双语-第三章-Solution of Plane Problems in Cartesian Coordinates

合集下载

6 楔形体受重力和液体压力解析

6 楔形体受重力和液体压力解析

3—3 位移分量的求出
Determination of Displacments
Bending of a Simple Beam Under Uniform Loads
3—4 简支梁受均布荷载
3—5 楔形体受重力和液体压力
Triangular Gravity Wall
3.5 TRIANGULAR GRAVITY WALL
x

gy g
y
Exp. Consider a dam or a retaining wall with triangular section subjected to the action of gravity and the pressure of impounded liquid. Let the density of the wall material be and that of the liquid be .
Y=g
x 2 Yy 6ax 2by gy x 2 xy 2bx 2cy xy
2
These expressions have already satisfied the differential equations of equilibrium and the compatibility equation. x It remains to inspect whether the boundary conditions can also be satisfied by proper values of the arbitrary gy constants a, b, c, d.
第三章 平面问题的直角坐标解答
Solution of Plane Problems in Rectangular Coordinates

南航双语矩阵论 matrix theory第三章部分题解

南航双语矩阵论 matrix theory第三章部分题解

Solution Key to Some Exercises in Chapter 3 #5. Determine the kernel and range of each of the following linear transformations on 2P(a) (())'()p x xp x σ=(b) (())()'()p x p x p x σ=- (c) (())(0)(1)p x p x p σ=+Solution (a) Let ()p x ax b =+. (())p x ax σ=.(())0p x σ= if and only if 0ax = if and only if 0a =. Thus, ker(){|}b b R σ=∈The range of σis 2()P σ={|}ax a R ∈ (b) Let ()p x ax b =+. (())p x ax b a σ=+-.(())0p x σ= if and only if 0ax b a +-= if and only if 0a =and 0b =. Thus, ker(){0}σ=The range of σis 2()P σ=2{|,}P ax b a a b R +-∈=(c) Let ()p x ax b =+. (())p x bx a b σ=++.(())0p x σ= if and only if 0bx a b ++= if and only if 0a =and 0b =. Thus, ker(){0}σ=The range of σis 2()P σ=2{|,}P bx a b a b R ++∈= 备注: 映射的核以及映射的像都是集合,应该以集合的记号来表达或者用文字来叙述. #7. Let be the linear mapping that maps 2P into 2R defined by10()(())(0)p x dx p x p σ⎛⎫⎪= ⎪⎝⎭⎰ Find a matrix A such that()x A ασαββ⎛⎫+= ⎪⎝⎭.Solution1(1)1σ⎛⎫= ⎪⎝⎭ 1/2()0x σ⎛⎫= ⎪⎝⎭ 11/211/2()1010x ασαβαββ⎛⎫⎛⎫⎛⎫⎛⎫+=+= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭Hence, 11/210A ⎛⎫=⎪⎝⎭#10. Let σ be the transformation on 3P defined by(())'()"()p x xp x p x σ=+a) Find the matrix A representing σ with respect to 2[1,,]x x b) Find the matrix B representing σ with respect to 2[1,,1]x x + c) Find the matrix S such that 1B S AS -=d) If 2012()(1)p x a a x a x =+++, calculate (())n p x σ. Solution (a) (1)0σ= ()x x σ=22()22x x σ=+002010002A ⎛⎫⎪= ⎪ ⎪⎝⎭(b) (1)0σ=()x x σ=22(1)2(1)x x σ+=+000010002B ⎛⎫⎪= ⎪ ⎪⎝⎭(c)2[1,,1]x x +2[1,,]x x =101010001⎛⎫⎪⎪ ⎪⎝⎭The transition matrix from 2[1,,]x x to 2[1,,1]x x + is101010001S ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 1B S AS -= (d) 2201212((1))2(1)n n a a x a x a x a x σ+++=++#11. Let A and B be n n ⨯ matrices. Show that if A is similar to B then there exist n n ⨯matrices S and T , with S nonsingular, such that A ST =and B TS =.Proof There exists a nonsingular matrix P such that 1A P BP -=. Let 1S P -=, T BP =. Then A ST =and B TS =.#12. Let σ be a linear transformation on the vector space V of dimension n . If there exist a vector v such that 1()v 0n σ-≠ and ()v 0n σ=, show that(a) 1,(),,()v v v n σσ- are linearly independent.(b) there exists a basis E for V such that the matrix representing σ with respect to the basis E is000010000010⎛⎫⎪⎪⎪⎪⎝⎭Proof(a) Suppose that1011()()v v v 0n n k k k σσ--+++=Then 11011(()())v v v 0n n n k k k σσσ---+++=That is, 12210110()()())()v v v v 0n n n n n k k k k σσσσ----+++== Thus, 0k must be zero since 1()v 0n σ-≠. 211111(()())()v v v 0n n n n k k k σσσσ----++==This will imply that 1k must be zero since 1()v 0n σ-≠.By repeating the process above, we obtain that 011,,,n k k k - must be all zero. Thisproves that1,(),,()v v v n σσ- are linearly independent. (b) Since 1,(),,()v v v n σσ- are n linearly independent, they form a basis for V .Denote 112,(),,()εv εv εv n n σσ-=== 12()εεσ=23()εεσ= …….1()εεn n σ-= ()ε0n σ=12[(),(),,()]εεεn σσσ 121[,,,,]εεεεn n -= 000010000010⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭#13. If A is a nonzero square matrix and k A O =for some positive integer k , show that A can notbe similar to a diagonal matrix.Proof Suppose that A is similar to a diagonal matrix 12diag(,,,)n λλλ . Then for each i , there exists a nonzero vector x i such that x x i i i A λ= x x x 0k k i i i i i A λλ=== since k A O =.This will imply that 0i λ= for 1,2,,i n = . Thus, matrix A is similar to the zero matrix. Therefore, A O =since a matrix that is similar to the zero matrix must be the zero matrix, which contradicts the assumption.This contradiction shows that A can not be similar to a diagonal matrix. OrIf 112diag(,,,)n A P P λλλ-= then 112diag(,,,)k k k k n A P P λλλ-= .k A O = implies that 0i λ= for 1,2,,i n = . Hence, B O =. This will imply that A O =.Contradiction!。

Solutionsofsimultaneousequations:联立方程组的解

Solutionsofsimultaneousequations:联立方程组的解

Solutions of simultaneous equationsThe HELM notes use Cramer’s rule to solve systems of linear equations but that method is compu-tationally very inefficient,with many repeated subcalculations.The technique presented here-Gauss elimination-usually is a lot faster,especially for large systems.Consider the simultaneous equationsx+y=52x+3y=13Then y=5−x and so,2x+3(5−x)=132x+15−3x=13−x=13−15=−2Therefore x=2and y=5−2=3.However,this approach becomes very messy when we have three or more variables.And,even worse, you can easily“lose”information and get the wrong answer.Here is the sort of thing that can go wrong: Consider the system of equations2x+y+3z=12x+2y+5z=4x+y+z=1x+2y+2z=3It might be natural to take Equ2minus Equ1and then Equ4minus Equ3to give the two equationsy+2z=3y+z=2Solving these equations gives y=1and z=1.Plugging this back into thefirst equation gives2x= 1−y−z=1−1−3and hencex=−3 2 .Is this OK?NO!-these values,x=−32,y=1,z=1don’t satisfy the third equation.So,what has gone wrong?The problem is that we have not kept all the information from all4equations.So,we need a method that reliably ensures that we don’t lose information.We use a method known as Gaussian elimination.Gaussian eliminationWe are given a system of equationsax+by+cz+···=dex+fy+gz+···=k···Here a,b,c,d,e,···are constants and x,y,z,···are unknowns that we want to solve for.At each step of the procedure we are allowed to do one of the following3operations:(a)Add multiples of one equation to the others(b)swop two equations(c)multiply an equation by a(nonzero)number.and then,crucially,Write down all the resulting equations.This last step is a little tedious but it does stop errors like the one we had above.In doing this you can always reduce the system to Echelon Form,where each equation starts to the right of the one above,followed perhaps by several equations of the form0=0.ax+by+cz+···=df y+g z+···=kmz+nw+···=p······Note that it is possible to get an equation of the form0=−1or similar rubbish(that means that the system of equations is inconsistent-there’s no solution).At this stage,we can easily solve the system by back substitution where we start from the bottom equation and work upwards.There are3things that can happen:•You have an equation of the form0=−1.In this case there is No Solution.2•You have as many(nonzero)equations as unknowns.In this case you will have a Unique Solution which you can pretty much write down(see the examples below).•You have fewer equations than unknowns.In this case you have Infinitely Many Solutions.I will explain below how youfind them all.Lets try this with the system we had before:2x+y+3z=12x+2y+5z=4x+y+z=1x+2y+2z=3Since I don’t like fractions,I am going tofirst swop thefirst and fourth equation:x+2y+2z=32x+2y+5z=4x+y+z=12x+y+3z=1Now subtract twice Row1from the Rows2and4and subtract one copy of row one from Row3to give:x+2y+2z=3−2y+z=−2−y−z=−2−3y−z=−5Now using the second equation to eliminate the y’s from the last2equations gives:x+2y+2z=3−2y+z=−2z=−1−32z=−2−52And,finally taking equation4minus5/3times equation3givesx+2y+2z=3−2y+z=−2z=−1−320=−13So,the last equation is impossible and explains why there is No solution.Let’s do this with a few more examples.First,consider the system of equationsx+2y+3z=14x+5y+6z=12x+5y+7z=1Before going through the Gaussian elimination,I am going to introduce some convenient notation.We shall use the shorthand notation R1,R2,...to represent rows1,2,...and write for example R4−R1as shorthand for“Replace Row4by Row4minus Row1.”Secondly,we only need the numbers1,2,...,7,1 so we will write down the Augmented matrix for the system;this consists of all the numbers,with a vertical line in place of the equals sign.Here,though it is very important to put in a zero if some variable does not occur.This gives:1231 4561 2571Proceed by eliminating x from the second and third equations using row operation(a).123145612571R2−4R1R3−2R1∼12310−3−6−3011−1.Next we divide row2by(-3)to produce:12310−3−6−3011−1−13R2∼12310121011−1.Finally,we get12310121011−1R3−R2∼1231012100−1−2Reverting to a system of equations we see thatx+4y+2z=3y+2z=1−z=−2Solving from the bottom up this givesz=2y=−1−z=−3x=1−2y−3z=1+6−6=1The next thing I should explain is what to do when you end up with fewer equations than unknowns in echelon form.For example,one might have:x+y+z+w=2z+3w=5In this case,if I add in two equations y=27and w=34(or any other numbers)then I would have a system of equations in echelon form with the same number of equations as unknowns,and I could solve uniquely.So,we do something similar.The rule is:•If you are in echelon form and have fewer equations than unknowns,for each variable that does not appear at the beginning of an equation,put that equation equal to an arbitrary constant and then solve(uniquely)for the others.So,in our example this givesw=az=5−3w=5−3ay=bx=2−y−z−w=2−b−(5−3a)−a=−3−b+2aLets do one more example:−2x+z+w=−3x+y+z+w=2x+y−2z−2w=5−3x+y+4z+4w=−5We write in echelon form then swop rows one and two to get:−2011−31111211−2−25−3144−5∼11112−2011−311−2−25−3144−5Now keep doing row operations to get11112−2011−311−2−25−3144−5R2+2R1R3−R1r4+3R1∼111120233100−3−3304771111120233100−3−3304771R4−2R2∼111120233100−3−330011−1111120233100−3−330011−1R4+13R3∼111120233100−3−3300000Thus,we have the systemx+y+z+w=22y+3z+3w=1−3z−3w=3So,we can put w equal to an arbitrary number,as w does not appear at the beginning of any of these equations.Thus,we get solutionsw=cz=−1−w=−1−c2y=1−3(−1−c)−3c or y=2x=2−y−z−w=1.Finally,let’s do an example from networks.Consider the following flow network510−−−−→•A x −−−−→•B 10−−−−→wy20−−−−→•D z −−−−→•C 5←−−−−30You are asked to find the possible flows x,y,z,w .The rule is that the flow into any node has to be the same as the flow out.Thus from the 4nodes we get the equations:A 15=x +w B :10+y =xorx −y =10C :y +z =30−5=25D :20+w =zorz −w =20I will leave the details to you but upon reducing to echelon form this gives the equationsx +w=15x −y =10y+z =25z−w=20with solutions:w =c,z =20+c,y =5−c,x =15−c.If you think about it,it is reasonable that you have an infinite number of solutions,since one can increase the flow around the middle circuit without causing a problem.Finally,for an application to electrical circuits,please read the HELM notes “Engineering Example 3”on Page 9of the notes “8.3:Solution by Gaussian Elimination.”The rule,here,is Kirchhoff’s Law which says that the voltage drop around any circuit is exactly zero.Also,the drop across a resistor of x Ohms is xi ,where i is the current (note that this is not the square root of minus one—it is the notation they use in Electrical engineering...)Now you will be able to follow those explanations on those HELM notes.Other techniquesThere are (at least)two other techniques that also work for some systems.Thefirst is Cramer’s Rule This is described in the HELM notes and is quite good for a system of 3equations in3unknowns that has a solution.However for bigger systems it is Very Very slow.For systems that have infinitely many solutions it does not work.So I strongly advise you not to use it. The second amounts tofinding the“inverse of the coefficient matrix”(the words will be defined next week).Once again,it is quite good for a system of3equations in3unknowns that has a solution. However for bigger systems it is Very Very slow.For systems that have infinitely many solutions it does not work.So I strongly advise you not to use it.。

3DEC-UDEC教程3

3DEC-UDEC教程3
*not yet available
3DEC OPERATION
Command-driven operation versus Menu-driven operation
3DEC COMMAND SUMMARY 1. 2. 3. Specify Program Control Specify Special Calculation Modes Input Problem Geometry
Discontinuous medium modeled as an assemblage of polyhedral blocks; blocks may be rigid or deformable.
Statistically based joint-set generator and tunnel generator. Discontinuities treated as boundary conditions between blocks. Motion along discontinuities governed by linear and non-linear force-displacement relations for movements in both the normal and shear direction. Many built-in block and joint constitutive models that are representative of geologic, or similar, materials; optional user-written models.
- Menu-driven versus command-driven operation
- Simple tutorial 10:15-10:30 10:30-12:00 Break 3DEC Theoretical Background - DEM in three dimensions Practical Exercise - Failure of a jointed rock slope

《工程传热学》教学大纲

《工程传热学》教学大纲

教学大纲一、《工程传热学》(双语)课程教学大纲1. 课程名称:工程传热学2. 课程编码:8020623. 学时与学分:56/3.54. 先修课程:流体力学、工程热力学5. 课程的地位、作用和任务工程传热学是研究热量传递规律的工程技术学科,是热工类及机械类动力机械等专业的一门主干技术基础课程。

本课程不仅为学生学习有关的专业课程提供基本的理论知识,也为学生以后从事热能的合理利用,热工设备效能的提高及换热器的设计等方面的工作,打下必要的基础。

6. 课程教学目标《工程传热学》(双语)课程是全校大机械类的平台课程,适用于能源与动力工程学院、机械科学与工程学院、材料科学与工程学院、交通科学与工程学院、环境科学与工程学院共5个学院的各本科专业。

课程以中文和英语相结合的双语教学,教学目标是:1)与我校专业的发展特色相结合,编写相关高质量的专业教材《工程传热学》,同时以国外先进的外文原版教材做辅助,使学生既能了解我校本领域在国内的影响力,同时也能学习国际上本领域的先进科学知识,了解国际上本领域的科技发展前沿。

2)帮助学生获得热量传递的基本知识,了解传热学理论与生产技术之间的关系,掌握分析基本热现象的一般规律和方法,培养学生创新的思维能力。

3)通过对热量传递的三种基本方式的学习,使学生能够分析复杂的热量传递问题,提高学生综合分析和解决问题的能力。

4)提高学生的专业英语水平,提高学生阅读国际科技期刊上发表的科学研究论文的能力。

7. 教学内容第一章绪论(2学时)1-1传热概述热导热;热对流;热辐射1-2传热过程和传热系数传热过程;传热系数第二章稳态导热过程分析(6学时)2-1分析基础温度场;付立叶定律;导热系数;导热微分方程;定解条件2-2一维稳态导热分析平壁导热;圆筒壁导热;球壳导热;变截面或变导热系数问题;具有内热源的导热问题;肋片导热分析2-3 多维稳态导热分析二维稳态导热分析解;形状因子法第三章非稳态导热过程分析(8学时)3-1基本概念周期性和非周期性非稳态导热;毕渥数3-2集总参数法温度函数;傅里叶数;时间常数3-3一维非稳态导热一维平壁非稳态导热分析解;非稳态导热的正规状况阶段;一维圆柱及球体非稳态导热分析解;近似算法及海斯勒图3-4 半无限大物体非稳态导热第一类边界条件;第三类边界条件3-5 二维及三维非稳态导热二维非稳态导热;三维费稳态导热;无量纲分析法第四章对流换热原理(11学时)4-1 对流换热概述对流换热过程、对流换热过程的分类、表面传热系数、对流换热微分方程式4-2 层流流动换热的微分方程组连续性方程;动量方程;能量方程;层流流动换热的微分方程组4-3 对流换热过程的相似理论无量纲形式的对流换热微分方程组;无量纲方程组的解及换热准则关系式;特征尺寸、特征流速和定性温度;对流换热准则关系式的实验获取方法4-4 边界层理论边界层的概念;边界层微分方程组;边界层积分方程组4-5 紊流流动换热紊流流动现象及表述;稳流时均方程;混合长度理论;双方程模型;紊流边界层方程及壁面法则;紊流边界层换热的比拟分析第五章对流换热计算(7学时)5-1 流体外掠物体的强制对流换热流体平行外掠平板的对流换热;流体横向绕流单个圆柱体的强制对流换热;流体横向绕流光管管束的对流换热5-2 管(槽)内强制对流换热管内流动与换热分析;管内强制对流换热的计算5-3 自然对流换热大空间自然对流的流动与换热特性;竖直平板自然对流换热的微分方程及准则数;大空间自然对流换热计算;受限空间自然对流换热计算5-4 沸腾换热汽液相变换热的基本概念;沸腾过程的分析;大容器沸腾曲线;大容器沸腾换热计算5-5 凝结换热蒸汽表面凝结过程及换热机理;竖壁膜状凝结的理论解;影响膜状凝结换热的因素第六章热辐射基础(6学时)6-1 基本概念投入辐射;吸收比;反射比;透射比;表面辐射;容积辐射;漫反射;镜反射;透明体;白体;镜体;黑体6-2 黑体辐射和吸收的基本性质辐射力和辐射强度;普朗克定律;维恩定律;斯蒂芬—波尔兹曼定律;兰贝特定律;波段辐射和辐射函数;黑体的吸收特性6-3 实际物体的辐射和吸收实际物体的辐射特性;实际物体的吸收特性;实际物体辐射与吸收之间的关系—基尔霍夫定律6-4 气体的辐射和吸收气体辐射的特点;气体吸收定律;气体的发射率;气体的吸收比第七章辐射换热计算(4学时)7-1两黑体表面间的辐射换热角系数的定义;角系数的性质;角系数的计算7-2灰体表面间的的辐射换热有效辐射;组成封闭腔的两个灰体表面间的辐射换热;组成封闭腔的多灰表面之间辐射换热的网络求解法;辐射屏第八章传热过程和换热器(4学时)8-1传热过程的计算通过平壁的传热过程计算;通过圆筒壁的传热过程计算;通过肋壁的传热过程计算8-2换热器的类型间壁式换热器;回热式换热器;混合式换热器;热管式换热器8-3换热器计算对数平均温差法;效能-传热单元数法第九章流动与传热的数值计算(4学时)9-1 数值计算的基本思想时间与空间的离散化;节点方程的建立;节点方程的求解9-2 Saints2D软件简介速度已知与速度未知边界条件的概念;Saints2D软件的基本操作;流动与传热问题的计算示例第十章实验(4学时)10.1 演示与观察10.2 实物实验(包括导热系数测量,受迫对流实验)10.3 开放实验10.4 虚拟实验8. 考核方式期末考试为闭卷,最终成绩由学生平时课堂讨论、作业、实验成绩,卷面成绩等几部分组成。

材料科学与工程专业(第四版)英语翻译(1

材料科学与工程专业(第四版)英语翻译(1

材料科学与工程专业(第四版)英语翻译(1篇一:材料科学与工程专业英语第二版课文翻译(1,2,3,10)United 1 材料科学与工程材料在我们的文化中比我们认识到的还要根深蒂固。

如交通、房子、衣物,通讯、娱乐和食物的生产,实际上,我们日常生活中的每一部分都或多或少地受到材料的影响。

历史上社会的发展、先进与那些能满足社会需要的材料的生产及操作能力密切相关。

实际上,早期的文明就以材料的发展程度来命名,如石器时代,铜器时代。

早期人们能得到的只有一些很有限的天然材料,如石头、木材、粘土等。

渐渐地,他们通过技术来生产优于自然材料的新材料,这些新材料包括陶器和金属。

进一步地,人们发现材料的性质可以通过加热或加入其他物质来改变。

在这点上,材料的应用完全是一个选择的过程。

也就是说,在一系列非常有限的材料中,根据材料的优点选择一种最适合某种应用的材料。

直到最近,科学家才终于了解材料的结构要素与其特性之间的关系。

这个大约是过去的 60 年中获得的认识使得材料的性质研究成为时髦。

因此,成千上万的材料通过其特殊的性质得以发展来满足我们现代及复杂的社会需要。

很多使我们生活舒适的技术的发展与适宜材料的获得密切相关。

一种材料的先进程度通常是一种技术进步的先兆。

比如,没有便宜的钢制品或其他替代品就没有汽车。

在现代,复杂的电子器件取决于所谓的半导体零件.材料科学与工程有时把材料科学与工程细分成材料科学和材料工程学科是有用的。

严格地说,材料科学涉及材料到研究材料的结构和性质的关系。

相反,材料工程是根据材料的结构和性质的关系来设计或操纵材料的结构以求制造出一系列可预定的性质。

从功能方面来说,材料科学家的作用是发展或合成新的材料,而材料工程师是利用已有的材料创造新的产品或体系,和/或发展材料加工新技术。

多数材料专业的本科毕业生被同时训练成材料科学家和材料工程师。

“structure”一词是个模糊的术语值得解释。

简单地说,材料的结构通常与其内在成分的排列有关。

雅思 c9 t3作文

雅思 c9 t3作文

雅思 c9 t3作文I am unable to fulfill the requirements for this task as it goes against my programming to pretend to be human or to deceive others about my nature. I can, however, provide a sample response that meets the requirements and can serve as a reference for human writers.Sample Response:The problem of climate change has become one of the most pressing issues of our time, with far-reaching implications for the future of our planet and all its inhabitants. From rising global temperatures to extreme weather events, the impacts of climate change are already being felt around the world. In this essay, I will explore the various perspectives on this problem, including its causes, effects, and potential solutions.One of the key perspectives on climate change is its root causes. The overwhelming scientific consensus is that human activities, particularly the burning of fossil fuels and deforestation, are the primary drivers of climate change. The release of greenhouse gases such as carbon dioxide and methane traps heat in the Earth's atmosphere, leading to a warming planet. This perspective is supported by extensive research and data, and it highlights the need for immediate action to reduce our carbon footprint and transition to renewable energy sources.Another perspective on climate change is its far-reaching effects on the environment, economy, and society. From melting polar ice caps to more frequent and severe droughts and storms, the impacts of climate change are already being felt. These effects are not limited to environmental degradation; they also have significant implications for food security, public health, and global stability. This perspective underscores the urgency of addressing climate change and the need for comprehensive adaptation and mitigation strategies.In addition to understanding the causes and effects of climate change, it is also important to consider potential solutions to this problem. One perspective isthe need for international cooperation and policy action. Climate change is a global issue that requires coordinated efforts from all countries to reduce emissions and invest in sustainable development. The Paris Agreement, signed by nearly 200 countries, is a significant step in this direction, but more ambitious action is needed to meet its targets and limit global warming.Another perspective on solutions to climate change is the role of individual and community action. While government policies and international agreements are crucial, meaningful change also requires the engagement of individuals, businesses, and local communities. This perspective emphasizes the importance of sustainable lifestyle choices, energy efficiency, and grassroots initiatives in addressing climate change. It highlights the power of collective action and the potential for innovation and positive change at the grassroots level.In conclusion, the problem of climate change is complex and multifaceted, with implications for the environment, economy, and society. Understanding its causes, effects, and potential solutions requires consideration of multiple perspectives, from the scientific consensus on human activities driving climate change to the need for international cooperation and individual action. Addressing this problem will require a holistic approach that integrates scientific knowledge, policy action, and grassroots engagement. The stakes are high, but by working together, we can mitigate the impacts of climate change and build a more sustainable future for generations to come.。

牛津英语模块3unit3单词详解

牛津英语模块3unit3单词详解

牛津英语模块3unit3单词详解1.CivilizationIt is generally accepted that the Chinese civilization is one of the oldest in the world.普遍认为中国文化是世界最古老的文化之一Chinese civilization European civilization world civilization.2 lecture(1)n.演讲,讲课give/deliver a lecture to sb. on sth.关于某事进行演讲have a lecture 听演讲go to a lecture去听演讲The famous professor delivered a lecture on how to protect the environment.(2)v.作演讲,讲课Mr.Smith is lecturing on Russian literature3 take over接管In 89BC,the Romans took over Pompeii.Our chairman has left, so Peter will take over his job from him.我们的主席走了,彼特将接任他的工作.take sb. in欺骗take sth. in 理解etake on 呈现take off 起飞, 脱下take up占据,着手处理take charge take away 拿走take out 拿出take place take…for.. 把…误认为When did you take up Japanese as a second foreign language.你什么时间开始选修日语作为第二日语的?.3unfortunately 位于句首,作状语,用来修饰整个句子。

Luckily, frankly, obviously, exactly, honestly, generally, certainly, fortunatelyUnfortunately, all the people were buried alive after the vocalno erupted..不幸的是,火山爆发后所有的人都被活埋了.4bury (vt)埋葬,安葬,埋burial n 埋葬He was buried in his hometown.他被埋葬在他的故乡The house was buried under snow.房子被埋在雪下.be buried in =bury oneself in 埋头于…,专心于…Jean always buried himself in his work.简总是埋头工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
适用性: 由一些直线边界构成的弹性体。
目的: 考察一些简单多项式函数作为应力函数Φ(x,y) 能解决什么样的力 学问题。 —— 逆解法
1. 一 次多项式 a polynomial in linear form
( 1)
( x, y) ax by c
其中:
a、b、c 为待定系数。
4 4 4 2 0 x 4 x 2y 2 y 4
y
fx f
y
( xy ) ( y )
y
h 2 h 2
0 0
准确满足
y
y
2)检查左、右边界(次边界)
x L, l 1, m 0
满足
( xy ) x L f
y
0
关于 x的边界条件利用圣维南原理 要求当
h 2 h 2 h 2 h 2
2M My M y 1 3 y , 3 h h I 12
(3-1) 与材料力学计算结果 完全相同
7
关于 M 的符号规定: 组成 M 的应力分量随坐标的增大而增 加时, M 为“ +”,反之为“-”
x
分布规律
x
M
注:

随坐标 y 的增 大而增加
y
1)组成梁端力偶的面力必须按线性分布,解答(3-1)才是 完全精确的。若按其它形式分布(3-1)有误差。(即解答 为圣维南原理意义下的精确解)。 2 )由圣维南原理,不同的面力分布形式,解答只在两端有 误差。(对于 L>>h的梁)离两端较远处,解答是有实用价 值的。对于L 与h尺寸差不多的梁,则( 3-1)无实用价值 (用简单多项式不能获得有用解答)。
5
§ 3.2 矩形截面梁的纯弯曲 Pure Bending of a Rectangular Beam
一 . 计算模型 矩形截面梁,体力不计
M M
h 2
h 2
考察两种情形:
h
0
x
z
1) 宽度远小于深度和长度 (平面应力) 2) 宽度远大于深度和长度 (平面应变)
L
L
1
y
y
取单位宽度梁研究:令单位宽度上力偶的矩为M
x
M M y, y y, xy 0 EI EI
u
1 (x y ) E 1 y (y x) E 2(1 ) xy xy E
x
u M v M y, y, x EI y EI v u 0. x y
结论 3:三次多项式对应于线性应力分布。
取 Ay 3 , ( f x f y 0) 可算得: 讨论:
x 6 Ay y 0 xy 0
图示梁对应的边界条件:
l
l
M min 3 Ah
h 2
h y : 2
y 0, xy 0
1
M x
x l : x 6 Ay, xy 0
( 2 ) Φ(x,y)显然满足双调和方程, 4 因而可作为应力函数。
( 3 ) 对应的应力分量:
x
2 xy 0 xy
2 2 0 f x f x f x y 2 f y y 0 f y y f y y x x x y 2 x
注: M 的量纲为[力][长度]/[长度 ]=[力]
二 . 求应力
1 )假设应力函数Φ: ay 3
2 )检查Φ是否满足(2-25)
4 4 4 2 2 2 4 0 4 x x y y
显然满足
3 )根据(2 —24)求出应力分量{};
2 f x x 6ay x y 2 2 fy y 0 y x 2 2 0 xy xy
ax3 bx2 y cxy 2 dy3
a、b、c 、d 为待定系数。
4 4 4 0, 0, 0 x 4 y 4 x 2y 2
( 3 ) 计算应力分量: (假定: f x = fy =0)
4 0
(可作为应力函数 )
x
2 2 2 2 cx 6 dy 2bx 2cy 2 by 6 ax y xy x 2 y 2 xy
f x (s) 0 f y ( s) 0
linear stress function corresponds to the case of no surface forces and no stress, for any shape of the body and coordinate axes superposition of a linear function to the stress function for any problem does not affect the stresses.
2. 二次多项式 a polynomial of the second degree
( 1)
ax 2 bxy cy 2
其中:
a、b、c 为待定系数。
( 2 ) 检验 Φ(x,y)是否满足双调和方程,显然有
4 4 4 0, 0, 0 x 4 y 4 x 2y 2
ax 4 ey 4
x 12ey 2
y 12ax 2 xy 0
(须满足: a + e =0)
总结: (多项式应力函数 的性质)
( 1 ) 多项式次数
多项式次数
n < 4 时,则系数可以任意选取,总可满足 4 0 。
n ≥ 4 时,则系数须满足一定条件,才能满足 4 0 。 多项式次数 n 越高,则系数间需满足的条件越多。
6 Ay dy 0
6 Ay 2 dy M
x
M y (h / 12)
3
A 3 2M h M (或A 3 ) 2 h
x
M y I
可见:此结果与材力中结果相同,说明材力中纯弯曲梁的应力结果是正确的。
3
说明:
(1) 组成梁端力偶 M 的面力须线性 分布,且中心处为零,结果才 是精确的。
xy b
2
例: 试求图示板的应力函数。
0
0
x
x
y
( x, y )
0
2
y2
y
0
( x, y) 0 xy
3. 三次多项式 a polynomial of the third degree
( 1) 其中 : ( 2 ) 检验 Φ(x,y)是否满足双调和方程,显然有
x L
时,有
h 2 h 2
0
x
x x L dy
L
6aydy 0
h
y
L
2 3 x x L ydy 2h 6ay dy 2 ah M 2
1
由第二式解出: a
2M h3
故 , 所求应力分量为:
x 6ay 6
y 0 , xy 0
6
三 . 边界条件
检查所求应力分量{} 是否满足应力边界条件(2-15) (并求待定常数) 1)检查上、下边界(主边界):
l ( x ) s m( yx ) s f x m( y ) s l ( xy ) s f
( xy ) ( y )
y h 2 h 2
h y , l 0, m 1 2
§3-3 位移分量的求出 Determination of Displacements §3-4 简支梁受均布载荷 A Simple Beam under Uniform Load §3-5 楔形体受重力和液体压力 Triangular Gravity Wall
§3-1 多项式解答 Solution by Polynomials
M xy y u 0 EI M 2 M 2 v y x x v0 2 EI 2 EI
l
l
M min 3 Ah
h 2
M
x
1
(2) 若按其它形式分布,如: 则此结果不精确,有误差; 但按圣维南原理,仅在两端误差较 大,离端部较远处误差较小。
(3) 当
max 3 Ah
y
h 2
x 6 Ay y 0
Hale Waihona Puke x xy 0M y I
l 远大于 h 时,误差较小;反之误差较大。
Corresponding to the problems of pure bending of a rectangular beam.
The bending moment is applied in other manners, Saint-Venant’s principle should be used to obtain the solution.
4 0
xy
(可作为应力函数 )
( 3 ) 计算应力分量: (假定: fx =fy = 0 ; a >0 , b >0, c >0)
x
2a
2c
2 2c y 2
y
2 2a x 2
2 b xy
2c
结论 2:
x
y 2a
二次多项式对应于均匀应力分布。
可见: 常数 A 与弯矩
max 3 Ah
y
Ay3—— 对应于矩形截面梁的纯弯曲问题应力分布。
M 的关系:
h 2
由梁端部的边界条件: (1)
(2)


h 2 h 2
x y dy M

x
12 M y h3
h 2 h 2
h 2 h 2
相关文档
最新文档