2021年导数的综合大题及其分类

2021年导数的综合大题及其分类
2021年导数的综合大题及其分类

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用.

欧阳光明(2021.03.07)

题型一 利用导数研究函数的单调性、极值与最值

题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论.

(1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论.

(2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值.

已知函数f (x )=x -1

x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ??

??

0,12,求

h (x 1)-h (x 2)的最小值.

[审题程序]

第一步:在定义域内,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值范围;

第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值. [规范解答] (1)由题意得F (x )=x -1

x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1

x 2,

令m (x )=x 2-ax +1,则Δ=a 2-4.

①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-4

2,

∴F (x )的单调递增区间为

?

????0,a -

a 2-42和? ??

??a +a 2-4

2,+∞,

F (x )的单调递减区间为?

??

??

a -

a 2-42,a +a 2-42. 综上,当-2≤a ≤2时,F (x )的单调递增区间为(0,+∞); 当a >2时,F (x )的单调递增区间为

?

????0,a -

a 2-42和? ??

??a +a 2-4

2,+∞, F (x )的单调递减区间为?

??

??

a -

a 2-42,a +a 2-42. (2)对h (x )=x -1

x +a ln x ,x ∈(0,+∞) 求导得,h ′(x )=1+1x 2+a x =x 2+ax +1

x 2

设h ′(x )=0的两根分别为x 1,x 2,则有x 1·x 2=1,x 1+x 2=-a ,

∴x 2=1x 1

,从而有a =-x 1-1x 1

.

H (x )=h (x )-h ? ??

??

1x

=x -1x +? ?

???-x -1x ln x -??????1x -x +? ????-x -1x ·

ln 1x =2??????

? ????-x -1x ln x +x -1x ,

H ′(x )=2? ??

??1x 2-1ln x =

2

1-x

1+x ln x

x 2

.

x ∈? ??

??0,12时,H ′(x )<0, ∴H (x )在? ??

??

0,12上单调递减,

H (x 1)=h (x 1)-h ? ??

??

1x 1=h (x 1)-h (x 2),

∴[h (x 1)-h (x 2)]min =H ? ??

??

12=5ln2-3.

[解题反思] 本例(1)中求F (x )的单调区间,需先求出F (x )的定义域,同时在解不等式F ′(x )>0时需根据方程x 2-ax +1=0的根的情况求出不等式的解集,故以判别式“Δ”的取值作为分类讨论的依据.在(2)中求出h (x 1)-h (x 2)的最小值,需先求出其解析式.由题可知x 1,x 2是h ′(x )=0的两根,可得到x 1x 2=1,x 1+x 2=-a ,从而将h (x 1)-h (x 2)只用一个变量x 1导出.从而得到H (x 1)=h (x 1)-h ? ??

??

1x 1,这样将所求问题转化为研究新

函数

H (x )=h (x )-h ? ????1x 在? ??

??0,12上的最值问题,体现转为与化归数学思想. [答题模板] 解决这类问题的答题模板如下:

[题型专练]

1.设函数f (x )=(1+x )2-2ln(1+x ). (1)求f (x )的单调区间;

(2)当0

[解] (1)f (x )的定义域为(-1,+∞). ∵f (x )=(1+x )2-2ln(1+x ),x ∈(-1,+∞), ∴f ′(x )=2(1+x )-2

1+x =2x x +2x +1.

由f ′(x )>0,得x >0;由f ′(x )<0,得-1

∴函数f (x )的单调递增区间为(0,+∞),单调递减区间为(-1,0). (2)由题意可知g (x )=(2-a )x -2ln(1+x )(x >-1), 则g ′(x )=2-a -2

1+x =

2-a x -a

1+x

.

∵00, 令g ′(x )=0,得x =a

2-a ,

∴函数

g (x )在? ????

0,a 2-a 上为减函数,在? ??

??a 2-a ,+∞上为增函数.

①当0

<3,即0

2时,在区间[0,3]上,

g (x )在? ????

0,a 2-a 上为减函数,在? ????a 2-a ,3上为增函数,

∴g (x )min =g ? ??

??a 2-a =a -2ln 22-a .

②当a 2-a ≥3,即3

2≤a <2时,g (x )在区间[0,3]上为减函数,

∴g (x )min =g (3)=6-3a -2ln4.

综上所述,当0

2-a ;

当3

2≤a <2时,g (x )min =6-3a -2ln4. 北京卷(19)(本小题13分)

已知函数f (x )=e x cos x ?x .

(Ⅰ)求曲线y = f (x )在点(0,f (0))处的切线方程; (Ⅱ)求函数f (x )在区间[0,π2

]上的最大值和最小值.

(19)(共13分)

解:(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0x f x x x f ''=--=. 又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.

(Ⅱ)设()e (cos sin )1x h x x x =--,则()e (cos sin sin cos )2e sin x x h x x x x x x '=---=-.

π(0,)2

x ∈时,()0h x '<, 所以()h x 在区间π

[0,]2上单调递减.

所以对任意

π(0,]2

x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间

π

[0,]2上单调递减. 因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ

()22

f =-.

21.(12分)

已知函数3()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;

(2)证明:()f x 存在唯一的极大值点0x ,且230()2e f x --<<.

21.解:

(1)()f x 的定义域为()0,

+∞ 设()g x =

ax -a -lnx ,则()()()≥f x =xg x ,f x 0等价于()

0≥g x

因为()()()()()1

1=0,0,故1=0,而,1=1,得1≥=-

-=g g x g'g'x a g'a a x

若a =1,则()11-g'x =x

.当0<x <1时,()()<0,g'x g x 单调递减;当x >1时,()g'x >0,()g x 单调递增.所以x=1

是()g x 的极小值点,故()()1=0≥g x g

综上,a=1

(2)由(1)知()

2ln ,'()22ln f x x x x x f x x x =--=--

设()1

22ln ,则'()2h x x x h x x

=--=-

当10,2x

??∈ ???时,()'<0h x ;当1,+2x ??∈∞ ???时,()'>0h x ,所以()h x 在10,2?? ???单调递减,在1,+2??

∞ ???

单调递增 又()

()21>0,<0,102h e h h -??= ???,所以()h x 在10,2?? ???有唯一零点x 0,在1,+2??

∞????

有唯一零点1,且当()

00,x x ∈时,

()>0h x ;当()0,1x x ∈时,()<0h x ,当()1,+x ∈∞时,()>0h x .

因为()()'f x h x =,所以x=x 0是f(x)的唯一极大值点

由()

()0

00000'0得ln 2(1),故=(1)f x x x f x x x ==--

由()0

0,1x

∈得()01

'<

4

f x 因为x=x 0是f(x)在(0,1)的最大值点,由()()

110,1,'0e f e --∈≠得 所以()2

-20<<2e

f x -

题型二 利用导数研究方程的根、函数的零点或图象交点

题型概览:研究方程根、函数零点或图象交点的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.

已知函数f (x )=(x +a )e x ,其中e 是自然对数的底数,a ∈R .

(1)求函数f (x )的单调区间;

(2)当a <1时,试确定函数g (x )=f (x -a )-x 2的零点个数,并说明理由. [审题程序]

第一步:利用导数求函数的单调区间; 第二步:简化g (x )=0,构造新函数; 第三步:求新函数的单调性及最值; 第四步:确定结果.

[规范解答] (1)因为f (x )=(x +a )e x ,x ∈R , 所以f ′(x )=(x +a +1)e x . 令f ′(x )=0,得x =-a -1.

当x变化时,f(x)和f′(x)的变化情况如下:

故f(x)的单调递减区间为(-∞,-a-1),单调递增区间为(-a-1,+∞).

(2)结论:函数g(x)有且仅有一个零点.

理由如下:

由g(x)=f(x-a)-x2=0,得方程x e x-a=x2,

显然x=0为此方程的一个实数解,

所以x=0是函数g(x)的一个零点.

当x≠0时,方程可化简为e x-a=x.

设函数F(x)=e x-a-x,则F′(x)=e x-a-1,

令F′(x)=0,得x=a.

当x变化时,F(x)和F′(x)的变化情况如下:

即F(x)的单调递增区间为(a,+∞),单调递减区间为(-∞,a).

所以F(x)的最小值F(x)min=F(a)=1-a.

因为a<1,所以F(x)min=F(a)=1-a>0,

所以对于任意x∈R,F(x)>0,

因此方程e x-a=x无实数解.

所以当x≠0时,函数g(x)不存在零点.

综上,函数g(x)有且仅有一个零点.

典例3

21.(12分)

已知函数3()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;

(2)证明:()f x 存在唯一的极大值点0x ,且230()2e f x --<<.

21.解:

(1)()f x 的定义域为()0,

+∞ 设()g x =

ax -a -lnx ,则()()()≥f x =xg x ,f x 0等价于()

0≥g x

因为()()()()()1

1=0,0,故1=0,而,1=1,得1≥=-

-=g g x g'g'x a g'a a x

若a =1,则()11-g'x =x

.当0<x <1时,()()<0,g'x g x 单调递减;当x >1时,()g'x >0,()g x 单调递增.所以x=1

是()g x 的极小值点,故()()1=0≥g x g

综上,a=1

(2)由(1)知()2ln ,'()22ln f x x x x x f x x x =--=--

设()1

22ln ,则'()2h x x x h x x

=--=-

当10,2x

??∈ ???时,()'<0h x ;当1,+2x ??∈∞ ???时,()'>0h x ,所以()h x 在10,2?? ???单调递减,在1,+2??

∞ ???

单调递增 又()

()21>0,<0,102h e h h -??= ???,所以()h x 在10,2?? ???有唯一零点x 0,在1,+2??

∞????

有唯一零点1,且当()

00,x x ∈时,

()>0h x ;当()0,1x x ∈时,()<0h x ,当()1,+x ∈∞时,()>0h x .

因为()()'f x h x =,所以x=x 0是f(x)的唯一极大值点

由()

()0

00000'0得ln 2(1),故=(1)f x x x f x x x ==--

由()0

0,1x

∈得()01

'<

4

f x 因为x=x 0是f(x)在(0,1)的最大值点,由()()

110,1,'0e f e --∈≠得 所以()2

-20<<2e

f x -

[解题反思] 在本例(1)中求f (x )的单调区间的关键是准确求出f ′(x ),注意到e x >0即可.(2)中由g (x )=0得x e x -

a =x 2,解此方程易将x 约去,从而产生丢解情况.研究e x -

a =x 的解转化为研究函数F (x )=e x -

a -x 的最值,从而确定F (x )零点,这种通过构造函数、研究函数的最值从而确定函数零点的题型是高考中热点题

型,要熟练掌握.

[答题模板] 解决这类问题的答题模板如下:

[题型专练]

2.(2017·浙江金华期中)已知函数f (x )=ax 3+bx 2+(c -3a -2b )x +d 的图象如图所示. (1)求c ,d 的值;

(2)若函数f (x )在x =2处的切线方程为3x +y -11=0,求函数f (x )的解析式;

(3)在(2)的条件下,函数y =f (x )与y =1

3f ′(x )+5x +m 的图象有三个不同的交点,求m 的取值范围. [解] 函数f (x )的导函数为f ′(x )=3ax 2+2bx +c -3a -2b . (1)由图可知函数f (x )的图象过点(0,3),且f ′(1)=0,

得?????

d =3,3a +2b +c -3a -2b =0,

解得?

????

d =3,

c =0.

(2)由(1)得,f (x )=ax 3+bx 2-(3a +2b )x +3, 所以f ′(x )=3ax 2+2bx -(3a +2b ).

由函数f (x )在x =2处的切线方程为3x +y -11=0,

得?????

f

2=5,

f ′

2=-3,

所以???

??

8a +4b -6a -4b +3=5,12a +4b -3a -2b =-3,

解得?????

a =1,

b =-6,

所以f (x )=x 3-6x 2+9x +3.

(3)由(2)知f (x )=x 3-6x 2+9x +3,所以f ′(x )=3x 2-12x +9. 函数y =f (x )与y =1

3f ′(x )+5x +m 的图象有三个不同的交点, 等价于x 3-6x 2+9x +3=(x 2-4x +3)+5x +m 有三个不等实根, 等价于g (x )=x 3-7x 2+8x -m 的图象与x 轴有三个交点. 因为g ′(x )=3x 2-14x +8=(3x -2)(x -4),

x ????-∞,23 23 ???

?23,4 4 (4,+∞)

g ′(x ) +

0 -

0 + g (x )

极大值

极小值

g ? ??

??23=68

27-m ,g (4)=-16-m , 当且仅当???

g ? ????23=6827-m >0,g 4=-16-m <0

时,g (x )图象与x 轴有三个交点,解得-16

??-16,6827. 21.(12分)

已知函数)f x =

(a e 2x +(a ﹣2) e x

﹣x . (1)讨论()f x 的单调性;

(2)若()f x 有两个零点,求a 的取值范围.

21.解:(1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)x x x x f x ae a e ae e '=+--=-+,(十字相乘法) (ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.

当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.

(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.

(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a

-=-+.(观察特殊值1) ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点;

②当(1,)a ∈+∞时,由于11ln 0a a

-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a

-+<,即(ln )0f a -<.

又422(2)e (2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.

设正整数0n 满足03ln(1)n a

>-,则0

0000000()e (e 2)e 20n

n n n f n a a n n n =+-->->->.

由于3ln(1)ln a a

->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1). 题型三 利用导数证明不等式

题型概览:证明f (x )

(2017·陕西西安三模)已知函数f (x )=e x

x .

(1)求曲线y =f (x )在点

P ? ??

??

2,e 22处的切线方程; (2)证明:f (x )>2(x -ln x ). [审题程序]

第一步:求f ′(x ),写出在点P 处的切线方程;

第二步:直接构造g (x )=f (x )-2(x -ln x ),利用导数证明g (x )min >0.

[规范解答] (1)因为f (x )=e x x ,所以f ′(x )=e x ·x -e x x 2=e x x -1x 2,f ′(2)=e 2

4,又切点为? ??

??2,e 22,所以切线方程为y -e 22=e 2

4(x -2),即e 2x -4y =0.

(2)证明:设函数g (x )=f (x )-2(x -ln x )=e x

x -2x +2ln x ,x ∈(0,+∞), 则g ′(x )=e x x -1x 2

-2+2

x =e x -2x

x -1

x 2

,x ∈(0,+∞).

设h (x )=e x -2x ,x ∈(0,+∞), 则h ′(x )=e x -2,令h ′(x )=0,则x =ln2.

当x ∈(0,ln2)时,h ′(x )<0;当x ∈(ln2,+∞)时,h ′(x )>0.

所以h (x )min =h (ln2)=2-2ln2>0,故h (x )=e x -2x >0. 令g ′(x )=

e x -2x

x -1

x 2

=0,则x =1.

当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0.

所以g (x )min =g (1)=e -2>0,故g (x )=f (x )-2(x -ln x )>0,从而有f (x )>2(x -ln x ).

[解题反思] 本例中(2)的证明方法是最常见的不等式证明方法之一,通过合理地构造新函数g (x ).求g (x )的最值来完成.在求g (x )的最值过程中,需要探讨g ′(x )的正负,而此时g ′(x )的式子中有一项e x -2x 的符号不易确定,这时可以单独拿出e x -2x 这一项,再重新构造新函数h (x )=e x -2x (x >0),考虑h (x )的正负问题,此题看似简单,且不含任何参数,但需要两次构造函数求最值,同时在(2)中定义域也是易忽视的一个方向.

[答题模板] 解决这类问题的答题模板如下:

[题型专练]

3.(2017·福建漳州质检)已知函数f (x )=a e x

-b ln x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =? ??

??1e -1x +1.

(1)求a ,b ; (2)证明:f (x )>0.

[解] (1)函数f (x )的定义域为(0,+∞). f ′(x )=a e x

-b x ,由题意得f (1)=1e ,f ′(1)=1

e -1,

所以???

a e =1e ,

a e -

b =1

e -1,

解得???

a =1e 2,

b =1.

(2)由(1)知f (x )=1e 2·e x

-ln x . 因为f ′(x )=e

x -2

-1

x 在(0,+∞)上单调递增,又f ′(1)<0,f ′(2)>0,

所以f ′(x )=0在(0,+∞)上有唯一实根x 0,且x 0∈(1,2). 当x ∈(0,x 0)时,f ′(x )<0,当x ∈(x 0,+∞)时,f ′(x )>0, 从而当x =x 0时,f (x )取极小值,也是最小值. 由f ′(x 0)=0,得

e x 0-

2=

1

x 0,则x 0-2=-ln x 0.

故f (x )≥f (x 0)=e x 0-

2-ln x 0=1x 0

+x 0-2>21

x 0·

x 0-2=0,所以f (x )>0. 4、【2017高考三卷】21.(12分)已知函数()f x =x ﹣1﹣a ln x .

(1)若()0f x ≥ ,求a 的值;

(2)设m 为整数,且对于任意正整数n ,21111++1+)2

2

2

n ()(1)(﹤m ,求m 的最小值.

21.解:(1)()f x 的定义域为()0,+∞.

①若0a ≤,因为11=-+2<022

f a ln ?? ???

,所以不满足题意;

②若>0a ,由()1a x a f 'x x

x

-=-=知,当()0x ,a ∈时,()<0f 'x ;当(),+x a ∈∞时,()>0f 'x ,所以()f x 在()0,a 单调递

减,在(),+a ∞单调递增,故x=a 是()f x 在()0,+x ∈∞的唯一最小值点. 由于()10f =,所以当且仅当a =1时,()0f x ≥. 故a =1

(2)由(1)知当()1,+x ∈∞时,1>0x ln x --

令1=1+2n x 得11

1+<22

n n ln ?? ???,从而 故21111+1+1+<222n e ????????? ??? ??

??

?

?

?

而231111+1+1+>2222??????

??????

??

??

?

,所以m 的最小值为3. 21.(12分)

已知函数()f x =ln x +ax 2+(2a +1)x . (1)讨论()f x 的单调性;

*欧阳光明*创编 2021.03.07 (2)当a ﹤0时,证明

3

()24f x a

≤--.

【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0

(+∞-a

单调递减;(2)详见解析

题型四 利用导数研究恒成立问题

题型概览:已知不等式恒成立求参数取值范围,构造函数,直接把问题转化为函数的最值问题;若参数不便于分离,或分离以后不便于求解,则考虑直接构造函数法,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围.

已知函数f (x )=12ln x -mx ,g (x )=x -a

x (a >0).

(1)求函数f (x )的单调区间;

(2)若m =1

2e 2,对?x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立,求实数a 的取值范围. [审题程序]

第一步:利用导数判断f (x )的单调性,对m 分类讨论;

第二步:对不等式进行等价转化,将g (x 1)≥f (x 2)转化为g (x )min ≥f (x )max ; 第三步:求函数的导数并判断其单调性进而求极值(最值); 第四步:确定结果.

[规范解答] (1)f (x )=12ln x -mx ,x >0,所以f ′(x )=1

2x -m , 当m ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.

当m >0时,由f ′(0)=0得x =1

2m ;由???

??

f ′x >0,

x >0

得0

2m ;由???

??

f ′x <0,

x >0

得x >1

2m .

综上所述,当m ≤0时,f ′(x )的单调递增区间为(0,+∞); 当

m >0时,f (x )的单调递增区间为? ????

0,12m ,单调递减区间为? ??

??12m ,+∞.

(2)若m =12e 2,则f (x )=12ln x -1

2e 2x .

对?x1,x2∈[2,2e2]都有g(x1)≥f(x2)成立,等价于对?x∈[2,2e2]都有g(x)min≥f(x)max,

由(1)知在[2,2e2]上f(x)的最大值为f(e2)=1 2,

g′(x)=1+a

x2>0(a>0),x∈[2,2e

2],函数g(x)在[2,2e2]上是增函数,g(x)min=g(2)=2-

a

2,由2-

a

2≥

1

2,得

a≤3,又a>0,所以a∈(0,3],所以实数a的取值范围为(0,3].

[解题反思]本例(1)的解答中要注意f(x)的定义域,(2)中问题的关键在于准确转化为两个函数f(x)、g(x)的最值问题.本题中,?x1,x2有g(x1)≥f(x2)?g(x)min≥f(x)max.若改为:?x1,?x2都有g(x1)≥f(x2),则有g(x)max≥f(x)max.若改为:?x1,?x2都有g(x1)≥g(x2),则有g(x)min≥f(x)min要仔细体会,转化准确.[答题模板]解决这类问题的答题模板如下:

[题型专练]

4.已知f(x)=x ln x,g(x)=-x2+ax-3.

(1)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;

(2)证明:对一切x∈(0,+∞),ln x>1

e x-2

e x恒成立.

[解](1)由题意知2x ln x≥-x2+ax-3对一切x∈(0,+∞)恒成立,

则a≤2ln x+x+3 x,

设h(x)=2ln x+x+3

x(x>0),

则h′(x)=x+3x-1

x2,

①当x∈(0,1)时,h′(x)<0,h(x)单调递减,

②当x∈(1,+∞)时,h′(x)>0,h(x)单调递增,

所以h(x)min=h(1)=4,对一切x∈(0,+∞),2f(x)≥g(x)恒成立,所以a≤h(x)min=4.

即实数a的取值范围是(-∞,4].

(2)证明:问题等价于证明x ln x >x e x -2

e (x ∈(0,+∞)). 又

f (x )=x ln x ,f ′(x )=ln x +1, 当x ∈? ????

0,1e 时,f ′(x )<0,f (x )单调递减;

x ∈? ??

??1e ,+∞时,f ′(x )>0,f (x )单调递增,所以f (x )min =f ? ??

??1e =-1

e . 设m (x )=x e x -2

e (x ∈(0,+∞)), 则m ′(x )=1-x

e x ,

易知m (x )max =m (1)=-1

e ,

从而对一切x ∈(0,+∞),ln x >1e x -2

e x 恒成立. ②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,

所以h (x )min =h (1)=4,对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4.

即实数a 的取值范围是(-∞,4]. 题型五:二阶导主要用于求函数的取值范围

23.(12分)已知函数f (x )=(x+1)lnx ﹣a (x ﹣1).

(I )当a=4时,求曲线y=f (x )在(1,f (1))处的切线方程; (II )若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围. 【解答】解:(I )当a=4时,f (x )=(x+1)lnx ﹣4(x ﹣1). f (1)=0,即点为(1,0),函数的导数f ′(x )=lnx+(x+1)?

﹣4,

则f ′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f ′(1)=﹣2, 则曲线y=f (x )在(1,0)处的切线方程为y=﹣2(x ﹣1)=﹣2x+2;

(II)∵f(x)=(x+1)lnx﹣a(x﹣1),

∴f′(x)=1++lnx﹣a,∴f″(x)=,

∵x>1,∴f″(x)>0,

∴f′(x)在(1,+∞)上单调递增,

∴f′(x)>f′(1)=2﹣a.

①a≤2,f′(x)>f′(1)≥0,

∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;

②a>2,存在x0∈(1,+∞),f′(x0)=0,

函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,

由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.

综上所述,a≤2.

23.(12分)已知函数f(x)=(x+1)lnx﹣a(x﹣1).

(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.

【解答】解:(I)当a=4时,f(x)=(x+1)lnx﹣4(x﹣1).

f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)?﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣2,则曲线y=f(x)在(1,0)处的切线方程为y=﹣2(x﹣1)=﹣2x+2;(II)∵f(x)=(x+1)lnx﹣a(x﹣1),

∴f′(x)=1++lnx﹣a,∴f″(x)=,

∵x>1,∴f″(x)>0,

∴f′(x)在(1,+∞)上单调递增,

∴f′(x )>f′(1)=2﹣a . ①a≤2,f′(x )>f′(1)≥0,

∴f (x )在(1,+∞)上单调递增,∴f (x )>f (1)=0,满足题意; ②a >2,存在x 0∈(1,+∞),f′(x 0)=0,

函数f (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增, 由f (1)=0,可得存在x 0∈(1,+∞),f (x 0)<0,不合题意. 综上所述,a≤2.

题型六:求含参数求知范围

此类问题一般分为两类:一、也可分离变量,构造函数,直接把问题转化为函数的最值问题.此法适用于方便分离参数并可求出函数最大值与最小值的情况,若题中涉及多个未知参量需分离出具有明确定义域的参量函数求出取值范围并进行消参,由多参数降为单参在求出参数取值范围。二、未能将参数完全分离一类,需要根据题意对参数进行分类讨论,以求出参数取值范围

已知函数()f x =e x (e x ﹣a )﹣a 2x . (1)讨论()f x 的单调性;

(2)若()0f x ≥,求a 的取值范围.

【解析】(1)函数()f x 的定义域为(,)-∞+∞,22()2(2)()x x x x f x e ae a e a e a '=--=+-, ①若0a =,则2()x f x e =,在(,)-∞+∞单调递增. ②若0a >,则由()0f x '=得ln x a =.

当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. ③若0a <,则由()0f x '=得ln()2

a x =-.

当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2

a -+∞单调递增.

(2)①若0a =,则2()x f x e =,所以()0f x ≥.

②若0a >,则由(1)得,当ln x a =时,()f x 取得最小值,最小值为2(ln )ln f a a a =-.从而当且仅当2ln 0a a -≥,即1a ≤时,()0f x ≥.

③若0a <,则由(1)得,当ln()2a x =-时,()f x 取得最小值,最小值为23(ln())[ln()]242

a a f a -=--.从而当且仅当

2

3[ln()]042a

a --≥,即3

42e a ≥-时()0f x ≥.

综上,a 的取值范围为3

4

[2e ,1]-. 21.(12分)

设函数2()(1)x f x x e =-. (1)讨论()f x 的单调性;

(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围. 【答案】(Ⅰ)在(,12)-∞-- 和(12,)-++∞单调递减,在(12,12)---+单调递增(Ⅱ)[1,)+∞

【解析】

试题分析:(1)先求函数导数,再求导函数零点,列表分析导函数符号确定单调区间(2)对a 分类讨论,当a ≥1时,()(1)(1)11x f x x x e x ax =-+≤+≤+,满足条件;当0a ≤时,取20000051

,()(1)(1)112

x f x x x ax -=>-+=>+,当

a

1

05412

a x --=

(2) ()(1)(1)x

f x x x e =-+

当a ≥1时,设函数h (x )=(1-x )e x ,h ’(x )= -xe x <0(x >0),因此h (x )在[0,+∞)单调递减,而h (0)=1,

故h (x )≤1,所以

f (x )=(x +1)h (x )≤x +1≤ax +1

当0<a <1时,设函数g (x )=e x -x -1,g ’(x )=e x -1>0(x >0),所以g (x )在在[0,+∞)单调递增,而g (0)=0,故e x ≥x +1

当0<x <1,2()(1)(1)f x x x >-+,22(1)(1)1(1)x x ax x a x x -+--=---,取01

2

x =

则2000000(0,1),(1)(1)0,()1x x x ax f x ax ∈-+-=?+故

当0a ≤时,取2000001

,()(1)(1)112

x f x x x ax =

>-+=>+ 综上,a 的取值范围[1,+∞)

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y =的定义域为( C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞,, B .(1)(01)-∞-, , C .(1)(1)-∞-+∞, , D .(10)(01)-,, 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A B C D

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

导数综合大题分类

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数f (x )=x -1 x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ?????0,12,求h (x 1)-h (x 2)的最小 值. [审题程序] 第一步:在定义域,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值围; 第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值. [规解答] (1)由题意得F (x )=x -1 x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1 x 2 ,

2017至2018年北京高三模拟分类汇编之导数大题

2017至2018年北京高三模拟分类汇编之导数大题,20创新题 精心校对版 △注意事项: 1.本系列试题包含2017年-2018年北京高考一模和二模真题的分类汇编。 2.本系列文档有相关的试题分类汇编,具体见封面。 3.本系列文档为北京双高教育精心校对版本 4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科 一 、解答题(本大题共22小题,共0分) 1.(2017北京东城区高三一模数学(文))设函数ax x x x f +-=232131)(,R a ∈. (Ⅰ)若2=x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性; (Ⅱ)已知函数3221)()(2+-=ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围; (Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由. 2.(2017北京丰台区高三一模数学(文)) 已知函数1()e x x f x +=,A 1()x m ,,B 2()x m ,是曲线()y f x =上两个不同的点. (Ⅰ)求()f x 的单调区间,并写出实数m 的取值范围; (Ⅱ)证明:120x x +>. 3.(2017北京丰台区高三二模数学(文)) 已知函数ln ()x f x ax =(0)a >. (Ⅰ)当1a =时,求曲线()y f x =在点(1(1)),f 处的切线方程; 姓名:__________班级:__________考号:__________ ●-------------------------密--------------封------------ --线------ --------内------ ------- -请------- -------不-------------- 要--------------答--------------题-------------------------●

2009至2018年北京高考真题分类汇编之导数大题

2009至2018年北京高考真题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2009年-2018年北京高考真题的分类汇编。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共10小题,共0分)1.(2013年北京高考真题数学(文))已知函数2()sin cos f x x x x x (1)若曲线()y f x 在点(,())a f a 处与直线y b 相切,求a 与b 的值。(2)若曲线()y f x 与直线y b 有两个不同的交点,求b 的取值范围。2.(2012年北京高考真题数学(文))已知函数2()1(0)f x ax a ,3()g x x bx .(Ⅰ)若曲线()y f x 与曲线()y g x 在它们的交点(1,)c 处具有公共切线,求,a b 的值;(Ⅱ)当3a ,9b 时,若函数()()f x g x 在区间[,2]k 上的最大值为28,求k 的取值范围.3.(2011年北京高考真题数学(文))已知函数()()x f x x k e . (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值. 4.(2009年北京高考真题数学(文))姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y = C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞ ,, B .(1)(01)-∞- , , C .(1)(1)-∞-+∞ ,, D .(10)(01)- , , 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A . B . C . D .

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时 a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

(word完整版)高中数学导数练习题(分类练习)讲义

导数专题 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1 (1))M f ,处的切线方程是1 22 y x =+,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1 (1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线32 242y x x x =--+在点(1 3)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(1 3)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。

解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02 030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在() 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴ 2632302 0020+-=+-x x x x , 整理得:03200=-x x ,解得:2 3 0=x 或00=x (舍),此时,830- =y ,41-=k 。所以,直线l 的方程为x y 4 1 -=,切点坐标是?? ? ??-83,23。 答案:直线l 的方程为x y 41- =,切点坐标是?? ? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 解析:函数()x f 的导数为()163'2 -+=x ax x f 。对于R x ∈都有()0'a 时,函数()x f 在R 上存在增区间。所以,当3->a 时,函数()x f 在 R 上不是单调递减函数。 综合(1)(2)(3)可知3-≤a 。

(完整word版)北京高考导数大题分类.doc

导数大题分类 一、含参数单调区间的求解步骤: ① 确定定义域(易错点) ②求导函数 f ' (x) ③对 f ' ( x) 进行整理,能十字交叉的十字交叉分解,若含分式项,则进行通分整理 . ④ f ' ( x) 中 x 的最高次系数是否为 0,为 0 时求出单调区间 . 例 1: f ( x) a x 3 a 1 x 2 x ,则 f ' ( x) (ax 1)( x 1) 要首先讨论 a 0 情况 3 2 ⑤ f ' ( ) 最高次系数不为 0,讨论参数取某范围的值时, 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递增; x 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递减 . 例 2: f (x) a x 2 ln x ,则 f ' ( x) = ax 2 1 , ( x 0) ,显然 a 0时 f ' ( x) 0 ,此时 f (x) 的 2 x 单调区间为 (0, ) . ⑥ f ' ( ) 最高次系数不为 0,且参数取某范围的值时,不会出现 f ' (x) 0 或者 f ' ( x) 0 的情况 x 求出 f ' ( x) =0 的根,(一般为两个) x 1 , x 2 ,判断两个根是否都在定义域内 . 如果只有一根在定义域 内,那么单调区间只有两段 . 若两根都在定义域内且一根为常数,一根含参数 . 则通过比较两根大小分三种情况讨论单调区间, 即 x 1 x 2 , x 1 x 2 , x 1 x 2 . 例 3: 若 f ( x) a x 2 (a 1)x ln x, (a 0) ,则 f ' ( x) ( ax 1)( x 1) , (x 0) 解方程 f ' ( x) 2 1 x 0 得 x 1 1, x 2 a a 0时,只有 x 1 1 在定义域内 . a 0 时 , 比较两根要分三种情况: a 1,0 a 1, a 1 用所得的根将定义域分成几个不同的子区间,讨论 f ' ( x) 在每个子区间内的正负,求得 f (x) 的单调区间。

高考导数大题30道(2020年整理).doc

导数大题 1 .已知函数()b ax x x f ++=2 3的图象在点P (1,0)处的切线与直线03=+y x 平行? (1)求常数a 、b 的值; (2)求函数()x f 在区间[]t ,0上的最小值和最大值(0>t )? 2 .已知函数R a ax x x f ∈+-=,)( 3 (1)若)(x f 在),1[+∞上为单调减函数,求实数a 取值范围; (2)若,12=a 求)(x f 在[-3,0]上的最大值和最小值? 3 .设函数x e x x f 22 1)(=. (1)求函数)(x f 的单调区间; (2)若当]2,2[-∈x 时,不等式m x f <)(恒成立,求实数m 的取值范围. 4 .已知函数.),2,1()(3)(3 l P P x f y x x x f 作直线过点上一点及-=-= (1)求使直线)(x f y l =和相切且以P 为切点的直线方程; (2)求使直线)(x f y l =和相切且切点异于P 的直线方程)(x g y =?

()I 求()f x 的单调区间; ()II 若()f x 在1x =-处取得极大值,直线y=m 与()y f x =的图象有三个不同的交点,求m 的取值范围? 7 .已知函数2 ()ln f x a x bx =-图象上一点(2,(2))P f 处的切线方程为22ln 23++-=x y . (Ⅰ)求b a ,的值; (Ⅱ)若方程()f x m +=m 的取值范围(其中e 为自然对数的底数); 8 .已知函数21 2 ()()ln f x a x x =-+.(R a ∈) (1)当a =1时,求()f x 在区间[1,e ]上的最大值和最小值; (2)若在区间(1,+∞)上,函数()f x 的图象恒在直线2y ax =下方,求a 的取值范围。 10.已知函数2 ()sin 2(),()()2f x x b x b R F x f x =+-∈=+,且对于任意实数x ,恒有(5)(5)F x F x -=-? ⑴求函数)(x f 的解析式; ⑵已知函数()()2(1)ln g x f x x a x =+++在区间(0,1)上单调,求实数a 的取值范围; ⑶讨论函数21()ln(1)()2 h x x f x k =+- -零点的个数?

近五年高考试题分类汇编-导数部分(附答案解析)

2018年全国高考试题分类汇编-导数部分(含解析) 1.(2018·全国卷I 高考理科·T5)同(2018·全国卷I 高考文科·T6)设函数f (x )=x3+(a -1)x2+ax.若f (x )为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为( ) A.y=-2x B.y=-x C.y=2x D.y=x 2.(2018·全国卷II 高考理科·T13)曲线y=2ln(x+1)在点(0,0)处的切线方程为 3.(2018·全国卷II 高考文科·T13)曲线y=2lnx 在点(1,0)处的切线方程为 4.(2018·全国Ⅲ高考理科·T14)曲线y=(ax +1)ex 在点(0,1)处的切线的斜率为-2,则a= . 5.(2018·天津高考文科·T10)已知函数f(x)=exlnx,f ′(x)为f(x)的导函数,则f ′(1)的值为 . 6.(2018·全国卷I 高考理科·T16)已知函数f (x )=2sinx+sin2x,则f (x )的最小值是 . 7.(2017·全国乙卷文科·T14)曲线y=x 2 + 1 x 在点(1,2)处的切线方程为 . 8.(2017·全国甲卷理科·T11)若x=-2是函数f (x )=(2x +ax-1)1x e -的极值点,则f (x )的极小值为 ( ) A.-1 B.-23e - C.53e - D.1 9.(2017 10.(2017递增,则称f (x )A.f (x )=2-x 11.(2017数a 12.(2017则称f (x )具有M ①f (x )=2-x ;②f (x

13.(2017·全国乙卷理科·T16)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O.D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3 )的最大值为 . 14.(2017·天津高考文科·T10)已知a ∈R ,设函数f (x )=ax-lnx 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为 . 15.(2016·全国卷Ⅰ高考文科·T12)若函数f (x )=x-1 3 sin2x+asinx 在(-∞,+∞)上单调递增,则a 的取值范围是( ) A.[-1,1] B.11,3 ? ? -?? ?? C.11,33??- ???? D.11,3? ? --???? 16.(2016·四川高考理科·T9)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的 切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 17.(2016·四川高考文科·T6)已知a 为函数f (x )=x 3 -12x 的极小值点,则a=( ) A.-4 B.-2 C.4 D.2 18.(2016·四川高考文科·T10)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的切线,l 1 与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 ( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 19.(2016·山东高考文科·T10)同(2016·山东高考理科·T10) 若函数y=f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f (x )具有T 性质.下列函数中具有T 性质的是 ( ) A.y=sinx B.y=lnx C.y=e x D.y=x 3 20.(2016·全国卷Ⅱ理科·T16)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b= .

2017年高考真题分类汇编(理数)专题2导数(解析版)

2017年高考真题分类汇编(理数):专题2 导数 一、单选题(共3题;共6分) 1、(2017?浙江)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是() A、 B、 C、 D、 2、(2017?新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为() A、﹣1 B、﹣2e﹣3 C、5e﹣3 D、1 3、(2017?新课标Ⅲ)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=() A、﹣ B、 C、 D、1 二、解答题(共8题;共50分)

4、(2017?浙江)已知函数f(x)=(x﹣)e﹣x(x≥ ). (Ⅰ)求f(x)的导函数; (Ⅱ)求f(x)在区间[ ,+∞)上的取值范围. 5、(2017?山东)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(13分) (Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.6、(2017?北京卷)已知函数f(x)=e x cosx﹣x.(13分) (1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间[0,]上的最大值和最小值. 7、(2017·天津)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个 零点x0, g(x)为f(x)的导函数. (Ⅰ)求g(x)的单调区间; (Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0, 2],满足| ﹣x0|≥ . 8、(2017?江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (Ⅰ)求b关于a的函数关系式,并写出定义域; (Ⅱ)证明:b2>3a; (Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围. 9、(2017?新课标Ⅰ卷)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(12分) (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 10、(2017?新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0. (Ⅰ)求a; (Ⅱ)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 11、(2017?新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx. (Ⅰ)若 f(x)≥0,求a的值; (Ⅱ)设m为整数,且对于任意正整数n,(1+ )(1+ )…(1+ )<m,求m的最小值.

2019年高考文科数学导数及其应用分类汇编

导数及其应用 1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 【答案】C 【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-' 则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C . 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b ,

(完整版)导数的综合大题及其分类.(可编辑修改word版)

a - a 2-4 2 a + a 2-4 2 导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1) 单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点 的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2) 极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3) 最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极 值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数 f (x )=x 1 g (x )=a ln x (a ∈R ). - , x (1) 当 a ≥-2 时,求 F (x )=f (x )-g (x )的单调区间; (2) 设 h (x )=f (x )+g (x ),且 h (x )有两个极值点为 x ,x ,其中 x ∈ 1 ,求 h (x )-h (x )的最 1 2 1 (0, ] 1 2 2 小值. [审题程序] 第一步:在定义域内,依据 F ′(x )=0 根的情况对 F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立 x 1、x 2 及 a 间的关系及取值范围; 第四步:通过代换转化为关于 x 1(或 x 2)的函数,求出最小值. [规范解答] (1)由题意得 F (x )=x 1 a ln x , - - x x 2-ax +1 其定义域为(0,+∞),则 F ′(x )= , x 2 令 m (x )=x 2-ax +1,则 Δ=a 2-4. ①当-2≤a ≤2 时,Δ≤0,从而 F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞); ②当 a >2 时,Δ>0,设 F ′(x )=0 的两根为 x 1= ,x 2= ,

2017年北京高三模拟题分类汇编之导数大题

2017年北京高三模拟题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2017北京市各城区一模二模真题。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共12小题,共0分)1.(2017北京东城区高三一模数学(文))设函数ax x x x f 232131)(,R a .(Ⅰ)若2x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性;(Ⅱ)已知函数3221)()(2ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围;(Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由.2.(2017北京丰台区高三一模数学(文))已知函数1()e x x f x ,A 1()x m ,,B 2()x m ,是曲线()y f x 上两个不同的点. (Ⅰ)求()f x 的单调区间,并写出实数m 的取值范围;(Ⅱ)证明:120x x . 3.(2017北京丰台区高三二模数学(文))已知函数ln ()x f x ax (0)a . (Ⅰ)当1a 时,求曲线()y f x 在点(1(1)),f 处的切线方程;姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

高考导数大题大全理科答案

一、解答题 1. 解:(Ⅰ) 函数()f x 的定义域为(0,)+∞,'11 2()e ln e e e .x x x x a b b f x a x x x x --=+-+ 由题意可得' (1)2,(1) e.f f ==故1,2a b ==. (Ⅱ)由(Ⅰ)知1 2e ()e ln ,x x f x x x -=+ 从而()1f x >等价于2 ln e .e x x x x ->- 设函数()ln g x x x =,则()1ln g x x '=+,所以当1 (0,)e x ∈时,' ()0g x <; 当1 (,)e x ∈+∞时,' ()0g x >,故()g x 在1(0,)e 单调递减,在1(,)e +∞单调递增, 从而()g x 在(0,)+∞的最小值为1 1().e e g =-. 设函数2 ()e e x h x x -=-,则'()e (1)x h x x -=-,所以当(0,1)x ∈时,'()0h x >; 当(1,)x ∈+∞时,' ()0h x <,故()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而()h x 在(0,)+∞的最大值为1(1)e h =- . 综上,当0x >时,()()g x h x >,即()1f x >. 2. 解题指南(1)根据导数公式求出函数的导数,利用分类讨论思想求解;(2)根据函数的单调性以及函数极值与导数的关系式确定函数的极值点,代入函数中求解. 解析(1)2/ 22 2(2)24(1) ()1(2)(1)(2)a x x ax a f x ax x ax x +-+-=-=++++ (*) 当1a ≥时,/ ()0f x >,此时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,由/ ()0f x = 得1 x = (2x =-舍去). 当1(0,)x x ∈时,/()0f x <;当1(,)x x ∈+∞时,/ ()0f x >. 故()f x 在区间1(0,)x 上单调递减,在区间1(,)x +∞上单调递增. 综上所述,当1a ≥时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,()f x 在区间(0, 上单调递减,在区间)+∞上单调递增. 由(*)式知,当1a ≥时,/ ()0f x >,此时()f x 不存在极值点,因而要使得()f x 有两个极值点, 必有01a <<.又()f x 的极值点只可能是1 x = 和2x =-,且由定义可知,1 x a >- 且2x ≠- ,所以1a ->- 且2-≠-,解得1 2 a ≠- 此时,由(*)式易知,12,x x 分别是()f x 的极小值和极大值点,而 令21a x -=,则01a <<且12a ≠-知:当102 a <<时,10x -<<;当112a <<时,01x <<. 记2 2 ()ln 2g x x x =+-, (Ⅰ)当10x -< <时,2()2ln()2g x x x =-+-,所以/22 2222 ()0x g x x x x -=-=< 因此,()g x 在区间(1,0)-上单调递减,从而()(1)40g x g <-=-<,故当1 02 a << 时, 12()()0f x f x +<. (Ⅱ)当01x <<时,2()2ln 2g x x x =+ -,所以/222222 ()0x g x x x x -=-=< 因此,()g x 在区间(0,1)上单调递减,从而()(1)0g x g >=,故当时 1 12 a <<,12()()0f x f x +>. 综上所述,满足条件的a 的取值范围为1 (,1)2. 3. (1)证明:因为对任意x ∈R ,都有() ()e e e e ()x x x x f x f x -----=+=+=,所以f (x )是R 上的偶函数. (2)解:由条件知(e e 1)e 1x x x m --+-≤-在(0,+∞)上恒成立. 令t = e x (x >0),则t >1,所以m ≤211 11111 t t t t t -- =--+-++-对于任意t >1成立. 因为11111t t -+ +≥- = 3,所以1113111 t t - ≥--++-, 当且仅当t = 2,即x = ln2时等号成立.

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

导数复习经典例题分类(含答案)

导数解答题题型分类之拓展篇(一) 编 制:王 平 审 阅:朱 成 2014-05-31 题型一:最常见的关于函数的单调区间;极值;最值;不等式恒成立; 经验1:此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到几个根;第二步:列表如下;第三步:由表可知; 经验2:不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种:第一 种:变更主元(即关于某字母的一次函数);题型特征(已知谁的范围就把谁作为主元); 第二种:分离变量求最值(请同学们参考例5); 第三种:关于二次函数的不等式恒成立; 第四种:构造函数求最值;题型特征()()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立) ;参考例4; 例1.已知函数321()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,22()3 f x a ->恒成立,求a 的取值范围. 例2.设2 2(),1 x f x x = +()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域;

(2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例3.已知函数32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 32 6()(1)3(0)2 t g x x x t x t -=+ -++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例4.已知定义在R 上的函数32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围.

相关文档
最新文档