中考数学锐角三角函数(大题培优)含答案

中考数学锐角三角函数(大题培优)含答案

一、锐角三角函数

1.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,圆心为E ,直线AC 交E e 于点D ,连接OD . (1)求证:直线OD 是E e 的切线;

(2)点F 为x 轴上任意一动点,连接CF 交E e 于点G ,连接BG : ①当1

an 7

t ACF ∠=时,求所有F 点的坐标 (直接写出); ②求

BG

CF

的最大值. 【答案】(1)见解析;(2)①143,031F ⎛⎫

⎪⎝⎭

,2(5,0)F ;② BG CF 的最大值为12.

【解析】 【分析】

(1)连接DE ,证明∠EDO=90°即可;

(2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可; ②作GM BC ⊥于点M ,证明1~ANF ABC ∆∆,得1

2

BG CF ≤,从而得解. 【详解】

(1)证明:连接DE ,则:

∵BC 为直径 ∴90BDC ∠=︒ ∴90BDA ∠=︒ ∵OA OB = ∴OD OB OA == ∴OBD ODB ∠=∠

EB ED =

∴EBD EDB ∠=∠

∴EBD OBD EDB ODB ∠+∠=∠+∠ 即:EBO EDO ∠=∠ ∵CB x ⊥轴 ∴90EBO ∠=︒ ∴90EDO ∠=︒ ∴直线OD 为E e 的切线.

(2)①如图1,当F 位于AB 上时: ∵1~ANF ABC ∆∆

11

NF AF AN AB BC AC

== ∴设3AN x =,则114,5NF x AF x ==

∴103CN CA AN x =-=- ∴141tan 1037F N x ACF CN x ∠===-,解得:10

31

x = ∴150531AF x ==

15043

33131

OF =-=

即143,031F ⎛⎫

⎪⎝⎭

如图2,当F 位于BA 的延长线上时: ∵2~AMF ABC ∆∆

∴设3AM x =,则224,5MF x AF x == ∴103CM CA AM x =+=+ ∴241

tan 1037

F M x ACF CM x ∠===+ 解得:25

x =

∴252AF x ==

2325OF =+=

即2(5,0)F

②如图,作GM BC ⊥于点M , ∵BC 是直径

∴90CGB CBF ∠=∠=︒ ∴~CBF CGB ∆∆

8BG MG MG

CF BC == ∵MG ≤半径4=

41

882BG MG CF =≤= ∴BG CF

的最大值为12.

【点睛】

本题考查了圆的综合题:熟练掌握切线的判定定理、解直角三角形;相似三角形的判定和性质和相似比计算线段的长;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.

2.如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.

(1) 试判断BE与FH的数量关系,并说明理由;

(2) 求证:∠ACF=90°;

(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.

图1 图2

【答案】(1)BE="FH" ;理由见解析

(2)证明见解析

(3)=2π

【解析】

试题分析:(1)由△ABE≌△EHF(SAS)即可得到BE=FH

(2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知△FHC是等腰直角三角形,∠FCH 为45°,而∠ACB也为45°,从而可证明

(3)由已知可知∠EAC=30°,AF是直径,设圆心为O,连接EO,过点E作EN⊥AC于点N,则可得△ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到所对圆心角的度数,从而求得弧长

试题解析:(1)BE=FH.理由如下:

∵四边形ABCD是正方形∴∠B=90°,

∵FH⊥BC ∴∠FHE=90°

又∵∠AEF=90°∴∠AEB+∠HEF="90°" 且∠BAE+∠AEB=90°

∴∠HEF=∠BAE ∴∠AEB=∠EFH 又∵AE=EF

∴△ABE≌△EHF(SAS)

∴BE=FH

(2)∵△ABE≌△EHF

∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH"

∴CH=FH

∴∠FCH=45°,∴∠FCM=45°

∵AC是正方形对角线,∴∠ACD=45°

∴∠ACF=∠FCM +∠ACD =90°

(3)∵AE=EF,∴△AEF是等腰直角三角形

△AEF外接圆的圆心在斜边AF的中点上.设该中点为O.连结EO得∠AOE=90°

过E作EN⊥AC于点N

Rt△ENC中,EC=4,∠ECA=45°,∴EN=NC=

Rt△ENA中,EN =

又∵∠EAF=45°∠CAF=∠CEF=15°(等弧对等角)

∴∠EAC=30°

∴AE=

Rt△AFE中,AE== EF,∴AF=8

AE所在的圆O半径为4,其所对的圆心角为∠AOE=90°

=2π·4·(90°÷360°)=2π

考点:1、正方形;2、等腰直角三角形;3、圆周角定理;4、三角函数

3.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D.

(1)求证:PA是☉O的切线;

(2)若=,且OC=4,求PA的长和tan D的值.

【答案】(1)证明见解析;(2)PA =3,tan D=.

【解析】

试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;

(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.

试题解析:(1)连接OB,则OA=OB,

∵OP⊥AB,∴AC=BC,

∴OP是AB的垂直平分线,∴PA=PB,

在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)

∴∠PBO=∠PAO,PB=PA,

∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,

∴PA是⊙O的切线;

(2)连接BE,

∵,且OC=4,∴AC=6,∴AB=12,

在Rt△ACO中,由勾股定理得:AO=,

∴AE=2OA=4,OB=OA=2,

在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,

在Rt△APO中,由勾股定理得:AP==3.

易证,所以,解得,

则,在中,.

考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.

4.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,BC=16cm,AD是斜边BC上的高,垂足为D,BE=1cm.点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M 同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH.点M到达点D 时停止运动,点N到达点C时停止运动.设运动时间为t(s).

(1)当t为何值时,点G刚好落在线段AD上?

(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围.

(3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,

△CPD是等腰三角形?

【答案】(1)3;(2);(3)t=9s或t=(15﹣6)s.

【解析】

试题分析:(1)求出ED的距离即可求出相对应的时间t.

(2)先求出t的取值范围,分为H在AB上时,此时BM的距离,进而求出相应的时间.同样当G在AC上时,求出MN的长度,继而算出EN的长度即可求出时间,再通过正方形的面积公式求出正方形的面积.

(3)分DP=PC和DC=PC两种情况,分别由EN的长度便可求出t的值.

试题解析:∵∠BAC=90°,∠B=60°,BC=16cm

∴AB=8cm,BD=4cm,AC=8cm,DC=12cm,AD=4cm.

(1)∵当G刚好落在线段AD上时,ED=BD﹣BE=3cm

∴t=s=3s.

(2)∵当MH没有到达AD时,此时正方形MNGH是边长为1的正方形,令H点在AB 上,

则∠HMB=90°,∠B=60°,MH=1

∴BM=cm.∴t=s.

当MH到达AD时,那么此时的正方形MNGH的边长随着N点的继续运动而增大,令G点在AC上,

设MN=xcm,则GH=DH=x,AH=x,

∵AD=AH+DH=x+x=x=4,

∴x=3.

当≤t≤4时,S MNGN=1cm2.

当4<t≤6时,S MNGH =(t ﹣3)2cm 2

∴S 关于t 的函数关系式为:.

(3)分两种情况:

①∵当DP=PC 时,易知此时N 点为DC 的中点,∴MN=6cm ∴EN=3cm+6cm=9cm.∴t=9s

故当t=9s 的时候,△CPD 为等腰三角形; ②当DC=PC 时,DC=PC=12cm ∴NC=6

cm

∴EN=16cm ﹣1cm ﹣6cm=(15﹣6

)cm

∴t=(15﹣6)s

故当t=(15﹣6

)s 时,△CPD 为等腰三角形.

综上所述,当t=9s 或t=(15﹣6

)s 时,△CPD 为等腰三角形.

考点:1.双动点问题;2.锐角三角函数定义;3.特殊角的三角函数值;4.正方形的性质;5.由实际问题列函数关系式;6.等腰三角形的性质;7.分类思想的应用.

5.许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A ,B 两点之间的距离他沿着与直线AB 平行的道路EF 行走,走到点C 处,测得∠ACF=45°,再向前走300米到点D 处,测得∠BDF=60°.若直线AB 与EF 之间的距离为200米,求A ,B 两点之间的距离(结果保留一位小数)

【答案】215.6米. 【解析】 【分析】

过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点,

根据Rt △ACM 和三角函数tan BDF ∠求出CM 、DN ,然后根据MN MD DN AB =+=即可求出A 、B 两点间的距离. 【详解】

解:过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点

在Rt △ACM 中,∵45ACF ∠=︒,

∴AM=CM=200米,

又∵CD=300米,所以100MD CD CM =-=米, 在Rt △BDN 中,∠BDF=60°,BN=200米 ∴115.6tan 60BN

DN =

≈o

米,

∴215.6MN MD DN AB =+=≈米 即A ,B 两点之间的距离约为215.6米. 【点睛】

本题主要考查三角函数,正确做辅助线是解题的关键.

6.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点

A 、点

B ,且ABO ∆的面积为8. (1)求k 的值;

(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);

(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.

【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y . 【解析】 【分析】

(1)先求出A 的坐标,然后利用待定系数法求出k 的值;

(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证

POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;

(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出

QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;

再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到

OD BO

PD MO

=,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32. 【详解】

解:(1)把0x =代入4y kx =+,4y =, ∴4BO =, 又∵4ABO S ∆=,

1

42

AO BO ⋅=,4AO =, ∴(4,0)A -,

把4x =-,0y =代入4y kx =+, 得044k =-+, 解得1k =. 故答案为1;

(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +

如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,

∴90PDO CEO ∠=∠=︒, ∴90POD OPD ∠+∠=︒,

∵线段OP 绕点O 顺时针旋转90°至线段OC , ∴90POC ∠=︒,OP OC =, ∴90POD EOC ∠+∠=︒, ∴OPD EOC ∠=∠, ∴POD OCE ∆≅∆, ∴OE PD =,

4m t =+.

故答案为4m t =+.

(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,

由(1)知,4AO BO ==,90BOA ∠=︒,

∴ABO ∆为等腰直角三角形,

∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠,

∴BT TO =,

∵90BTO ∠=︒,

∴90TPO TOP ∠+∠=︒,

∵PO BM ⊥,

∴90BNO ∠=︒,

∴BQT TPO ∠=∠,

∴QTB PTO ∆≅∆,

∴QT TP =,PO BQ =,

∴PQT QPT ∠=∠,

∵PO PK KB =+,

∴QB PK KB =+,QK KP =,

∴KQP KPQ ∠=∠,

∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠,

∴KPB BPN ∠=∠,

设KPB x ∠=︒,

∴BPN x ∠=︒,

∵2PMB KPB ∠=∠,

∴2PMB x ∠=︒,

45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠,

∴PO PM =,

过点P 作PD x ⊥轴,垂足为点D ,

∴22OM OD t ==,

9045OPD POD x BMO ∠=︒-∠=︒-︒=∠,

tan tan OPD BMO ∠=∠,

OD BO PD MO =,442t t t

=+, 14t =,22t =-(舍)

∴8OM =,由(2)知,48m t OM =+==,

∴CM y P 轴,

∵90PNM POC ∠=∠=︒,

∴BM OC P ,

∴四边形BOCM 是平行四边形,

∴4832BOCM S BO OM =⨯=⨯=Y .

故答案为32.

【点睛】

本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.

7.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E .设P 是»AC 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G .

(1)求证:△PAC ∽△PDF ;

(2)若AB =5,¼¼AP BP

=,求PD 的长.

【答案】(1)证明见解析;(2310 【解析】

【分析】 (1)根据AB ⊥CD ,AB 是⊙O 的直径,得到¶¶AD

AC =,∠ACD =∠B ,由∠FPC =∠B ,得到∠ACD =∠FPC ,可得结论;

(2)连接OP ,由¶¶AP

BP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =BC AC

,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OP GE ED

=,然后根据勾股定

理即可得到结果.

【详解】

(1)证明:连接AD,

∵AB⊥CD,AB是⊙O的直径,∴¶¶

AD AC

=,

∴∠ACD=∠B=∠ADC,

∵∠FPC=∠B,

∴∠ACD=∠FPC,

∴∠APC=∠ACF,

∵∠FAC=∠CAF,

∴△PAC∽△CAF;

(2)连接OP,则OA=OB=OP=15 22 AB=,

∵¶¶

AP BP

=,

∴OP⊥AB,∠OPG=∠PDC,∵AB是⊙O的直径,

∴∠ACB=90°,

∵AC=2BC,

∴tan∠CAB=tan∠DCB=BC

AC

1

2 CE BE

AE CE

==,

∴AE=4BE,

∵AE+BE=AB=5,

∴AE=4,BE=1,CE=2,

∴OE=OB﹣BE=2.5﹣1=1.5,

∵∠OPG=∠PDC,∠OGP=∠DGE,

∴△OPG∽△EDG,∴OG OP GE ED

=,

2.5

2 OE GE OP

GE CE

-

==,

∴GE=2

3,OG=

5

6

∴PG

5 6 =,

GD

2

3 =,

∴PD=PG+GD

【点睛】

本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得

△OPG∽△EDG是解题的关键.

8.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.

(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;

(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.

BE

【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)3

【解析】

【分析】

(1)①补全图形即可,

②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=2FG=DG=2GH=6,得出DF2DG=3Rt△DCF中,由勾股定理得出CF=3

得出结果.

【详解】

解:(1)①补全图形如图1所示,

②FG=DG,FG⊥DG,理由如下,

连接BG,如图2所示,

∵四边形ABCD是正方形,

∴∠ACB=45°,

∵EG ⊥AC ,

∴∠EGC =90°,

∴△CEG 是等腰直角三角形,EG =GC ,

∴∠GEC =∠GCE =45°,

∴∠BEG =∠GCF =135°,

由平移的性质得:BE =CF ,

在△BEG 和△GCF 中,BE CF BEG GCF EG CG =⎧⎪∠=∠⎨⎪=⎩

∴△BEG ≌△GCF (SAS ),

∴BG =GF ,

∵G 在正方形ABCD 对角线上,

∴BG =DG ,

∴FG =DG ,

∵∠CGF =∠BGE ,∠BGE+∠AGB =90°,

∴∠CGF+∠AGB =90°,

∴∠AGD+∠CGF =90°,

∴∠DGF =90°,

∴FG ⊥DG.

(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示,

在Rt △ADG 中,

∵∠DAC =45°,

∴DH =AH =2

在Rt △DHG 中,∵∠AGD =60°,

∴GH 332

36,

∴DG =2GH =6,

∴DF 2DG =3

在Rt △DCF 中,CF ()22436-3

∴BE =CF =3.

【点睛】

本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.

9.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E

(1)判断直线PD是否为⊙O的切线,并说明理由;

(2)如果∠BED=60°,PD=3,求PA的长;

(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.

【答案】(1)证明见解析;(2)1;(3)证明见解析.

【解析】

【分析】

(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;

(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;

(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.

【详解】

(1)直线PD为⊙O的切线,

理由如下:

如图1,连接OD,

∵AB是圆O的直径,

∴∠ADB=90°,

∴∠ADO+∠BDO=90°,

又∵DO=BO,

∴∠BDO=∠PBD,

∵∠PDA=∠PBD,

∴∠BDO=∠PDA,

∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,

∴直线PD为⊙O的切线;

(2)∵BE是⊙O的切线,

∴∠EBA=90°,

∵∠BED=60°,

∴∠P=30°,

∵PD为⊙O的切线,

∴∠PDO=90°,

在Rt△PDO中,∠P=30°,3

∴0 tan30

OD

PD

=,解得OD=1,

∴22

PO PD OD

+,

∴PA=PO﹣AO=2﹣1=1;

(3)如图2,

依题意得:∠ADF=∠PDA,∠PAD=∠DAF,

∵∠PDA=∠PBD∠ADF=∠ABF,

∴∠ADF=∠PDA=∠PBD=∠ABF,

∵AB是圆O的直径,

∴∠ADB=90°,

设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,

∴∠DAF+∠DBF=180°,

即90°+x+2x=180°,解得x=30°,

∴∠ADF=∠PDA=∠PBD=∠ABF=30°,

∵BE、ED是⊙O的切线,

∴DE=BE,∠EBA=90°,

∴∠DBE=60°,∴△BDE是等边三角形,

∴BD=DE=BE,

又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,

∴△BDF是等边三角形,

∴BD=DF=BF,

∴DE=BE=DF=BF,

∴四边形DFBE为菱形.

【点睛】

本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.

10.如图所示的是一个地球仪及它的平面图,在平面图中,点A、B分别为地球仪的南、北极点,直线AB与放置地球仪的平面交于点D,所夹的角度约为67°,半径OC所在的直线与放置它的平面垂直,垂足为点E,DE=15cm,AD=14cm.

(1)求半径OA的长(结果精确到0.1cm,参考数据:sin67°≈0.92,cos67°≈0.39,

tan67°≈2.36)

(2)求扇形BOC的面积(π取3.14,结果精确到1cm)

822cm.

【答案】(1)半径OA的长约为24.5cm;(2)扇形BOC的面积约为2

【解析】

【分析】

(1)在Rt△ODE中,DE=15,∠ODE=67°,根据∠ODE的余弦值,即可求得OD长,减去AD 即为OA.

(2)用扇形面积公式即可求得.

【详解】

(1)在Rt △ODE 中,15cm DE =,67ODE ∠=︒. ∵cos DE ODE DO ∠=

, ∴150.39

OD ≈, ∴()384614245cm OA OD AD =-≈-≈.

., 答:半径OA 的长约为24.5cm .

(2)∵67ODE ∠=︒,

∴157BOC ∠=︒,

∴2360

BOC n r S π=扇形 2

157 3.1424.52360

⨯⨯≈ ()2822cm ≈.

答:扇形BOC 的面积约为2822cm .

【点睛】

此题主要考查了解直角三角形的应用,本题把实际问题转化成数学问题,利用三角函数中余弦定义来解题是解题关键.

11.如图(1),已知正方形ABCD 在直线MN 的上方BC 在直线MN 上,E 是BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG .

(1)连接GD ,求证:△ADG ≌△ABE ;

(2)连接FC ,观察并直接写出∠FCN 的度数(不要写出解答过程)

(3)如图(2),将图中正方形ABCD 改为矩形ABCD ,AB =6,BC =8,E 是线段BC 上一动点(不含端点B 、C ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,∠FCN 的大小是否总保持不变,若∠FCN 的大小不变,请求出tan ∠FCN 的值.若∠FCN 的大小发生改变,请举例说明.

【答案】(1)见解析;(2)∠FCN =45°,理由见解析;(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =

43

.理由见解析. 【解析】

【分析】

(1)根据三角形判定方法进行证明即可.

(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.

(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论.

【详解】

(1)证明:∵四边形ABCD 和四边形AEFG 是正方形,

∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°,

∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE ,

∴∠BAE =∠DAG ,

在△ADG 和△ABE 中,

ADG ABE DAG BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩

∴△ADG ≌△ABE (AAS ).

(2)解:∠FCN =45°,理由如下:

作FH ⊥MN 于H ,如图1所示:

则∠EHF =90°=∠ABE ,

∵∠AEF =∠ABE =90°,

∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°,

∴∠FEH =∠BAE ,在△EFH 和△ABE 中,

EHF ABE FEH BAE AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩

∴△EFH ≌△ABE (AAS ),

∴FH =BE ,EH =AB =BC ,

∴CH =BE =FH ,

∵∠FHC =90°,

∴∠FCN =45°.

(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下:

作FH ⊥MN 于H ,如图2所示:

中考数学锐角三角函数(大题培优 易错 难题)含答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,DE⊥AB于点E,连结AD、CD. (1)求证:△MED∽△BCA; (2)求证:△AMD≌△CMD; (3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2= 17 5 S1时,求cos∠ABC的 值. 【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=5 7 . 【解析】 【分析】 (1)易证∠DME=∠CBA,∠ACB=∠MED=90°,从而可证明△MED∽△BCA;(2)由∠ACB=90°,点M是斜边AB的中点,可知MB=MC=AM,从而可证明∠AMD=∠CMD,从而可利用全等三角形的判定证明△AMD≌△CMD; (3)易证MD=2AB,由(1)可知:△MED∽△BCA,所以 2 1 1 4 ACB S MD S AB ?? == ? ?? ,所以 S△MCB=1 2 S△ACB=2S1,从而可求出S△EBD=S2﹣S△MCB﹣S1= 2 5 S1,由于1 EBD S ME S EB =,从而可 知 5 2 ME EB =,设ME=5x,EB=2x,从而可求出AB=14x,BC= 7 2 ,最后根据锐角三角函数的 定义即可求出答案. 【详解】 (1)∵MD∥BC, ∴∠DME=∠CBA, ∵∠ACB=∠MED=90°, ∴△MED∽△BCA; (2)∵∠ACB=90°,点M是斜边AB的中点,∴MB=MC=AM, ∴∠MCB=∠MBC, ∵∠DMB=∠MBC, ∴∠MCB=∠DMB=∠MBC,

中考数学锐角三角函数(大题培优)含答案

中考数学锐角三角函数(大题培优)含答案 一、锐角三角函数 1.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,圆心为E ,直线AC 交E e 于点D ,连接OD . (1)求证:直线OD 是E e 的切线; (2)点F 为x 轴上任意一动点,连接CF 交E e 于点G ,连接BG : ①当1 an 7 t ACF ∠=时,求所有F 点的坐标 (直接写出); ②求 BG CF 的最大值. 【答案】(1)见解析;(2)①143,031F ⎛⎫ ⎪⎝⎭ ,2(5,0)F ;② BG CF 的最大值为12. 【解析】 【分析】 (1)连接DE ,证明∠EDO=90°即可; (2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可; ②作GM BC ⊥于点M ,证明1~ANF ABC ∆∆,得1 2 BG CF ≤,从而得解. 【详解】 (1)证明:连接DE ,则: ∵BC 为直径 ∴90BDC ∠=︒ ∴90BDA ∠=︒ ∵OA OB = ∴OD OB OA == ∴OBD ODB ∠=∠ ∵ EB ED = ∴EBD EDB ∠=∠

∴EBD OBD EDB ODB ∠+∠=∠+∠ 即:EBO EDO ∠=∠ ∵CB x ⊥轴 ∴90EBO ∠=︒ ∴90EDO ∠=︒ ∴直线OD 为E e 的切线. (2)①如图1,当F 位于AB 上时: ∵1~ANF ABC ∆∆ ∴ 11 NF AF AN AB BC AC == ∴设3AN x =,则114,5NF x AF x == ∴103CN CA AN x =-=- ∴141tan 1037F N x ACF CN x ∠===-,解得:10 31 x = ∴150531AF x == 15043 33131 OF =-= 即143,031F ⎛⎫ ⎪⎝⎭ 如图2,当F 位于BA 的延长线上时: ∵2~AMF ABC ∆∆ ∴设3AM x =,则224,5MF x AF x == ∴103CM CA AM x =+=+ ∴241 tan 1037 F M x ACF CM x ∠===+ 解得:25 x =

中考数学锐角三角函数(大题培优 易错 难题)及详细答案

中考数学锐角三角函数(大题培优易错难题)及详细答案 一、锐角三角函数 1.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为62 或 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE; (2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE; (3)分点P在AO上与CO上两种情况分别画图进行解答即可得. 【详解】(1)如图1中,延长EO交CF于K, ∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO, ∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK, ∵△EFK是直角三角形,∴OF=1 2 EK=OE; (2)如图2中,延长EO交CF于K,

∵∠ABC=∠AEB=∠CFB=90°, ∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF, ∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF, ∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF, ∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE; (3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H, ∵|CF﹣AE|=2,3AE=CK,∴FK=2, 在Rt△EFK中,tan∠3 ∴∠FEK=30°,∠EKF=60°, ∴EK=2FK=4,OF=1 2 EK=2, ∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2, 在Rt△PHF中,PH=1 2 PF=1,3OH=23 ∴()2 2 12362 +-=

中考数学锐角三角函数(大题培优 易错 难题)附答案解析

中考数学锐角三角函数(大题培优易错难题)附答案解析 一、锐角三角函数 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O 于点E. (1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由; (2)如图2,过点E作⊙O的切线,交AC的延长线于点F. ①若CF=CD时,求sin∠CAB的值; ②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)

中考数学锐角三角函数(大题培优)含详细答案

中考数学锐角三角函数(大题培优)含详细答案 一、锐角三角函数 1.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题: (1)当 t 为何值时,点 E 在 BAC 的平分线上? (2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式; (3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由; (4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由. 【答案】(1)4s t =;(2)PEGO S 四边形2 31568 8 t t =-+ + ,(05)t <<;(3)5 2t =时, PEGO S 四边形取得最大值;(4)16 5 t = 时,OE OQ ⊥. 【解析】 【分析】 (1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题. (2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可. (4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQ OC OG =,由此构建方程即可解决问题. 【详解】 (1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm , ∴22108-=6(cm ), ∵OD 垂直平分线段AC , ∴OC=OA=3(cm ),∠DOC=90°, ∵CD ∥AB ,

中考数学备考之锐角三角函数压轴突破训练∶培优 易错 难题篇及详细答案(1)

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60??,此时无人机的飞 行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处. (1)求之间的距离 (2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(223 . 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3Rt △ABC 中,求得3 3,然后根据三角函数的定义即可得到结论. 【详解】 解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ? =6012 =120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3 在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴33∴3 ∴tan ∠A 'A D= tan ∠'A DC= 'A E DE 5032 35 答:从无人机'A 上看目标D 2 35

【点睛】 本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键. 2.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,圆心为E ,直线AC 交E 于点D ,连接OD . (1)求证:直线OD 是 E 的切线; (2)点F 为x 轴上任意一动点,连接CF 交E 于点G ,连接BG : ①当1 an 7 t ACF ∠=时,求所有F 点的坐标 (直接写出); ②求 BG CF 的最大值. 【答案】(1)见解析;(2)①143,031F ?? ??? ,2(5,0)F ;② BG CF 的最大值为12. 【解析】 【分析】 (1)连接DE ,证明∠EDO=90°即可; (2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可; ②作GM BC ⊥于点M ,证明1~ANF ABC ??,得1 2 BG CF ≤,从而得解. 【详解】 (1)证明:连接DE ,则: ∵BC 为直径 ∴90BDC ∠=?

初三数学锐角三角函数的专项培优练习题及答案

初三数学锐角三角函数的专项培优练习题及答案 一、锐角三角函数 1.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60??,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处. (1)求之间的距离 (2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(2)3 5 . 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3Rt △ABC 中,求得DC= 3 3 3,然后根据三角函数的定义即可得到结论. 【详解】 解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ? =6012 =120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3 在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴DC=333∴3 ∴tan ∠A 'A D= tan ∠'A DC= 'A E DE 5032 35 答:从无人机'A 上看目标D 2 35

【点睛】 本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键. 2.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm. (1)求∠CAO'的度数. (2)显示屏的顶部B'比原来升高了多少? (3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度? 【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°. 【解析】 试题分析:(1)通过解直角三角形即可得到结果; (2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得 BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果; (3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°. 试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm, ∴sin∠CAO′=, ∴∠CAO′=30°; (2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,

备战中考数学锐角三角函数(大题培优)及答案

-X 锐角三角函数真题与模拟题分类汇编(难题易错题) 1. 如图,山坡上有一棵树AB,树底部B 点到山脚C 点的距离BC 为6jj 米,山坡的坡角 为30。・小宁在山脚的平地F 处测量这棵树的髙,点C 到测角仪EF 的水平距离CF=I 米, 【解析】 解:・・・底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30。・ CF=I 米, ・•・ DC=9+l=10 米, /. GE=IO 米, •・・ Z AEG=45∖ ・•・ AG=EG=I0 米, 在直角三角形BGF 中, BG=GF ∙tan20o =10×0.36=3.6 米, ・•・ AB=AG-BG=IO-3.6=6.4 米, 答:树髙约为6.4米 首先在直角三角形BDC 中求得DC 的长,然后求得DF 的长,进而求得GF 的长,然后在直 角三角形BGF 中即可求得BG 的长,从而求得树高 2. 如图,等腰AABC 中,AB=AC, ZBAC=36。,BC=I l 点 D 在边 AC 上且 BD 平分ZABC, 设 CD=×. (1) 求证:△ ABC- ∆ BCD : (2) 求X 的值: (3) 求 cos36o -cos72°的值. DC=BC ∙cos30o ==6√3× √3 2 【答案】6.4米 (参考

【答案】⑴证明见解析:(2) 土JE : (3) 7近+ X. 2 16 【解析】 试题分析:(1)由等腰三角形ABC 中,顶角的度数求出两底角度数,再由BD 为角平分线 求出ZDBC 的度数,得到Z DBC=Z A,再由ZC 为公共角,利用两对角相等的三角形相似得 到三角形ABC 与三角形BCD 相似: (2) 根据(1)结论得到AD=BD=BC,根据AD+DC 表示出AC,由(1)两三角形相似得比 例求岀X 的值即可; (3) 过B 作BE 垂直于AC,交AC 于点E,在直角三角形ABE 和直角三角形BCE 中,利用 锐角三角函数左义求出∞s360 与cos72o 的值,代入原式计算即可得到结果. 试题解析:(1) T 等腰AABC 中,AB=AC, Z BAC=36o , ・•・ Z ABC=Z C=72% ••・BD 平分Z ABC, ••・ Z ABD=Z CBD=36% ∙/ Z CBD=Z A=36% Ze=Z C, ・•・△ ABC - A BCD ; (2) V Z A=Z ABD=36∖ .∙. AD=BDf ∙.∙ BD=BC, ・•・ AD=BD=CD=I, 设 CD=x,则有 AB=AC=×+l, •・• △ ABc - △ BCD, AB BC _x+l 1 整理得:×2 +×-l=0, ≡= E 舍去 2 (3) IiB 作BE 丄AC,交AC 于点 E, BD = CD , i 1 ~Γ = 7

中考数学锐角三角函数(大题培优)附答案解析

中考数学锐角三角函数(大题培优)附答案解析 一、锐角三角函数 1.如图,等腰△ABC 中,AB=AC ,∠BAC=36°,BC=1,点D 在边AC 上且BD 平分∠ABC ,设CD=x . (1)求证:△ABC ∽△BCD ; (2)求x 的值; (3)求cos36°-cos72°的值. 【答案】(1)证明见解析;(2) 152 -+;(3)5816. 【解析】 试题分析:(1)由等腰三角形ABC 中,顶角的度数求出两底角度数,再由BD 为角平分线求出∠DBC 的度数,得到∠DBC=∠A ,再由∠C 为公共角,利用两对角相等的三角形相似得到三角形ABC 与三角形BCD 相似; (2)根据(1)结论得到AD=BD=BC ,根据AD+DC 表示出AC ,由(1)两三角形相似得比例求出x 的值即可; (3)过B 作BE 垂直于AC ,交AC 于点E ,在直角三角形ABE 和直角三角形BCE 中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果. 试题解析:(1)∵等腰△ABC 中,AB=AC ,∠BAC=36°, ∴∠ABC=∠C=72°, ∵BD 平分∠ABC , ∴∠ABD=∠CBD=36°, ∵∠CBD=∠A=36°,∠C=∠C , ∴△ABC ∽△BCD ; (2)∵∠A=∠ABD=36°, ∴AD=BD , ∵BD=BC , ∴AD=BD=CD=1, 设CD=x ,则有AB=AC=x+1, ∵△ABC ∽△BCD , ∴ AB BC BD CD =,即111x x +=, 整理得:x 2+x-1=0,

解得:x1=15 2 -+ ,x2= 15 2 -- (负值,舍去), 则x= 15 -+ ; (3)过B作BE⊥AC,交AC于点E, ∵BD=CD, ∴E为CD中点,即15 -+ 在Rt△ABE中,cosA=cos36°= 15 151 4 15 1 AE AB -+ ++ == -+ + 在Rt△BCE中,cosC=cos72°= 15 15 4 14 EC BC -+ -+ ==, 则cos36°-cos72°= 51 4 =- 15 4 -+ = 1 2 . 【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形. 2.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分) 已知:如图,AB是半圆O的直径,弦// CD AB,动点P、Q分别在线段OC、CD 上,且DQ OP =,AP的延长线与射线OQ相交于点E、与弦CD相交于点F(点F与点C、D不重合),20 AB=, 4 cos 5 AOC ∠=.设OP x =,CPF ∆的面积为y.

中考数学 锐角三角函数 培优 易错 难题练习(含答案)及详细答案

中考数学锐角三角函数培优易错难题练习(含答案)及详细答案 一、锐角三角函数 1.在等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N, ∠EMF=135°.将∠EMF绕点M旋转,使∠EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题: (1)当∠EMF绕点M旋转到如图①的位置时,求证:BE+CF=BM; (2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明; (3)在(1)和(2)的条件下,tan∠BEM=,AN=+1,则BM=,CF=. 【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣ 【解析】 【分析】 (1)由等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,可得BM=MN,∠BMN=135°,又∠EMF=135°,可证明的△BME≌△NMF,可得BE=NF, NC=NM=BM进而得出结论; (2)①如图②时,同(1)可证△BME≌△NMF,可得BE﹣CF=BM, ②如图③时,同(1)可证△BME≌△NMF,可得CF﹣BE=BM; (3) 在Rt△ABM和Rt△ANM中,, 可得Rt△ABM≌Rt△ANM,后分别求出AB、 AC、 CN 、BM、 BE的长,结合(1)(2)的结论对图①②③进行讨论可得CF的长. 【详解】 (1)证明:∵△ABC是等腰直角三角形, ∴∠BAC=∠C=45°, ∵AM是∠BAC的平分线,MN⊥AC, ∴BM=MN, 在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°, ∵∠ENF=135°,, ∴∠BME=∠NMF, ∴△BME≌△NMF, ∴BE=NF,

备战中考数学培优 易错 难题(含解析)之锐角三角函数含详细答案

备战中考数学培优 易错 难题(含解析)之锐角三角函数含详细答案 一、锐角三角函数 1.如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°.小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF=1米,从E 处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.(参考数 值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36) 【答案】6.4米 【解析】 解:∵底部B 点到山脚C 点的距离BC 为6 3 米,山坡的坡角为30°. ∴DC=BC•cos30°=3 639=⨯=米, ∵CF=1米, ∴DC=9+1=10米, ∴GE=10米, ∵∠AEG=45°, ∴AG=EG=10米, 在直角三角形BGF 中, BG=GF•tan20°=10×0.36=3.6米, ∴AB=AG-BG=10-3.6=6.4米, 答:树高约为6.4米 首先在直角三角形BDC 中求得DC 的长,然后求得DF 的长,进而求得GF 的长,然后在直角三角形BGF 中即可求得BG 的长,从而求得树高 2.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60︒︒,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处. (1)求之间的距离 (2)求从无人机'A 上看目标的俯角的正切值.

【答案】(1)120米;(2)23 5 . 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3,在Rt △ABC 中,求得DC= 3 3 AC=203,然后根据三角函数的定义即可得到结论. 【详解】 解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ︒ =6012 =120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3, 在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴DC=3AC=203 ∴DE=503 ∴tan ∠A 'A D= tan ∠'A DC= 'A E DE =503= 2 35 答:从无人机'A 上看目标D 的俯角的正切值是 2 35 . 【点睛】 本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键. 3.如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上. (1)求观察哨所A 与走私船所在的位置C 的距离;

2021年九年级数学中考一轮复习锐角三角函数相关填空压轴题 培优提升专题训练(附答案)

2021年九年级数学中考一轮复习锐角三角函数相关填空压轴题培优提升专题训练(附答 案) 1.如图,在△ABC中,AB=AC,点D为△ABC内部一点,且∠ADB+∠BAC=240°,∠ADC=2∠ABC,若3BD=2CD,则tan∠ADC的值为. 2.如图2,有一块四边形的铁板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tan B=tan C=,若要从这块余料中裁出顶点M、N在边BC上且面积最大的矩形PQMN,则该矩形的面积为cm2. 3.如图,BE是△ABC的角平分线,F是AB上一点,∠ACF=∠EBC,BE、CF相交于点G.若sin∠AEB=,BG=4,EG=5,则S△ABE=. 4.如图,在平面直角坐标系xOy中,已知Rt△ABC可运动(平移或旋转),且∠C=90°,BC=+4,tan A=,若以点M(3,6)为圆心,2为半径的⊙M始终在△ABC的内部,则△ABC的顶点C到原点O的距离的最小值为. 5.如图,△ABC为等边三角形,点D在△ABC外,连接BD、CD.若∠ABD=2∠ACD,tan∠ACD=,BD=,则CD=.

6.如图,Rt△ABC,∠C=90°,tan A=,D是AC中点,∠ABD=∠FBD,BC=6,CF ∥AB,则DF=. 7.如图,C为射线AM上一点,以点C为直角顶点作∠BCD交射线AN于D,B两点,当tan A=时,的最大值为. 8.如图,线段AC,BD交于点P,∠A=30°,∠ACD=120°,∠D=15°,AB=1,CD =,则BD的长为. 9.如图,在等腰△ABC中,AB=AC,AD平分∠BAC,点E在BA的延长线上,ED=EC,DE交AC于点K,若EC=10,tan∠AED=,则AK=.

中考数学 锐角三角函数 培优 易错 难题练习(含答案)含答案

中考数学 锐角三角函数 培优 易错 难题练习(含答案)含答案 一、锐角三角函数 1.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60︒︒,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处. (1)求之间的距离 (2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(2)3 5 . 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3Rt △ABC 中,求得DC= 3 3 3,然后根据三角函数的定义即可得到结论. 【详解】 解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ︒ =6012 =120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3 在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴DC=333∴3 ∴tan ∠A 'A D= tan ∠'A DC= 'A E DE 5032 35 答:从无人机'A 上看目标D 2 35

【点睛】 本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键. 2.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题: (1)当 t 为何值时,点 E 在 BAC 的平分线上? (2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式; (3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由; (4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由. 【答案】(1)4s t =;(2)PEGO S 四边形2 31568 8 t t =-+ + ,(05)t <<;(3)5 2t =时, PEGO S 四边形取得最大值;(4)16 5 t = 时,OE OQ ⊥. 【解析】 【分析】 (1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题. (2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可. (4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQ OC OG =,由此构建方程即可解决问题.

九年级数学锐角三角函数的专项培优练习题含答案

九年级数学锐角三角函数的专项培优练习题含答案 一、锐角三角函数 1.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号). 【答案】. 【解析】 试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案. 试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°, ∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°, ∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==, ∴BC=.故该船与B港口之间的距离CB的长为海里. 考点:解直角三角形的应用-方向角问题. 2.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O 于点E.

(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由; (2)如图2,过点E作⊙O的切线,交AC的延长线于点F. ①若CF=CD时,求sin∠CAB的值; ②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果) 【答案】(1)AE=CE;(2)①;②. 【解析】 试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于 AD=DC,根据垂直平分线的性质可得AE=CE; (2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得 ∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得 sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题. 试题解析:(1)AE=CE.理由: 连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC, ∴AE=CE; (2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线, ∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF. ①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC•3DC=,∴AE=DC,∵EC=AE, ∴EC=DC,∴sin∠CAB=sin∠CED===;

中考数学培优专题复习锐角三角函数练习题含答案解析

中考数学培优专题复习锐角三角函数练习题含答案解析 一、锐角三角函数 1.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O 于点E. (1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由; (2)如图2,过点E作⊙O的切线,交AC的延长线于点F. ①若CF=CD时,求sin∠CAB的值; ②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果) 【答案】(1)AE=CE;(2)①;②. 【解析】 试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于 AD=DC,根据垂直平分线的性质可得AE=CE; (2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得 ∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得 sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题. 试题解析:(1)AE=CE.理由: 连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC, ∴AE=CE; (2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线, ∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF.

中考数学备考之锐角三角函数压轴突破训练∶培优篇及详细答案

中考数学备考之锐角三角函数压轴突破训练∶培优篇及详细答案 一、锐角三角函数 1.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题: (1)当 t 为何值时,点 E 在 BAC 的平分线上? (2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式; (3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由; (4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由. 【答案】(1)4s t =;(2)PEGO S 四边形2 31568 8 t t =-+ + ,(05)t <<;(3)5 2t =时, PEGO S 四边形取得最大值;(4)16 5 t = 时,OE OQ ⊥. 【解析】 【分析】 (1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题. (2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可. (4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQ OC OG =,由此构建方程即可解决问题. 【详解】 (1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm , ∴22108-=6(cm ), ∵OD 垂直平分线段AC , ∴OC=OA=3(cm ),∠DOC=90°, ∵CD ∥AB ,

中考数学锐角三角函数(大题培优)及答案

60 中考数学锐角三角函数(大题培优)及答案 一、锐角三角函数 1.如图,山坡上有一棵树 AB ,树底部 B 点到山脚 C 点的距离 BC 为 6 3 米,山坡的坡角 为 30°.小宁在山脚的平地 F 处测量这棵树的高,点 C 到测角仪 EF 的水平距离 CF=1 米, 从 E 处测得树顶部 A 的仰角为 45°,树底部 B 的仰角为 20°,求树 AB 的高度.(参考数 值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36) 【答案】6.4 米 【解析】 解:∵ 底部 B 点到山脚 C 点的距离 BC 为 6 3 米,山坡的坡角为 30°. ∴ DC=BC•cos30°= = 6 3 ⨯ 3 2 = 9 米, ∵ CF=1 米, ∴ DC=9+1=10 米, ∴ GE=10 米, ∵ ∠ AEG=45°, ∴ AG=EG=10 米, 在直角三角形 BGF 中, BG=GF•tan20°=10×0.36=3.6 米, ∴ AB=AG -BG=10-3.6=6.4 米, 答:树高约为 6.4 米 首先在直角三角形 BDC 中求得 DC 的长,然后求得 DF 的长,进而求得 GF 的长,然后在直 角三角形 BGF 中即可求得 BG 的长,从而求得树高 2.如图,某无人机于空中 A 处探测到目标 B 、D 的俯角分别是 30︒、 ︒ ,此时无人机的飞 行高度 AC 为 60m ,随后无人机从 A 处继续水平飞行 30 3 m 到达 A ' 处. (1)求 之间的距离 (2)求从无人机 A ' 上看目标 的俯角的正切值.

∴AB==1=120(m) 2 DE5035 60 . 3.如图,在△ABC中,AB=7.5,AC=9,△S ABC=81 【答案】(1)120米;(2)23 5. 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过A'作A'E⊥BC交BC的延长线于E,连接A'D,于是得到A'E=AC=60,CE=AA'=303,在△Rt ABC中,求得DC=3 3AC=203,然后根据三角函数的定义即可得到结论. 【详解】 解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在△Rt ABC中,AC=60m, 60 AC sin30︒ (2)过A'作A'E⊥BC交BC的延长线于E,连接A'D, 则A'E=AC=60,CE=AA'=30 在△Rt ABC中,AC=60m,∠ADC=60°, ∴DC=3 AC=203 3 ∴DE=503 3, ∴tan∠A A'D=tan∠A'DC=A'E2 ==3 答:从无人机A'上看目标D的俯角的正切值是2 5 3. 【点睛】 本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键 4.动点P从A点出发,沿AB方向以每秒5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B点时,P、Q两点同时停止运动,以PQ为边作正△PQM

相关文档
最新文档