,∠B=∠E, 要使△ABC 与 △DEF 全等,则下列补充的条件中错误的是( ) A
A. AC=DF

《三角形全等的判定》PPT教学课件

就是AB的长.为什么? ∵ △ABC≌△EDC(AAS)
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
∴DE=AB
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
补充练习
图中的两个三角形全等吗?请说明理由.
(1)
△ADC≌△ABC(ASA)
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
探究新知
规律:
两角分别相等且其中一组等角的对边相 等的两个三角形全等(可以简写成“角角边” 或“AAS”).
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
探究新知
例:如下图,点D在AB上,点E在AC上,
AB=AC,∠B=∠C.求证:AD=AE.
激情,这是鼓满船帆的风.风有时会把 船帆吹断;但没有风,帆船就不能航 行.
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
角角边 (AAS)
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
随堂练习
1.如图,AB⊥BC,AD ⊥ DC,垂足分别为B,D, ∠1= ∠2.求证: AB=AD.
证明: ∵ AB⊥BC,AD ⊥ DC ∴ ∠ B=∠D=90 ° 在△ABC和△ADC中,
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
补充练习
图中的两个三角形全等吗?请说明理由.
29°
29°
(2)
△AEC与△BCD不一定全等
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )
《三角形全等的判定》教学实用课件 (PPT优 秀课件 )

人教版数学八年级上册12.2 第4课时 “斜边、直角边”-课件 (2)


当堂练习
1. 如图,∠B=∠D=90°,要证明△ABC 与△ADC全等,
还需要补充的条件是
(写出一个即可).
A
答案: AB=AD 或 BC=DC 或
B
D ∠BAC=∠DAC 或 ∠ACB=∠ACD.
C 注意 一定要注意直角三角形不是只能用HL证明全等,但 HL只能用于证明直角三角形的全等.
2.如图 在△ABC中,已知BD⊥AC,CE ⊥AB,BD=CE.求
∴∠BFA=∠DEC=90 °.
∵AE=CF, ∴AE+EF=CF+EF.
即AF=CE.
在Rt△ABF和Rt△CDE中,
AB=CD,
A
E
B
F
C
AF=CE.
∴ Rt△ABF≌Rt△CDE(HL).
D
∴BF=DE.
课堂小结
内容
斜边和一条直角边对应相等 的两个直角三角形全等.
“斜边、 直角边”
前提 条件
斜边和一条直角边对应相等的两个直角三角形全等
(简写成“斜边、直角边”或“HL”).
几何语言:
B
∵∠C=∠C′=90°,
∴在Rt△ABC和Rt△ A′B′C′ 中, A
C
AB=A′B′,
B′
BC=B′C′,
∴Rt△ABC ≌ Rt△ A′B′C′ (HL). A′
C′
典例精析
例1 如图,AC⊥BC, BD⊥AD, AC﹦BD,求证:BC﹦AD. 应用“HL”的前提条 件是在直角三角形中.
我们,还在路上……
证:△EBC≌△DCB.
A
证明: ∵ BD⊥AC,CE⊥AB,
∴∠BEC=∠BDC=90 °. 在 Rt△EBC 和Rt△DCB 中,

八年级数学上册 12.2三角形全等的判定第4课时斜边直角边课件课件2_1-5


方法总结:证明线段相等可通过证明三角形全等解决,作为“HL” 公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最 多,使用时应该抓住“直角”这个隐含的已知条件.
不禁让人想到卞之琳的诗句,你站在桥上看风景,看风景的人在楼上看你。写真中陈米麒简单的黑直发造型,慵懒随意,两种穿搭随意切换,展露出她独特的镜头表现力。她甚至还把这段经历苦中作乐的分享在了自 己的。
变式1: 如图, ∠ACB =∠ADB=90,要证明△ABC≌
△BAD,还需一个什么条件?把这些条件都写出来,并在相
应的括号内填写出判定它们全等的理由.
(1) AD=BC
( HL )
(2) BD=AC
( HL )
(3) ∠ DAB= ∠ CBA ( AAS )
D
(4)∠ DBA= ∠ CAB ( AAS )
A
C B
变式2
如图,AC、BD相交于点P,AC⊥BC,
BD⊥AD,垂足分别为C、D,AD=BC.
求证:AC=BD.
D
Байду номын сангаас
HL
Rt△ABD≌Rt△BAC
A
AC=BD
C P
B
变式3
• 如图:AB⊥AD,CD⊥BC,AB=CD, 判断AD和BC的位置关系.
A
HL
Rt△ABD≌Rt△CDB
B
∠ADB=∠CBD
提起由西影出品并于1995年上映的《大话西游》系列电影,无疑是中国电影史上独一无二的存在,时至今日仍让观众回味无穷,成为几代影迷心中永恒的经典
做这些简单的事情,也可以让八卦新闻播种下优质的基因,最终长成参天大树,成为行业的翘楚。 八卦新闻 /
国内电影票房更是从2012年的170.7亿元增长到2017年559.11亿元,年均复合增长率达到26.78%。在获奖时,她谈及自己的历程,是一个被动成长的过往,但她却主动选择了电影演员这条路。,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档