大学物理杨氏模量实验报告

合集下载

大学物理实验报告-杨氏模量的测量

大学物理实验报告-杨氏模量的测量

得分教师签名批改日期深圳大学实验报告课程名称:大学物理实验(一)实验名称:实验杨氏模量的测量学院:物理科学与技术学院专业:物理学(师范)课程编号:2118008004组号:16 指导教师:报告人:学号:实验地点科技楼904实验时间:20 年05 月23 日星期一实验报告提交时间:20 年05 月30 日1、实验目的_____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 2、实验原理_____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ __________________________________________________________________________________________________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ __________________________________________________________________________________________________________________________________________________________________________ _____________________________________________________________________________________3、实验仪器仪器名称组号型号量程△仪4、试验内容与步骤_____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ __________________________________________________________________________________________________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ __________________________________________________________________________________________________________________________________________________________________________ _______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________5、数据记录金属丝长度 )__(_______________________cm L ±= 光杠杆与镜尺组距离 )_(____________________cm D ±= 光杠杆常数 )(______________________mm b ±= 表一螺旋测微计零点读数:___________ 次数 1 2 34 5 平均值 零点修正值 dd ∆)(___________________mm d d ±=∆± 表二金属丝长度变化记录 I )(g F)(cm r i)(cm r i '平均r1 2 3 4 5 6 7 8用逐差法处理数据,将表中I 相差为4的两个i r 值相减,得到相当于每加1280g 的四次测量数据: 表三151r r l += 262r r l -= 373r r l -= 484r r l -=l 1 2 3 4 平均值 i ll∆i6、数据处理计算杨氏模量E及误差E∆,写出结果表示7、思考题(1)各种不同长度用不同仪器测定,是如何考虑的?为什么?(2)本实验中哪一个量的测量误差相对结果影响最大?试作具体讨论。

实验报告-杨氏模量(bnu)

实验报告-杨氏模量(bnu)

【实验题目】杨氏模量的测定【实验记录】1.实验仪器2.钢丝应变数据记录表2.其它各量数据记录表12注:只进行一次测量的物理量的不确定度的评定:A B u u =【数据处理与计算】 1.直接测量量的数据处理 1)细丝直径d (测量次数=n 10)A ()()()u d s d f n ===B ()u d ∆==C ()u d ===dd u d )()(δ2)光杠杆足距k (测量次数=n 1)C B ()()u k k =====kk u k )()(δ3)金属丝长度L (测量次数=n 1)C B ()()u L L ====LL u L )()(δ4)镜尺距离D (测量次数=n 1)C B ()()uD D ====DD u D )()(δ35)负荷1kg 时读数差∆(测量次数=n 4,注意直接测量量为x ,i i n i x x +∆=-)=∆=∆nxA ()()()s u x f n n∆∆=⋅=B ()u x ∆==B ()u x n∆==C ()u x ∆=xx u x )()(∆=∆δ=2.E 的计算xk d LDmgE ∆⋅=28π=()E δ===⨯=)()(E E E u δ【总结与讨论】实验结果:=E ( ± ) , P=0.683。

讨论:【复习思考题】为什么要增、减负荷各测一次?增、减负荷顺序对测量结果有何影响?报告成绩(满分30分):⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 指导教师签名:⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 日期:⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽。

大学物理实验 报告实验21 用拉伸法测杨氏模量

大学物理实验 报告实验21    用拉伸法测杨氏模量

真验21 用推伸法测杨氏模量之阳早格格创做林一仙1 真验脚段1)掌握推伸法测定金属杨氏模量的要领;2)教习用光杠杆搁大丈量微弱少度变更量的要领;3)教习用做图法处理数据.2 真验本理相闭仪器:杨氏模量仪、光杠杆、尺读视近镜、卡尺、千分尺、砝码.所有固体正在中力使用下皆要爆收形变,最简朴的形变便是物体受中力推伸(或者压缩)时爆收的伸少(或者收缩)形变.本真验钻研的是棒状物体弹性形变中的伸少形变.设金属丝的少度为L,截里积为S,一端牢固,一端正在延少度目标上受力为F,并伸少△L,如图21-1,比值:L L∆是物体的相对于伸少,喊应变. SF是物体单位里积上的效率力,喊应力. 根据胡克定律,正在物体的弹性极限内,物体的应力与应形成正比,即 则有LS FLY ∆=(1) (1)式中的比率系数Y 称为杨氏弹性模量(简称杨氏真验道明:杨氏模量Y 与中力F 、物体少度L 以及截里积的大小均无闭,而只与决断于物体的资料自己的本量.它是表征固体本量的一个物理量.根据(1)式,测出等号左边各量,杨氏模量即可供得.(1)式中的F 、S 、L 三个量皆可用普遍要领测得.唯有L ∆是一个微弱的变更量,用普遍量具易以测准.本真验采与光杠杆法举止间接丈量(简曲要领如左图所示).如左图所示,当钢丝的少度爆收变更时,光杠杆镜里的横曲度必定要爆收改变.那么改变后的镜里战改变前的镜里必定成有一个角度好,用θ去表示那个角度好.从下图咱们不妨瞅出:hL tg ∆=θ (2)那时视近镜中瞅到的刻度为1N ,而且θ201=ON N ∠,所以便有:DN N tg 012-=θ(3)采与近似法本理没有罕见出:L hDN N N ∆=-=∆201(4)那便是光杠杆的搁大本理了.将(4)式代进(1)式,而且S=πd2,即可得下式: 那便是本真验所依据的公式. 2.3 真验步调1)将待测金属丝下端砝码钩上加砝码使它伸曲.安排仪器底部三足螺丝,使G 仄台火仄.2)将光杠杆的二前足置于仄台的槽内,后足置于C 上,安排镜里与仄台笔曲.3)安排标尺与视近镜收架于符合位子使标尺与视近镜以光杠杆镜里核心为对于称,并使镜里与标尺距离D约为安排.4)用千分尺丈量金属丝上、中、下曲径,用卷尺量出金属丝的少度L.5)安排视近镜使其与光杠杆镜里正在共一下度,先正在视近镜表里附近找到光杠杆镜里中标尺的象(如找没有到,应安排或者上下移动标尺的位子或者微调光杠杆镜里的笔曲度).再把视近镜移到眼睛天圆处,分离安排视近镜的角度,正在视近镜中即可瞅到光杠杆镜里中标尺的反射象(纷歧定很浑晰).6)安排目镜,瞅浑十字叉丝,安排调焦旋钮,瞅浑标尺的反射象,而且忽视好.若有视好,应继承小心安排目镜,曲到忽视好为止.查看视好的办法是使眼睛上下移动,瞅叉丝与标尺的象是可相对于移动;若有相对于移动,道明有视好,便应再调目镜曲到叉丝与标尺象无相对于疏通(即忽视好)为止.记下火仄叉丝(或者叉丝接面)所对于准的标尺的初读数N0,N普遍应调正在标尺0刻线附近,若好得很近,应上下移动标尺或者查看光杠杆反射镜里是可横曲.7)屡屡将砝码沉沉天加于砝码钩上,并分别记下读数N'1、N'2、…、Ni',共搞5次.8)屡屡缩小砝码,并依次记下记读数N i ''-1,N i ''-2,…、N ''0.9)当砝码加到最大时(如)时,再测一次金属丝上、中、下的曲径d ,并与挂砝码时对于应的曲径供仄衡值,动做金属丝的曲径d 值.10)用卡尺测出光杠杆后足尖与前二足尖的距离h ,用尺读视近镜的测距功能测出D (少短叉丝的刻度好乘100倍).11)用图解法处理真验数据决定丈量截止及丈量没有决定度.1)光杠杆及镜尺系统已经调佳,中途没有得再任性变动,可则所测数据无效.2)加、减砝码要小心,须用脚沉沉托住砝码托盘,没有得碰动仪器;而且需待钢丝伸缩宁静后圆可读数. 3)正在丈量钢丝伸少量历程中,没有成中途停顿而改测其余物理量(如d 、L 、D 等),可则若中途受到其余搞扰,则钢丝的伸少(或者收缩)值将爆收变更,引导缺面删大. 3 数据处理1) 真验数据记录表格表1相闭数据的丈量序次 F(×9.789N)Ni(加,cm) Ni(减,cm)Nd(1kg) (mm)d(6kg) (mm)L(cm )D(c m) H(cm)1 01502 3 4 56——2) 用做图法处理数据决定NF ∆∆的丈量截止及没有决定度;3) 估计钢丝的杨氏模量的丈量截止及没有决定度.cm m Hu0012.03002.03==∆=;cm m L u 029.0305.03==∆=;4真验截止: 5思索题(计划)1)本真验为什么用分歧仪器去测定各个少度量? 2)光杠杆法是可用去丈量一齐薄金属片的薄度?怎么样丈量?3)安排光杠杆镜尺系统时,若逢到下列局里时您将怎么样处理(即怎么样安排)?(1)用视近镜找标尺的像时,瞅到了光杠杆的镜里,而瞅没有到标尺的像.(2)某一共教已调佳的光杠杆系统(他确已调佳了),但是您去瞅时感触标尺的像很朦胧.。

大学物理实验 报告实验21 用拉伸法测杨氏模量

大学物理实验 报告实验21    用拉伸法测杨氏模量

试验21 用拉伸法测杨氏模量 【1 】林一仙1 试验目标1)控制拉伸法测定金属杨氏模量的办法; 2)学惯用光杠杆放大测量渺小长度变更量的办法; 3)学惯用作图法处理数据. 2 试验道理 相干仪器:杨氏模量仪.光杠杆.尺读千里镜.卡尺.千分尺.砝码.任何固体在外力应用下都要产生形变,最简略的形变就是物体受外力拉伸(或紧缩)时产生的伸长(或缩短)形变.本试验研讨的是棒状物体弹性形变中的伸长形变.设金属丝的长度为L,截面积为S,一端固定, 一端在延伸度偏向上受力为F,并伸长△L,如图 21-1,比值:L L∆是物体的相对伸长,叫应变. SF是物体单位面积上的感化力,叫应力. 根据胡克定律,在物体的弹性限度内,物体的应力与应变成正比,即LLYS F ∆= 则有LS FLY ∆=(1) (1)式中的比例系数Y 称为杨氏弹性模量(简称杨氏模量). 试验证实:杨氏模量Y 与外力F.物体长度L 以及截面积的大小均无关,而只取决议于物体的材料本身的性质.它是表征固体性质的一个物理量.根据(1)式,测出等号右边各量,杨氏模量即可求得.(1)式中的F.S.L 三个量都可用一般办法测得.唯有L ∆是一个渺小的变更量,用一般量具难以测准.本试验采取光杠杆法进行间接测量(具体办法如右图所示).如右图所示,当钢丝的长度产生变更时,光杠杆镜面的竖直度必定要产生转变.那么转变后的镜面和转变前的镜面必定成有一个角度差,用θ来暗示这个角度差.从下图我们可以看出:hLtg ∆=θ (2) 这时千里镜中看到的刻度为1N ,并且θ201=ON N ∠,所以就有:DN N tg 012-=θ(3) 采取近似法道理不可贵出:L hDN N N ∆=-=∆201(4)这就是光杠杆的放大道理了.将(4)式代入(1)式,并且S=πd2,即可得下式:N h d F LD Y ∆∆=π28这就是本试验所根据的公式. 2.3 试验步调1)将待测金属丝下端砝码钩上加砝码使它伸直.调节仪器底部三脚螺丝,使G 平台程度.2)将光杠杆的两前足置于平台的槽内,后足置于C 上,调剂镜面与平台垂直. 3)调剂标尺与千里镜支架于适合地位使标尺与千里镜以光杠杆镜面中间为对称,并使镜面与标尺距离D 约为阁下.4)用千分尺测量金属丝上.中.下直径,用卷尺量出金属丝的长度L.5)调剂千里镜使其与光杠杆镜面在同一高度,先在千里镜外面邻近找到光杠杆镜面中标尺的象(如找不到,应阁下或高低移动标尺的地位或微调光杠杆镜面的垂直度).再把千里镜移到眼睛地点处,联合调剂千里镜的角度,在千里镜中即可看到光杠杆镜面中标尺的反射象(不一定很清楚).6)调节目镜,看清十字叉丝,调节调焦旋钮,看清标尺的反射象,并且疏忽差.如有视差,应持续仔细调节目镜,直到疏忽差为止.检讨视差的办法是使眼睛高低移动,看叉丝与标尺的象是否相对移动;如有相对移动,解释有视差,就应再调目镜直到叉丝与标尺象无相对活动(即疏忽差)为止.记下程度叉丝(或叉丝交点)所瞄准的标尺的初读数N0,N0一般应调在标尺0刻线邻近,若差得很远,应高低移动标尺或检讨光杠杆反射镜面是否竖直.7)每次将砝码轻轻地加于砝码钩上,并分离记下读数N'1.N'2.….N i',共做5次.8)每次削减砝码,并依次记下记读数N i''-1,N i''-2,….N''0.9)当砝码加到最大时(如)时,再测一次金属丝上.中.下的直径d,并与挂砝码时对应的直径求平均值,作为金属丝的直径d值.10)用卡尺测出光杠杆后足尖与前两足尖的距离h,用尺读千里镜的测距功效测出D(长短叉丝的刻度差乘100倍).11)用图解法处理试验数据肯定测量成果及测量不肯定度.1)光杠杆及镜尺系同一经调好,半途不得再随意率性变动,不然所测数据无效.2)加.减砝码要仔细,须用手轻轻托住砝码托盘,不得碰动仪器;并且需待钢丝伸缩稳固后方可读数.3)在测量钢丝伸长量进程中,不成半途停留而改测其他物理量(如d.L.D等),不然若半途受到别的干扰,则钢丝的伸长(或缩短)值将产生变更,导致误差增大.3 数据处理1)试验数据记载表格表1相干数据的测量次序 F(×9.789N)Ni(加,cm) Ni(减,c m) N d(1kg) (mm) d(6kg)(mm)L(cm)D(c m) H(cm)1 01502 3 4 56——2) 用作图法处理数据肯定NF∆∆的测量成果及不肯定度;())/(1090.61005.015.7789.900.100.622m N N N F F N FA B A B ⨯=⨯-⨯-=--=∆∆%0.1103.3107.610.7305.0200.5305.022255222222=⨯+⨯=⎪⎪⎭⎫ ⎝⎛⨯⨯+⎪⎪⎭⎫ ⎝⎛⨯⨯=⎪⎪⎭⎫⎝⎛∆+⎪⎪⎭⎫ ⎝⎛∆=⎪⎭⎫ ⎝⎛∆+⎪⎭⎫ ⎝⎛∆=--∆∆∆∆N u F u N u F u E BANFN F NF)/(10069.01090.6%0.122m N NFE NF NF u⨯=⨯⨯=∆∆⨯=∆∆∆∆ 3) 盘算钢丝的杨氏模量的测量成果及不肯定度.)/(1063.11090.6842.70450.014.31015000.98882112222m N N h d F LD Y ⨯=⨯⨯⨯⨯⨯⨯⨯=∆∆=π cm m Hu0012.03002.03==∆=;cm m L u 029.0305.03==∆=;cm m D u 9.2100305.03==∆=()cm m d dS u9.2100305.00047.032222=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛∆+= ()%5.2100.1102.2101.1107.3107.8%0.1842.70012.0450.09.221509.200.98029.02484482222222222=⨯+⨯+⨯+⨯+⨯=+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=-----∆∆E N F H d D L Y H u d u D u L u E )/(10039.0%5.21063.121111m N E Y Y Yu⨯=⨯⨯=⨯=4试验成果:())683.0(%5.2/1004.063.1211=⎪⎩⎪⎨⎧=⨯±=±=p E mN Y Y Y Y u 5思虑题(评论辩论)1)本试验为什么用不合仪器来测定各个长器量?2)光杠杆法可否用来测量一块薄金属片的厚度?若何测量?3)调节光杠杆镜尺体系时,若碰到下列现象时你将若何处理(即若何调节)?(1)用千里镜找标尺的像时,看到了光杠杆的镜面,而看不到标尺的像.(2)某一同窗已调好的光杠杆体系(他确已调好了),但你去看时觉得标尺的像很隐约.。

静态拉伸法测材料的杨氏模量实验报告

静态拉伸法测材料的杨氏模量实验报告

《大学物理实验》




实验名称:静态拉伸法测材料的杨氏模量专业班级:组别:
姓名:学号:
合作者:日期:
22
2
22
1
2
221
⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫
⎝⎛+⎪⎭⎫ ⎝⎛=k U D U d U d U L U Y U k D d d L Y 显示出k 的影响明显,而22
m l m l k m m ⋅∆-∆=-,故实验中l ∆的测量对结果影响最大。


2
1
2d l L d ∆=
∆,因此仪器改进的主要方向是进一步提高光杠杆的放大倍数即光杠杆的灵敏度。

其次,
F L Y A L
∆=,增加钢丝的原长L 可使同样拉力下l ∆增大而容易测量。

当然实验人员熟练实验技巧、认真正确的读取l ∆也是非常重要的。

再者,D 的测量对结果也有较大影响,如果在
弹性范围内L ∆太大时也需要注意钢丝直径的变化。

金属丝杨氏模量的测定实验报告

金属丝杨氏模量的测定实验报告

金属丝杨氏模量的测定实验报告实验报告金属丝杨氏模量的测定一、实验目的通过实验测定金属丝的杨氏模量,掌握杨氏模量的测定方法及其原理。

二、实验原理杨氏模量是材料的一种物理量,它是表征材料在受力情况下的刚度。

杨氏模量越大,表明力作用下材料变形越小,其刚度越大。

杨氏模量的测定方法一般采用悬线法或悬挂法,本实验采用的是悬线法。

实验原理如下:当金属丝受外力作用时,形成一个悬挂状态,其自身重力受到张力的平衡,成为拉伸状态。

设金属丝的直径为d,长度L,所加载重物的重量为F,则金属丝所受拉力为F,而张力均匀分布在金属丝的横截面上,张力大小为F/π(d/2)^2。

令金属丝的长度为L0,其自身重量为G,则金属丝在外力作用下的总长度L为L0+δ,δ为金属丝的伸长量。

根据胡克定律,当金属丝受到张力时,其伸长量与张力成正比。

则有:δ=(FL0)/AEl其中A是金属丝的截面积,E为杨氏模量,I为金属丝的惯性矩。

从上述公式可以得到:E=FL0/δAI在实验中,由于金属丝受到外力的作用会有摆动,会引起对实验结果的影响,因此需要仔细控制稳定性。

三、实验步骤1. 将衡盘放在支架上,将经过钩子的紫铜丝绳穿过轮子,将两端悬挂在衡盘钩子上,轻轻震动衡盘,使丝绳震动到稳定位置,将衡盘调整至HorizonTal水平。

2. 当稳定之后,开启溶液灯,扯动指示灯片的变压器,使其显出最明亮的横向梯纹,然后调整可调光圈,调整至红、绿烛强度相等。

这时就得到成功的平面梯纹。

3. 用高清显微镜读取最上面一篇横向梯纹上下测线之差h1和水准仪板上面的读数H1。

4. 加上适当载荷,然后用高清显微镜读取最下面一篇横向梯纹上下测线之差h2和水准仪板上面的读数H2。

5. 改变重物的质量,重复上述操作,每递增一定量,再读一次上下两个梯纹的位移离差和水准仪的读数,使绘出不同载荷下的荷载荷距图。

6. 根据实验数据求出图像中 e 及 L 的数值,代入E=FL/δAI 计算得杨氏模量。

杨氏模量测量实验报告

杨氏模量测量实验报告

杨氏模量测量实验报告杨氏模量是材料力学性能测试中的一个重要指标,它对于各种材料的力学性能数据的获取有着重要的应用价值。

本次实验是在一个物理实验室进行的。

我们的目的是通过在不同压力下测量材料的伸长量以及纵向弹性应变的变化,来研究材料的杨氏模量。

实验步骤:1. 准备工作需要准备材料,这里我们选择钢棒。

同时需要准备弹簧秤、细尺和压力计等工具进行实验。

实验仪器和设备有实验平台、扰动器、光栅尺、注水泵等。

2. 实验预处理首先需要对试验材料进行检测,将钢棒通过试验,排除裂纹、缺陷等不良情况,保证试验后的数据是准确、可靠的。

3. 实验操作过程(1)实验平台的调整:将压力计装置放在水平实验平台上,并使其垂直于水平面。

同时调整实验台至水平状态,以保证实验数据的准确性。

(2)纵向弹性变形的测量:通过压力计加载,使课题材料在压力下伸长一定量(一般为2厘米),并记录下扰动器作用下样品顶点的位移。

继续给材料加载压力,测量在不同压力下,材料的伸长量和位移的变化值。

(3)数据处理:依据所测得的压力和样品伸长量,计算出杨氏模量。

将实验结果录入表格中,并进行数据分析和比较。

4. 实验总结通过这次实验,我们成功测量了钢棒的杨氏模量,并得出了结果。

同时,我们也发现实验过程中一些小问题和误差。

下次实验中要进行改进和加强监督,保证实验数据的准确性和精确性。

总结:本次实验我们学习了杨氏模量的测量方法和原理,对于实验仪器的使用和调整也有了更深入的认识。

本次实验结果准确、可信,为后续的研究提供一定的理论和实验基础。

(704字)。

杨氏模量实验报告

杨氏模量实验报告

杨氏模量实验报告开展实验自然要写实验报告,杨氏模量实验报告怎样写呢?那么,下面是小编给大家整理收集的杨氏模量实验报告关键词,仅供参考。

杨氏模量实验报告1【实验目的】1.1.掌握螺旋测微器的使用方法。

2.学会用光杠杆测量微小伸长量。

3.学会用拉伸法金属丝的杨氏模量的方法。

【实验仪器】杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺),水准器,钢卷尺,螺旋测微器,钢直尺。

1、金属丝与支架(装置见图1):金属丝长约0.5米,上端被加紧在支架的上梁上,被夹于一个圆形夹头。

这圆形夹头可以在支架的下梁的圆孔内自由移动。

支架下方有三个可调支脚。

这圆形的气泡水准。

使用时应调节支脚。

由气泡水准判断支架是否处于垂直状态。

这样才能使圆柱形夹头在下梁平台的圆孔转移动时不受摩擦。

2、光杠杆(结构见图2):使用时两前支脚放在支架的下梁平台三角形凹槽内,后支脚放在圆柱形夹头上端平面上。

当钢丝受到拉伸时,随着圆柱夹头下降,光杠杆的后支脚也下降,时平面镜以两前支脚为轴旋转。

图1 图2 图33、望远镜与标尺(装置见图3):望远镜由物镜、目镜、十字分划板组成。

使用实现调节目镜,使看清十字分划板,在调节物镜使看清标尺。

这是表明标尺通过物镜成像在分划板平面上。

由于标尺像与分划板处于同一平面,所以可以消除读书时的视差(即消除眼睛上下移动时标尺像与十字线之间的相对位移)。

标尺是一般的米尺,但中间刻度为0。

【实验原理】1、胡克定律和杨氏弹性模量固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。

如果外力后仍有残余形变,这种形变称为塑性形变。

应力:单位面积上所受到的力(F/S)。

应变:是指在外力作用下的相对形变(相对伸长DL/L)它反映了物体形变的大小。

用公式表达为:(1)2、光杠杆镜尺法测量微小长度的变化在(1)式中,在外力的F的拉伸下,钢丝的伸长量DL是很小的量。

用一般的长度测量仪器无法测量。

在本实验中采用光杠杆镜尺法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

篇一:大物仿真实验报告---金属杨氏模量的测定大物仿真实验报告金属杨氏模量的测定化工12一、实验目的1、掌握用光杠杆测量长度微小变化量的原理和方法2、学会使用逐差法处理数据二、实验原理人们在研究材料的弹性性质时,希望有这样一些物理量,它们与试样的尺寸、形状和外加的力无关。

于是提出了应力F/S(即力与力所作用的面积之比)和应变ΔL/L(即长度或尺寸的变化与原来的长度或尺寸之比)之比的概念。

在胡克定律成立的范围内,应力和应变之比是一个常数,即(1)E被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅与材料的结构、化学成分及其加工制造方法有关。

某种材料发生一定应变所需要的力大,该材料的杨氏模量也就大。

杨氏模量的大小标志了材料的刚性。

通过式(1),在样品截面积S上的作用应力为F,测量引起的相对伸长量ΔL/L,即可计算出材料的杨氏模量E。

因一般伸长量ΔL很小,故常采用光学放大法,将其放大,如用光杠杆测量ΔL。

光杠杆是一个带有可旋转的平面镜的支架,平面镜的镜面与三个足尖决定的平面垂直,其后足即杠杆的支脚与被测物接触,见图1。

当杠杆支脚随被测物上升或下降微小距离ΔL时,镜面法线转过一个θ角,而入射到望远镜的光线转过2θ角,如图2所示。

当θ很小时,(2)式中l为支脚尖到刀口的垂直距离(也叫光杠杆的臂长)。

根据光的反射定律,反射角和入射角相等,故当镜面转动θ角时,反射光线转动2θ角,由图可知(3)式中D为镜面到标尺的距离,b为从望远镜中观察到的标尺移动的距离。

从(2)和(3)两式得到(4)由此得(5)合并(1)和(4)两式得2Y=6)式中2D/l叫做光杠杆的放大倍数。

只要测量出L、D、l和d(一系列的F 与b之后,就可以由式(6)确定金属丝的杨氏模量E。

)及三、实验仪器杨氏模量仪、光杠杆和标尺望远镜、砝码、钢直尺、钢卷尺、螺旋测微计、游标卡尺、白炽灯四、实验过程与步骤1.调节仪器(1)调节放置光杠杆的平台F与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。

(2)调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。

(3)光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL的关键部件。

光杠杆的镜面(1)和刀口(3)应平行。

使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。

(4)镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰(图2)。

2.测量(1)砝码托的质量为m0,记录望远镜中标尺的读数r0作为钢丝的起始长度。

(2)在砝码托上逐次加500g砝码(可加到3500g),观察每增加500g时望远镜中标尺上的读数ri,然后再将砝码逐次减去,记下对应的读数r’i,取两组对应数据的平均值。

(3)用米尺测量金属丝的长度L和平面镜与标尺之间的距离D,以及光杠杆的臂长。

五、实验数据记录l=40.5mm;D=52.6mm ;L=100.7mm ;d=0.292mm六、数据处理与结论将所得数据代入Y=2Y=410.4N/mm2EN=41||4/d=0.0040.092L=0.4/100.7=0.4%;ED=0.4/52.6=0.7; EY=EL+ED+2Ed+EN=5.8% 故测量结果表示为:(410.4+23.8)N/mm2 E误差分析:测量数据较多,读数误差大。

七、思考题1.利用光杠杆把测微小长度ΔL变成侧b,光杠杆的放大率为2D/L,根据此式能否以增加D减小L来提高放大率,这样做有无好处?有无限度?应怎样考虑这个问题?答:这样做的好处是可以增加放大倍数,但是这个仪器的要求是D>>R(D远远大于R),所以不能无限度增大篇二:杨氏弹性模量的测量实验报告中南大学大学物理实验杨氏弹性模量的测量实验报告234篇三:大学物理实验-拉伸法测钢丝的杨氏模量(已批阅)系学号姓名日期实验题目:用拉伸法测钢丝的杨氏模量 13+39+33=85实验目的:采用拉伸法测定杨氏模量,掌握利用光杠杆测定微小形变地方法。

在数据处理中,掌握逐差法和作图法两种数据处理的方法实验仪器: 杨氏模量测量仪(包括光杠杆,砝码,望远镜,标尺),米尺,螺旋测微计。

实验原理:在胡克定律成立的范围内,应力F/S和应变ΔL/L之比满足 E=(F/S)/(ΔL/L)=FL/(SΔL)其中E为一常量,称为杨氏模量,其大小标志了材料的刚性。

根据上式,只要测量出F、ΔL/L、S就可以得到物体的杨氏模量,又因为ΔL很小,直接测量困难,故采用光杠杆将其放大,从而得到ΔL。

实验原理图如右图:当θ很小时,其中l是光杠杆的臂tan?L/l,长。

由光的反射定律可以知道,镜面转过θ,反射光线转过2θ,而且有:tan22 故:?Ll?b(2D)bD,即是?L?bl(2D)那么E?2DLFSlb,最终也就可以用这个表达式来确定杨氏模量E。

实验内容: 1.调节仪器(1)调节放置光杠杆的平台F与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。

(2)调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。

(3)光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL的关键部件。

光杠杆的镜面(1)和刀口(3)应平行。

使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。

(4)镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。

2.测量(1)砝码托的质量为m0,记录望远镜中标尺的读数r0作为钢丝的起始长度。

(2)在砝码托上逐次加500g砝码(可加到3500g),观察每增加500g时望远镜中标尺上的读数ri,然后再将砝码逐次减去,记下对应的读数r’i,取两组对应数据的平均值ri。

(3)用米尺测量金属丝的长度L和平面镜与标尺之间的距离D,以及光杠杆的臂长l。

3.数据处理(1)逐差法用螺旋测微计测金属丝直径d,上、中、下各测2次,共6次,然后取平均值。

将ri每隔四项相减,得到相当于每次加2000g的四次测量数据,如设b0?r4?r0,b1?r5?r1,b2?r6?r2和b3?r7?r3并系学号姓名日期求出平均值和误差。

将测得的各量代入式(5)计算E,并求出其误差(ΔE/E和ΔE),正确表述E的测量结果。

(2)作图法把式(5)改写为ri?2DLFi/(SlE)?MFi(6)其中M?2DL/(SlE),在一定的实验条件下,M是一个常量,若以ri为纵坐标,Fi为横坐标作图应得一直线,其斜率为M。

由图上得到M的数据后可由式(7)计算杨氏模量E?2DL/(SlM) (7)4.注意事项(1)调整好光杠杆和镜尺组之后,整个实验过程都要防止光杠杆的刀口和望远镜及竖尺的位置有任何变动,特别在加减砝码时要格外小心,轻放轻取。

(2)按先粗调后细调的原则,通过望远镜筒上的准星看反射镜,应能看到标尺,然后再细调望远镜。

调目镜可以看清叉丝,调聚焦旋钮可以看清标尺。

实验数据:实验中给定的基本数据如下:一个砝码的质量m=(500±5)g,Δm=5g,ΔD=2mm,ΔL=2mm,Δl=0.2mm 实验中测量得到的数据如下:钢丝直径d(六次测量结果):上部:0.286mm,0.285mm中部:0.284mm,0.285mm 下部:0.286mm,0.282mm钢丝原长L=94.10cm,光杠杆的臂长l=7.20cm,标尺到平面镜的距离D=126.20cm数据处理:表一:增减砝码过程中刻度指示的变化系学号姓名日期金属丝直径的平均值d?金属丝直径的标准差?d?0.286?0.285?0.284?0.285?0.286?0.2826mm?0.285mm(0.286?0.285)?(0.285?0.285)?(0.284?0.285)?(0.285?0.285)?(0.286?0.285)?(0.282?0.2 85)6?1222222mm?0.0015mm那么它的展伸不确定度为△B如何求得?Ud0.990?(t0.990?dn)?(kP2?BC)?2(4.03?0.00156)?(2.58?20.0053)mm?0.005mm,P?0.9902先考虑逐差法处理刻度:b0=r4-r0=4.99cm,b1=r5-r1=5.00cm,b2=r6-r2=5.07cm,b3=r7-r3=4.98cm 其平均值b?其标准差?b?(4.99?5.01)?(5.00?5.01)?(5.07?5.01)?(4.98?5.01)4?122224.99?5.00?5.07?4.984cm?5.01cmcm?0.041cm那么b的展伸不确定度为:△B如何求得?不等于0.05Ub0.990?(t0.990?bn)?(kP2?BC)2?(5.84?8DLF0.0414)?(2.58?20.053)cm?0.175cm,P?0.9972根据杨氏模量的表达式E?8DLF2DLFSlb??lbd2,那么可以求得72E??lbd2?8?126.20cm?94.10cm?2?9.8N3.14?7.20cm?(0.0285cm)?5.01cm 2?2.024?10N/cm那么有最大不确定度?EE=?DD+?LL+?MM+2?dd+?ll+?bb?21262.0+2941.0+202000+20.285+0.272.0+0.1755.01?0.087所以ΔE=0.175×107N/cm2 最终结果为:E?EE?(2.024?0.175)?10N/cm,P?0.99072不确定度保留1-2位有效数字再用图象法处理:系学号姓名日期F/N图一:r-F图利用ORIGIN读出斜率为M=0.25013,那么根据公式计算得E?2DL/(SlM)?2?1262.0?941.014?3.14?(0.285)?7.2?0.250132N/cm272?2.067?10N/cm逐差法与图像法相对误差:|E逐差法?E图像法|E逐差法?2.067?2.0242.024?2.12%实验小结:实验过程中最困难的是光学仪器的调整以及在望远镜中找到标尺的像,但是在老师的帮助下,我很快在望远镜中找到了标尺的像,然后比较顺利地完成了实验。

实验中还遇到的一个困难是,在望远镜中标尺的像可能由于采光不足,刻度略显模糊,但我还是艰难地读取了数据。

从测量所得结果和误差分析结果来看,实验是比较成功的,两种方法得出结果较为接近,在一定误差范围内测得了钢丝的杨氏模量。

其中用逐差法和作图法所得到的结果基本一致,可以认为结果是可靠的。

相关文档
最新文档