2019年山东春季高考数学试题及答案
2019山东省春季高考数学模拟试题

2019山东省春季高考数学模拟试题2019年山东省春季高考数学模拟试题数学试题注意事项:本试卷分卷一(选择题)和卷二(非选择题)两部分.满分120分,考试时间120分钟。
卷一(选择题,共60分)一、选择题(本大题共20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,填涂在答.题卡..上) 1.若集合M={x︱x-1=0},N={1,2},则M∩N等于(A){1} (B){2} (C){1,2} (D){-1,1,2} 2.已知角α终边上一点P(3,-4).则sinα等于(A43 (B)-3434(C)-5(D)-53.若a>b.则下列不等式一定成立的是(A)a2>b2(B)lga>lgb(C)2a>2b(D)ac2>bc24.直线2x-3y+4=0的一个法向量为(A)(2,-3)(B)(2,3)(C)223(D)(-1,3)5.若点P(sinα,tanα)在第二象限内,则角α是(A)第一象限角(B)第二象限角(C)第三象限角(D)第四象限角6.设命题P:x∈R,x2﹥0,则┐P是(A)x∈R,x2<0 (B)x∈R,x2≤ 0 (C)x∈R,x2<0 (D)x∈R,x2≤0 7.“a2>0”是“ a>0”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件 8.下列四组函数中,表示同一函数的是(A)f(x)=x与g(x)=2x(B)f(x)=x与g(x)=(x)2(C)f(x)=x与g(x)=x2(D)f(x)=∣x∣与g(x)=x29.设0x与函数y=-x+1+a的图像可能是10.下列周期函数中,最小正周期为2π的是(A)y=sinx2(B)y=12cosx(C)y=cos2x(D)y=sinxcosx 11.向量a=(2m,n),b=(1,1),且a=2b,则m和n的值分别为(A)m=0,n=1(B)m=0,n=2(C)m=1,n=1(D)m=1,n=212.由0, 1, 2, 3, 4这五个数字组成无重复数字的三位数,则有(A)64个(B)48个(C)25个(D)20个 13.不等式x2bx c0的解集是{x︱2≤x≤3 },则b和c的值分别为(A)b=5,c=6(B)b=5,c=-6(C)b=-5,c=6(D)b=-5,c=-6 14.向量a=(3,0),b=(-3,4)则<a,a+b>的值为(A)π6(B)π4(C)ππ3(D)215.第一象限内的点P在抛物线y2 =12x上,它到准线的距离为7,则点P的坐标为(A)(4,)(B)(3,6)(C)(2,)(D))16.下列约束条件中,可以用图中阴影部分表示的是17.在空间四边形ABCD中,,E、F、G、H分别是边AB,BC,CD,DA的中点,若AC⊥BD,则四边形EFGH的形状是(A)梯形(B)菱形(C)矩形(D)正方形 18.(2x1)5的二项展开式中x3的系数是(A) -80 (B) 80 (C)-10 (D)10 19.双曲线4x2-9y2=-1的渐近线方程为(A)y=±32x(B)y=±23x(C)y=±944x(D)y=±9x20.函数yx是(A)奇函数,在(0,+∞)是减函数(B)奇函数,在(-∞,0)上是增函数(C)偶函数,在(0,+∞)是减函数(D)偶函数,在(-∞,0)是减函数卷二(非选择题,共60分)二、填空题(本大题共5个小题,每小题4分。
-2019山东省春季高考数学模拟试题

1 / 22018-2019年山东省春季高考数学模拟试题2一、选择题(本大题共20个小题,每小题3分,共60分。
在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出) 1.设集合A={1,3}, B={1,2}, C={2,3,4}, 则C B A ⋂⋃)(=() A.{1,2,3} B.{2,4} C.{2,3}D.{2,3,4}2.若p 是假命题,q 是真命题,在下列命题中真命题共有()①p ⌝②q p ∨③q p ∧④q ⌝A .1个B .2个C .3个D .4个 3.已知代数式242-+a a 的值是3,则代数式1-a 的值是( ) A.6- B.0C.06或- D.24.函数)1)(3ln(+-=x x y 的定义域是( )A.)3,1(-B.]3,1[-C.),3()1,(+∞⋃--∞D.),3[]1,(+∞⋃--∞5.设函数)(x f 是定义在R 上的偶函数,且在),0[+∞上单调递增,则)4(),3(-f f 的大小关系是( )A.)4()3(->f fB.)4()3(-<f fC.)4()3(-=f fD.无法比较 6.等差数列{}n a 中,若58215a a a -=+,则5a 等于()A.3B.4C.5D.67.若0<a<b,下列不等式成立的是( ) A.ba11< B.b a 22< C.b a 2121log log < D.22b a >8.式子++++)()(化简结果是( ) A.AB B. C. D.AM9.函数()()33142≤≤- +--=x x x x f 的值域为( )A.(]5,∞-B.[)+∞,5C.[]5,20-D.[]5,410.已知△ABC 的三个顶点为A(1,1),B(4,1),C(4,5),则cosC 等于( ) A.53B.53- C.54- D.5411.已知22cos -=x ,且)2,0[π∈x 那么x 的值是( ) A.4πB.43πC.45πD.4543ππ或 12.直线l 经过点M (3,1)且其中一个方向向量)2,1(--=n ,则直线l 的方程是( ) A.2x-y-5=0 B. x+2y-5=0C.2x-y-7=0 D.x+2y-1=0 13.二项式153)2(xx -的展开式中,常数项是()A.第6项B.第7项C.第8项D.第9项14.有8个座位供四个人坐,一人坐一个座位,共有不同坐法的种数是( )A.40320B.4096C.65536D.1680 15.设角α的终边经过点)1,3(-P ,则)90sin(0α+等于( )A.23 B.21-C.23-D .43- 16.直线y-2x+5=0与圆x 2+y 2-4x+2y+2=0的位置关系是( )A.相离B.相切C.相交且直线过圆心D.相交且直线不过圆心 17.已知x,y 满足,102012⎪⎩⎪⎨⎧≤≥+≥+-x y x y x 则y x z 3+=的最小值是( )A.7-B.35C.5-D.518.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A.2- B.2C.4- D.419.在△ABC 中,a=2,∠A=300,∠C=450,则△ABC 的面积等于( )A.2B.22C.13+D.213+20.设O 为坐标原点,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则⋅等于2 / 2( )A.43B.43- C.3 D.3- 二、填空题(本大题共5个小题,每题4分,共20分.)21.设函数,1,21,1)(22⎪⎩⎪⎨⎧>-+≤-=x x x x x x f 则))2(1(f f 的值是。
山东春季高考数学试题及答案

数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。
满分 120 分,考试时间为 120 分钟。
考 生请在答题卡上答题。
考试结束后,去诶能够将本试卷和答题卡一并交回。
2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结 果精确到。
卷一(选择题,共 60 分)一、选择题(本大题 20 个小题,每小题 3 分,共 60 分。
在每小题列出的四个选项中,只 有一项符合题目要求,请将符合题目要求的字母选项代号选出,并填涂在答题卡上。
) 1.已知全集U 1,2 ,集合 M 1 ,则C M 等于 ( )U(B ) 1(D ) 1,2(A ) (C ) 21 2.函数 y 的定义域是( )x 2 (A )[2,2] (B ) (,2] [2,,2) (C )(2,2) (D )(,2) (2,,2) 3.下列函数中,在区间(,0) 上为增函数的是( )1(A ) y x (B ) y 1 (C ) y (D ) y xx 4.已知二次函数 f (x) 的图像经过两点(0,3),(2,3) ,且最大值是 5,则该函数的解析式是( )(A ) f (x) 2x 8x 11 (B ) f (x) 2x 8x 12 2 (C ) f (x) 2x 4x3 (D ) f (x) 2x 4x 32 2 5. 在等差数列 a 中, a 5 ,a 是 4 和 49 的等比中项,且a 0 ,则a 等于( )n 1 3 3 5 (A ) 18 (B ) 23 (C ) 24 (D ) 326. 已知 A(3,0), B(2,1) ,则向量 AB 的单位向量的坐标是 ( )(A )(1,1) (B ) (1,1)2 22 2(C )( , ) 2 2 (D )( , )2 2 7. 对于命题 p ,q ,“ p q ”是真命题是“ p 是真命题”的 ( )(A )充分比必要条件 (C )充要条件 (B ) 必要不充分条件(D )既不充分也不必要条件8.函数 y cos x 4cos x 1的最小值是( )2 (A )3 9.下列说法正确的是( (A )经过三点有且只有一个平面 (B ) 2 (C )5 (D )6)(C)经过平面外一点有且只有一个平面与已知平面垂直(D)经过平面外一点有且只有一条直线与已知平面垂直10.过直线10与240的交点,且一个方向向量v(1,3)的直线方程是x y x y(11.文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,若从中任意选出4个排成节目单,则能排出不同节目单的数量最多是((A)72(B)120(C)144(D)28812.若a,b,c均为实数,且0,则下列不等式成立的是((C)a b2213.函数f(x)2,g(x)l og x,若f(1)g(9),则实数的值是(kkx3(B)-6(C)0(D)182)的值是(15.已知角终边落在直线y3x上,则cos(45(C)17.已知圆C和C关于直线y x对称,若圆C的方程是(x5)y4,则C的方程是221212((A)(x5)y22222(C)(x5)y22222118.若二项式(x)的展开式中,只有第4项的二项式系数最大,则展开式中的常数项nx19.从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在相同条件下经过多轮测试测试,成绩分析如表1—1所示,根据表中数据判断,(B)乙x220.已知A,A为双曲线1(0,0)的两个顶点,以A,A为直径的圆与双曲线a b12a2b212a2的一条渐近线交于M,N两点,若△A M N的面积为,则该双曲线的离心率是(21(B)二、填空题(本大题5个小题,每小题4分,共20分。
2019年普通高等学校春季招生考试数学试题及答案

2019年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的(1) 集合M ={1,2,3,4,5}的子集个数是 ( )(A) 32(B) 31(C) 16(D) 15(2) 函数f (x ) = a x (a > 0且a ≠ 1)对于任意的实数x ,y 都有 ( )(A) f (xy ) = f (x ) f (y ) (B) f (xy ) = f (x ) + f (y ) (C) f (x + y ) = f (x ) f (y ) (D) f (x + y ) = f (x ) + f (y )(3) =++∞→1222limn n n n n C C( )(A) 0 (B) 2 (C)21(D)41 (4) 函数)1(1≤--=x x y 的反函数是 ( )(A) y = x 2-1 (-1≤x ≤0) (B) y = x 2-1 (0≤x ≤1) (C) y = 1-x 2 (x ≤0)(D) y = 1-x 2 (0≤x ≤1)(5) 极坐标系中,圆θθρsin 3cos 4+=的圆心的坐标是 ( )(A) ),(53arcsin 25(B) ),(54arcsin5 (C) ),(53arcsin 5 (D) ),(54arcsin 25(6) 设动点P 在直线x = 1上,O 为坐标原点. 以OP 为直角边、点O 为直角顶点作等腰Rt △OPQ ,则动点Q 的轨迹是( )(A) 圆(B) 两条平行直线(C) 抛物线(D) 双曲线(7) 已知f (x 6) = log 2x ,那么f (8)等于( )(A)34 (B) 8 (C) 18 (D)21 (8) 若A 、B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在 ( ) (A) 第一象限(B) 第二象限(C) 第三象限(D) 第四象限(9) 如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是( )(A) 30°(B) 45°(C) 60°(D) 90°(10) 若实数a ,b 满足a + b = 2,则3a + 3b 的最小值是 ( )(A) 18(B) 6(C) 32(D) 432(11) 右图是正方体的平面展开图.在这个正方体...中, ① BM 与ED 平行 ② CN 与BE 是异面直线 ③ CN 与BM 成60º角 ④ DM 与BN 垂直以上四个命题中,正确命题的序号是 ( ) (A) ①②③(B) ②④(C) ③④(D) ②③④(12) 根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量S n (万件)近似地满足)521(902--=n n nS n (n =1,2,……,12). 按此预测,在本年度内,需求量超过1.5万件的月份是 ( )(A) 5月、6月 (B) 6月、7月(C) 7月、8月(D) 8月、9月第Ⅱ卷二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13) 已知球内接正方体的表面积为S ,那么球体积等于___________(14) 椭圆x 2 + 4y 2 = 4长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是______________(15) 已知1sin sin sin 222=++γβα(α、β、γ均为锐角),那么cos αcos βcos γ的最大值等于______________(16) 已知m 、n 是直线,α、β、γ是平面,给出下列命题: ① 若α⊥β,α∩β= m ,n ⊥m ,则n ⊥α或n ⊥β; ② 若α∥β,α∩γ= m ,β∩γ= n ,则m ∥n ;③ 若m 不垂直于α,则m 不可能垂直于α内的无数条直线; ④ 若α∩β= m ,n ∥m ;且α⊄n ,β⊄n ,则n ∥α且n ∥β.其中正确的命题的序号是______________ (注:把你认为正确的命题的序号都填上)三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分) 设函数)0()(>>++=b a bx ax x f ,求f ( x )的单调区间,并证明f ( x )在其单调区间上的单 调性.(18) (本小题满分12分) 已知z 7=1(z ∈C 且z ≠1).(Ⅰ)证明 1 + z + z 2 + z 3 + z 4 + z 5 + z 6 = 0;(Ⅱ)设z 的辐角为α,求cos α+cos2α+cos4α的值. (19) (本小题满分12分)已知VC 是△ABC 所在平面的一条斜线,点N 是V 在平面ABC 上的射影,且在△ABC 的高CD 上.AB = a ,VC 与AB 之间的距离为h ,点M ∈VC .(Ⅰ)证明∠MDC 是二面角M -AB -C 的平面角; (Ⅱ)当∠MDC = ∠CVN 时,证明VC ⊥平面AMB ; (Ⅲ)若∠MDC =∠CVN =θ(20πθ<<),求四面体MABC 的体积. (20)(本小题满分12分)在1与2之间插入n 个正数a 1,a 2,a 3,…,a n ,使这n +2个数成等比数列;又在1与2之间插入n 个正数b 1,b 2,b 3,…,b n ,使这n +2个数成等差数列.记A n = a 1 a 2 a 3…a n ,B n = b 1 + b 2 + b 3 + … + b n .(Ⅰ)求数列{A n}和{B n}的通项;(Ⅱ)当n≥7时,比较A n和B n的大小,并证明你的结论.(21)(本小题满分12分)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x(0 < x < 1),则出厂价相应的提高比例为0.75x,同时预计年销售量增加的比例为0.6x.已知年利润= (出厂价-投入成本)×年销售量.(Ⅰ)写出本年度预计的年利润y与投入成本增加的比例x的关系式;(Ⅱ)为使本年度的年利润比上年有所增加,问投入成本增加的比例x应在什么范围内?(22)(本小题满分14分)已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,| AB | ≤2p.(Ⅰ)求a的取值范围;(Ⅱ)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数学试题(理工农医类)参考解答及评分标准说明:一.本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三.解答右端所注分数,表示考生正确做到这一步应得的累加分数.四.只给整数分数.选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算.每小题5分,满分60分.(1)A (2)C (3)D (4)C (5)A (6)B(7)D (8)B (9)C (10)B (11)C (12)C二.填空题:本题考查基本知识和基本运算,每小题4分,满分16分.(13) π242SS (`14)2516 (15)692 (16) ② ④三.解答题(17)本小题主要考查函数的单调性及不等式的基础知识,考查数学推理判断能力.满分12分. 解:函数bx ax x f ++=)(的定义域为(-∞,-b )∪(-b ,+∞). f ( x )在(-∞,-b )内是减函数,f ( x )在(-b ,+∞)内也是减函数. ……4分 证明f ( x )在(-b ,+∞)内是减函数. 取x 1,x 2∈(-b ,+∞),且x 1 < x 2,那么 bx ax b x a x x f x f ++-++=-221121)()( ))(())((2112b x b x x x b a ++--=, ……6分∵ a -b > 0,x 2-x 1>0,(x 1+b )(x 2+b ) > 0, ∴ f (x 1)-f (x 2) > 0,即f (x )在(-b ,+∞)内是减函数. ……9分 同理可证f (x )在(-∞,-b )内是减函数. ……12分 (18)本小题主要考查复数的基本概念和基本运算,考查综合运用复数的知识解决问题的能力,满分12分.解:(Ⅰ)由 z (1 + z + z 2 + z 3 + z 4 + z 5 + z 6)= z + z 2 + z 3 + z 4 + z 5 + z 6+ z 7 =1 + z + z 2 + z 3 + z 4 + z 5 + z 6,得 (z -1)(1 + z + z 2 + z 3 + z 4 + z 5 + z 6)= 0. …… 4分 因为 z ≠1,z -1≠0,所以 1 + z + z 2 + z 3 + z 4 + z 5 + z 6= 0. …… 6分 (Ⅱ)因为z 7= 1.可知 | z | = 1,所以 1=⋅z z ,而z 7= 1,所以z ·z 6 = 1,z z =6,同理52z z =,34z z =, 65342z z z z z z ++=++由(Ⅰ)知 z + z 2 + z 4 + z 3 + z 5 + z 6= -1, 即 14242-=+++++z z z z z z , 所以42z z z ++的实部为21-, …… 8分 而z 的辐角为α时,复数42z z z ++的实部为ααα4cos 2cos cos ++,所以214cos 2cos cos -=++ααα. …… 12分 (19)本小题主要考查线面关系的基本概念,考查运用直线与直线、直线与平面的基本性质进行计算和证明的能力.满分12分. (Ⅰ)证明:由已知,CD ⊥AB ,VN ⊥平面ABC ,N ∈CD ,⊂AB 平面ABC , ∴VN ⊥AB .∴AB ⊥平面VNC . ……2分 又 V 、M 、N 、D 都在VNC 所在的平面内, 所以,DM 与VN 必相交,且AB ⊥DM ,AB ⊥CD , ∴∠MDC为二面角M -AB -C的平面角. ……4分 (Ⅱ)证明:由已知,∠MDC = ∠CVN ,在△VNC 与△DMC 中, ∠NCV = ∠MCD , 又∵∠VNC = 90º,∴ ∠DMC =∠VNC = 90º, 故有DM ⊥VC ,又AB ⊥VC , ……6分 ∴ VC ⊥平面AMB . ……8分 (Ⅲ)解:由(Ⅰ)、(Ⅱ),MD ⊥AB ,MD ⊥VC ,且D ∈AB ,M ∈VC , ∴ MD = h . 又 ∵ ∠MDC =θ. 在Rt △MDC 中,CM = h ·tg θ. ……10分 V 四面体MABC = V 三棱锥C -ABMABM S CM ∆⋅=31ah tg h 2131⋅⋅=θ θtg 612ah =. ……12分 (20)本小题主要考查等差数列、等比数列的基础知识,考查观察、猜想并进行证明的数学思想方法.满分12分.解:(Ⅰ)∵ 1,a 1,a 2,a 3,……,a n ,2成等比数列,∴ a 1a n = a 2 a n -1 = a 3 a n -2 = … = a k a n -k +1 = … = 1×2 = 2 ,∴ n n n n n n n na a a a a a a a a a A 2)21()()()()()(121231212=⨯==--- , ∴ 22n n A =. ……4分∵ 1,b 1,b 2,b 3,……,b n ,2成等差数列,∴ b 1 + b 2 = 1 + 2 = 3, ∴ n n b b B n n 2321=⋅+=. 所以,数列{A n }的通项22nn A =,数列{B n }的通项n B n 23=. ……6分 (Ⅱ)∵ 22n n A =,n B n 23=, ∴ n n A 22=,2249n B n =, 要比较A n 和B n 的大小,只需比较2n A 与2n B 的大小,也即比较当n ≥ 7时,2n 与249n 的大小.当n = 7时,2n = 128,4949492⨯=n ,得知2492n n >, 经验证n = 8,n = 9时,均有命题2492n n >成立.猜想当n ≥ 7时有2492n n >. 用数学归纳法证明. ……9分 (ⅰ)当n = 7时,已验证2492n n >,命题成立.(ⅱ)假设n = k (k ≥ 7)时,命题成立,即2492k k >, 那么 214922k k ⨯>+, 又当k ≥ 7时,有k 2 > 2k + 1, ∴ )1249221++⨯>+k k k ( 2149)(+⨯=k . 这就是说,当n = k + 1时,命题2492n n >成立. 根据(ⅰ)、(ⅱ),可知命题对于n ≥ 7都成立.故当n ≥ 7时,A n > B n . ……12分。
山东春季高考试题及答案

山东春季高考试题及答案一、语文试题1. 阅读理解题阅读下文,回答以下问题:(1)文章中提到的“春意盎然”是什么意思?(2)作者通过哪些细节描写春天的景象?【答案】(1)“春意盎然”指的是春天的气息非常浓厚,万物复苏,生机勃勃的景象。
(2)作者通过描写嫩绿的柳条、盛开的花朵、温暖的阳光等细节来描绘春天的景象。
2. 古文翻译题将以下古文翻译成现代汉语:“不以物喜,不以己悲。
”【答案】这句话的意思是:不因为外界的事物而感到高兴,也不因为自己的事情而感到悲伤。
二、数学试题1. 选择题下列哪个选项不是正整数?A. 1B. 2C. 3D. 0【答案】D2. 解答题求下列方程的解:\[ x^2 - 4x + 4 = 0 \]【答案】\[ x = 2 \]因为这是一个完全平方公式,可以简化为 \( (x-2)^2 = 0 \)。
三、英语试题1. 完形填空题阅读下面的短文,从A、B、C、D四个选项中选择最佳答案填空:In the past, people used to think that the earth was flat. However, _______, we now know that it is round.A. thereforeB. otherwiseC. consequentlyD. nowadays【答案】D2. 作文题请以“My Dream Job”为题写一篇不少于120字的英语短文。
【答案】My Dream JobMy dream job is to become a teacher. I have always admired teachers for their patience and knowledge. As a teacher, I would have the opportunity to educate and inspire young minds.I believe that teaching is not just about imparting knowledge, but also about guiding students to become responsible and compassionate individuals. I am eager to make a difference in the lives of my students and to contribute to the bettermentof society.四、综合试题1. 历史选择题以下哪位历史人物不是唐朝的皇帝?A. 李世民B. 李隆基C. 武则天D. 赵匡胤【答案】D2. 地理简答题简述中国四大地理区域的特点。
2019年春季高考数学模拟试题

1 20. 已知二项式 x 的展开式的第 6 项是常数项,则 n 等于( x
)
A. 5
B. 8
C. 10
D. 15
2 x y 4 16.设 x,y 满足 x y 1 ,则 Z=x+y ( x 2 y 2
)
A. 有最小值 2,最大值 3 C. 有最小值 2,无最大值
1 2 2 2
→ → 0 12.在ΔABC 中,已知∠A=90 , AB =(x,1),BC =(-4,2),则 x 的值为( A.1 或-3 B.-1 或 3 C.-1 或-3 D.1 或 3
“sin A sin B” “a b” 13.在 ABC 中,角 A . B . C 所对应的边分别为 a . b . c ,则 是 的
济南市中职学校 2019 届春考备考模拟考试 数学试题
座号:_________
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分 120 分, 考试时间 120 分钟.考试结束后,将本试卷和答题卡一并交回. 2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精 确到 0.01.
0
D.
1 ).
2
11. 下列命题中是真命题的个数是(
5.命题“对任意 x∈R,都有 x ≥0”的否定为( A.对任意 x∈R,都有 x2<0 C.存在 x0∈R,使得 x0 ≥0
-x 2
B.存在 x0∈R,使得 x02<0 D.不存在 x∈R,使得 x <0
(1)垂直于同一条直线的两条直线互相平行 (2)与同一个平面夹角相等的两条直线互相平行 (3)平行于同一个平面的两条直线互相平行 (4)两条直线能确定一个平面
2018-2019山东省春季高考数学模拟试题(最新整理)
12018-2019 年ft 东省春季高考数学模拟试题 1第 I 卷(选择题,共 60 分)一、选择题(本大题共 20 个小题,每小题 3 分,共 60 分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,填涂在答题卡上) 1.设 U ={2,5,7,8},A ={2,5,8},B ={2,7,8},则U (A ∪B )等于()(A) {2,8}(B) ∅ (C) {5,7,8}(D) {2,5,7,8}110. 在同一坐标系中,当 a >1 时,函数 y =( a)x 与 y =log a x 的图像可能是( )(A) (B)(C) (D)111. 若 2a =4,则 log a 的值是()22.x >0 是| x | >0 的()(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件(D) 既不充分也不必要条件 1 (A) -1(B) 0(C) 1 (D) 212.(1-x 3)5 展开式中含 x 9 项的系数是() 3.设命题 p :∅=0,q :2∈ R ,则下列结论正确的是( )(A)-5(B)10(C) -10(D) 5(A) p ∧ q 为真(B) p ∨ q 为真(C) p 为真(D) ⌝q 为真13.在等比数列{a n } 中,若 a 2⋅a 6=8,则 log 2(a 1⋅a 7)等于()4.若 a,b 是任意实数,且 a >b,则( )(A) 8(B) 3(C) 16(D) 28b1 1x x 1(A )a 2>b 2(B ) <1(C )lg(a-b)>0(D )( )a <( )b14.如果 sin ·cos = ,那么 sin(π-x )的值为( )a2 25.设 m= a 2+a -2,n= 2a 2-a -1,其中 a ∈ R ,则()2 2 (A)3 2 3 8(B) -98 (C) -92 (D) ±3(A) m >n(B) m ≥n(C) m <n (D) m ≤n15.已知角 终边经过点 P (-5,-12),则 tan 的值是6.函数 f (x )=1x - +lg (x +1)的定义域为()(A )12 5sin α-2cos α 12(B) - 55 (C) 125(D ) -12(A) (-∞,-1)(B) (1,+∞)(C) (-1,1)∪(1,+∞) (D) R7.函数 f (x )=2x 2-mx +3,当 x ∈[-2,+∞]时增函数,当 x ∈ (- ∞,-2]时是减函数, 则 f (1)等于()16.如果 3sin α+5cos α =-5,那么 tan α 的值为( )23 23 (A)-2 (B) 2(C)(D)-(A) -3(B) 13(C)7(D)由 m 而定的其它常数16168. 设 f (x )是定义在 R 上的奇函数,且在[0,+∞) 上单调递增,则 f (-3),f (-4)的大小17.设 x ∈ R ,向量→a =(x ,1),→b =(1,-2 ),且 →a ⊥→b ,则 (→a +→b )·(→a -→b )的值是()关系是( )(A) f (-3) > f (-4)(B) f (-3) < f (-4)(C) f (-3) = f (-4)(D) 无法比较9. 济南电视台组织“年货大街”活动中,有 5 个摊位要展示 5 个品牌的肉制品,其中有两个品牌是同一工厂的产品,必须在相邻摊位展示,则安排的方法共( )种。
(完整版)山东省春季高考数学模拟试题(二)及答案
山东省春季高考数学模拟试题(二)2019.4.16注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷一、选择题(本大题共20小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出) 1、设集合M={n },则下列各式中正确的是( )A n M ⊆B n M ∈C n M =D n M ∉ 2、“1x >”是“2x x >”的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件3、函数y =的定义域为( )A [4,1]-B [4,0)-C (0,1]D [4,0)(0,1]-⋃4、从篮球队中随机选出5名队员,其身高分别为(单位:cm ):180、188、200、195、187、则身高的样本方差为( )A 47.6B 190C 51D 425、若偶函数()f x 在区间[3,7]上是增函数,且有最小值5,则()f x 在区间[7,3]--上是( ) A 增函数,最小值是-5 B 增函数,最大值是-5 C 减函数,最小值是5 D 减函数,最大值是563a 与3b的等比中项,则a b +等于( )A 8B 4C 1 D147、已知角α与单位圆的交点为(1,0)P -,则sin α的值为( ) A 0 B 12-C 12D 1 8、已知{}n a 为等差数列,且74321,0a a a -=-=,则公差d 等于( ) A 2- B 12-C 12D 2 9、过点(1,2)P -且与直线310x y +-=垂直的直线方程为( )A 350x y -+=B 350x y --=C 350x y ++=D 350x y -+=10、平面向量a r 与b r 的夹角为60o,(2,0)a =r ,||3b =r ,则|2|a b -=r r ( )A 2B 1C 5D 2511、若函数2()(1)xf x a =-在(0,)+∞上是增函数,则a 满足的条件为( ) A ||1a > B ||2a <C ||2a >D 1||2a <<12、函数2sin 4sin 3y x x =-+-的最大值为( ) A 1 B 2 C 3 D 013、在等差数列{}n a 中,若13518a a a ++= ,24624a a a ++= ,则前10项的和10S 等于( )A 110B 120C 130D 14014、已知2621201212(1)x x a a x a x a x -+=++++L ,则01212a a a a ++++L 的值是( )A 1B 2C -1D 015、在ABC ∆中,若3a =,60B ∠=o,面积934S =,则ABC ∆是( ) A 等腰直角三角形 B 直角三角形 C 等边三角形 D 钝角三角形16、如图所示,表示阴影部分的二元一次不等式组是( )A .232600y x y x ≥-⎧⎪-+>⎨⎪<⎩B .232600y x y x >-⎧⎪-+≥⎨⎪≤⎩C .232600y x y x >-⎧⎪-+>⎨⎪≤⎩D .232600y x y x >-⎧⎪-+<⎨⎪<⎩17、若直线0x y m -+=(0)m >与圆222x y +=相切,则m 等于( ) A2 B 2- C 2 D 22±18、若某学校要从5名男生和2名女生中选出3人作为青年志愿者,则选出的志愿者中男女生均不少于1名的概率为( ) A57 B 1021C 35D 174219、如果方程222x ky +=表示焦点在y 轴上的椭圆,则k 的取值范围是( )A (0,)+∞B (0,2)C (1,)+∞D (0,1)20、已知双曲线2221(0)2x y b b -=>的左、右焦点分别是1F 、2F ,其一条渐近线方程为y x =,点0)P y 在双曲线上,则12PF PF ⋅=u u u r u u u u r( )A 12-B 2-C 0D 4第Ⅱ卷二、填空题(本题共5个小题,每题3分,共15分) 21、已知()2xf x x =+,则(1)f x +=____________________ 22、函数22(cos sin )tan 2y x x x =-的最小正周期是____________________23、若椭圆的两个焦点将长轴三等分,则该椭圆的离心率等于________________________ 24、已知正方体的外接球的体积为323π,那么正方体的棱长等于______ 25、将3个人分到4个不同的班级,则不同的分发种数是________ 三、解答题(本题共5题,共45分)26、已知二次函数()f x 满足条件:(0)5,(2)(2)f f x f x =+=-,且在x 轴上截得的线段长为6求:(1)()f x 的解析式;(2)求()f x 在区间[1,1]-上的最大值和最小值28、已知政府收购某种产品的原价格为每担200元,其中征税标准为每100元征10元(即税率为10%),并计划收购a 万担,为了减轻农民负担,现决定将税率降低x 各百分点,预计收购量可增加2x个百分点。
高中数学专题11:椭圆、双曲线及抛物线(选择填空题)(山东春季高考十年汇编2012-2021)含解析
山东省春季高考10年汇编专题11:椭圆、双曲线及抛物线(选择填空题)解析版1.(2012山东春季高考)已知以坐标原点为顶点的抛物线,其焦点在 x 轴的正半轴上,且焦点到准线的距离是3,则抛物线的标准方程是 (A ) y 2=6 x(B ) y 2=-6 x(C ) y 2=3 x (D ) y 2=-3 x 答案:A2.(2012山东春季高考)椭圆 x 29+y 28=1 的离心率是(A ) 13 (B ) 173 (C ) 24(D ) 223答案:A3.(2012山东春季高考)已知椭圆 x 225+y 220=1的左焦点是 F 1,右焦点是 F 2,点 P 在椭圆上,如果线段 PF 1 的中点在 y 轴上,那么 |PF 1| : |PF 2| 等于 (A ) 3 : 2 (B ) 2 : 3(C ) 9 : 1(D ) 1 : 9答案:A4.(2013山东春季高考)已知抛物线的准线方程是2x =,则该抛物线的标准方程是(A ) 28y x = (B ) 28y x =- (C ) 24y x = (D ) 24y x =-答案:B5.(2013山东春季高考)如图所示,点P 是等轴双曲线上除顶点外的任一点,12A A ,是双曲线的顶点,则直线1PA 与2PA 的斜率之积为 (A ) 1 (B ) 1- (C ) 2(D ) 2-答案:A6.(2014山东春季高考)第一象限内的点P 在抛物线y 2 =12x 上,它到准线的距离为7,则点P 的坐标为(A )(4,) (B )(3,6) (C )(2, ) (D )) 答案:A7.(2014山东春季高考)双曲线4x 2-9y 2=1的渐近线方程为(A )y=±32x (B )y=±23x(C )y=±94x (D )y=±49x答案:B8.(2015山东春季高考)关于x ,y 的方程x 2+m y 2=1,给出下列命题:①当m <0时,方程表示双曲线;②当m =0时,方程表示抛物线;③当0<m <1时,方程表示椭圆;④当m =1时,方程表示等轴双曲线;⑤当m >1时,方程表示椭圆。
山东春季高考试题及答案
山东春季高考试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是山东春季高考的科目之一?A. 语文B. 数学C. 英语D. 物理答案:ABC2. 山东春季高考的考试时间通常在每年的什么时候?A. 春季B. 夏季C. 秋季D. 冬季答案:A3. 春季高考的总分是多少?A. 300分B. 450分C. 600分D. 750分答案:C4. 春季高考中,哪门科目的分值最高?A. 语文B. 数学C. 英语D. 综合答案:D5. 春季高考的报名流程包括哪些步骤?A. 网上报名B. 现场确认C. 缴纳报名费D. 以上都是答案:D6. 春季高考的录取原则是什么?A. 择优录取B. 按志愿录取C. 按地区录取D. 随机录取答案:A7. 春季高考的考试形式是什么?A. 笔试B. 面试C. 笔试+面试D. 以上都不是答案:A8. 春季高考的考试内容主要涵盖哪些方面?A. 基础知识B. 应用能力C. 创新思维D. 以上都是答案:D9. 春季高考的考试目的是什么?A. 选拔优秀学生B. 检验学生能力C. 促进教育公平D. 以上都是答案:D10. 春季高考的考试结果如何查询?A. 官方网站查询B. 电话查询C. 短信查询D. 以上都是答案:D二、填空题(每题2分,共10分)1. 山东春季高考的报名通常在考试前的______个月进行。
答案:32. 春季高考的考试科目中,数学分为______和______两个部分。
答案:文科数学;理科数学3. 春季高考的英语考试包括______和______两个部分。
答案:听力;笔试4. 春季高考的语文考试中,作文部分占总分的______%。
答案:305. 春季高考的考试合格标准是总分达到______分以上。
答案:180三、简答题(每题10分,共20分)1. 简述春季高考与夏季高考的主要区别。
答案:春季高考与夏季高考的主要区别在于考试时间、考试科目和录取方式。
春季高考通常在春季进行,而夏季高考则在夏季。