平乡县外国语学校2018-2019学年高三上学期11月月考数学试卷含答案
平乡县高级中学2018-2019学年高三上学期11月月考数学试卷含答案

平乡县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( )A .B .或C .D .或2. 已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )A .﹣B .﹣C .﹣D .﹣或﹣3. 如图,在正方体中,是侧面内一动点,若到直线与直线的距离1111ABCD A B C D P 11BB C C P BC 11C D 相等,则动点的轨迹所在的曲线是()PA 1C A.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.4. 若某算法框图如图所示,则输出的结果为()A .7B .15C .31D .635. 函数f (x )=,则f (﹣1)的值为()A .1B .2C .3D .46. 执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .k >7B .k >6C .k >5D .k >47. 某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( )A .B .8C .D .8. 双曲线的左右焦点分别为,过的直线与双曲线的右支交于()222210,0x y a b a b-=>>12F F 、2F 两点,若是以为直角顶点的等腰直角三角形,则( )A B 、1F AB ∆A 2e =A .B .C .D .1+4-5-3+9. 圆上的点到直线的距离最大值是( )012222=+--+y x y x 2=-y x A .B .C .D .12+122+122+10.函数f (x )在x=x 0处导数存在,若p :f ′(x 0)=0:q :x=x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件11.设复数(是虚数单位),则复数( )1i z =-i 22z z +=A.B.C.D. 1i -1i +2i +2i-【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力.12.已知一三棱锥的三视图如图所示,那么它的体积为( )A .B .C .D .132312二、填空题13.若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在12,z z y 12i z =-1212||z z z +()A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力.14.自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到C 22(3)(4)4x y -++=(,)P x y Q P 原点的长,则的最小值为( )O PQ A .B .3C .4D .13102110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.15.【2017-2018第一学期东台安丰中学高三第一次月考】函数的单调递增区间为__________.()2ln f x x x =-16.已知点M (x ,y )满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值是 .17.已知向量若,则( )(1,),(1,1),a x b x ==-r r (2)a b a -⊥r r r |2|a b -=r rA .B .C .2D 23【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.18.若圆与双曲线C :的渐近线相切,则_____;双曲线C 的渐近线方程是____.三、解答题19.已知函数.(1)求f (x )的周期和及其图象的对称中心;(2)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,满足(2a ﹣c )cosB=bcosC ,求函数f (A )的取值范围.20.(本小题满分12分)已知等差数列的前项和为,且,.{}n a n n S 990S =15240S =(1)求的通项公式和前项和;{}n a n a n n S (2)设是等比数列,且,求数列的前n 项和.(){}1nn n b a --257,71b b =={}n b n T 【命题意图】本题考查等差数列与等比数列的通项与前项和、数列求和等基础知识,意在考查逻辑思维能力、n 运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.21.在直角坐标系xOy 中,曲线C 1的参数方程为C 1:为参数),曲线C 2: =1.(Ⅰ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求C 1,C 2的极坐标方程;(Ⅱ)射线θ=(ρ≥0)与C 1的异于极点的交点为A ,与C 2的交点为B ,求|AB|.22.斜率为2的直线l 经过抛物线的y 2=8x 的焦点,且与抛物线相交于A ,B 两点,求线段AB 的长. 23.(本小题满分12分)设曲线:在点处的切线与轴交与点,函数.C ln (0)y a x a =≠00(,ln )T x a x x 0((),0)A f x 2()1xg x x=+(1)求,并求函数在上的极值;0()f x ()f x (0,)+∞(2)设在区间上,方程的实数解为,的实数解为,比较与的大小.(0,1)()f x k =1x ()g x k =2x 1x 2x24.已知命题p:x2﹣3x+2>0;命题q:0<x<a.若p是q的必要而不充分条件,求实数a的取值范围. 平乡县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案B B D.第Ⅱ卷(共110DACCCC题号1112答案AB二、填空题13.D 14.D15.⎛ ⎝16. 4 .17.A 18.,三、解答题19. 20.21. 22. 23.24.。
平定县高级中学2018-2019学年高三上学期11月月考数学试卷含答案

平定县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣2)∪(0,2)B .(﹣∞,﹣2)∪(2,+∞)C .(﹣2,0)∪(2,+∞)D .(﹣2,0)∪(0,2)2. 如右图,在长方体中,=11,=7,=12,一质点从顶点A 射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是()AB班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________CD3. 已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有()A .3个B .2个C .1个D .无穷多个4. 执行如图的程序框图,如果输入的,100N =则输出的( )x =A . B . 0.950.98C .D .0.99 1.005. 已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A .B .C .D .6. 圆心为(1,1)且过原点的圆的方程是( )A .2=1B .2=1C .2=2D .2=27. 如图所示,程序执行后的输出结果为()A.﹣1B.0C.1D.28.设方程|x2+3x﹣3|=a的解的个数为m,则m不可能等于()A.1B.2C.3D.49.已知,,那么夹角的余弦值()A.B.C.﹣2D.﹣10.设等比数列{a n}的公比q=2,前n项和为S n,则=()A.2B.4C.D.11.如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm),则此几何体的表面积是()A.8cm2B.cm2C.12 cm2D.cm212.已知全集U={0,1,2,3,4},集合A={0,1,3},B={0,1,4},则(∁U A)∪B为()A.{0,1,2,4}B.{0,1,3,4}C.{2,4}D.{4}二、填空题13.如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2+y 2-2x +4y -4=0的两切线、切点分别为A 、B ,当四边形PACB 的周长最小时,△ABC 的面积为________.14.阅读右侧程序框图,输出的结果i 的值为 .15.【徐州市第三中学2017~2018学年度高三第一学期月考】函数的单调增区间是__________.()3f x x x =-+16.若x ,y 满足线性约束条件,则z=2x+4y 的最大值为 .17.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= .18.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 、Q 分别是B 1C 1、CC 1的中点,则直线A 1P 与DQ 的位置关系是 .(填“平行”、“相交”或“异面”)三、解答题19.已知在等比数列{a n }中,a 1=1,且a 2是a 1和a 3﹣1的等差中项.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1+2b 2+3b 3+…+nb n =a n (n ∈N *),求{b n }的通项公式b n .20.选修4﹣5:不等式选讲已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.(Ⅰ)求a的值;(Ⅱ)若恒成立,求k的取值范围.21.已知命题p:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,命题q:f(x)=x2﹣ax+1在区间上是增函数.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.22.已知函数f(x)=sin(ωx+φ)+1(ω>0,﹣<φ<)的最小正周期为π,图象过点P(0,1)(Ⅰ)求函数f(x)的解析式;(Ⅱ)设函数g(x)=f(x)+cos2x﹣1,将函数g(x)图象上所有的点向右平行移动个单位长度后,所得的图象在区间(0,m)内是单调函数,求实数m的最大值.23.已知数列{a n}的前n项和为S n,a1=3,且2S n=a n+1+2n.(1)求a2;(2)求数列{a n }的通项公式a n ;(3)令b n =(2n ﹣1)(a n ﹣1),求数列{b n }的前n 项和T n . 24.【泰州中学2018届高三10月月考】已知函数.()(),,xf x eg x x m m R ==-∈(1)若曲线与直线相切,求实数的值;()y f x =()y g x =m (2)记,求在上的最大值;()()()h x f x g x =⋅()h x []0,1(3)当时,试比较与的大小.0m =()2f x e-()g x平定县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案A C BCDDBAAC题号1112答案CA二、填空题13.14. 7 .15.(16. 38 .17. 5 .18. 相交 【分析】由已知得PQ ∥A 1D ,PQ=A 1D ,从而四边形A 1DQP 是梯形,进而直线A 1P 与DQ 相交.三、解答题19. 20. 21. 22. 23.24.(1);(2)当时,;当时,;(3)1m =-1e m e <-()()max 1h x m e =-1e m e ≥-()max h x m =-.()()2f x e g x ->。
平乡县民族中学2018-2019学年高三上学期11月月考数学试卷含答案

平乡县民族中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个2. 已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( ) A.(﹣∞,)∪(2,+∞) B.(,2)C.(﹣∞,﹣)∪(2,+∞)D.(﹣,2)3. 已知三棱锥S ABC -外接球的表面积为32π,090ABC ∠=,三棱锥S ABC -的三视图如图 所示,则其侧视图的面积的最大值为( )A .4 B. C .8 D.4. “方程+=1表示椭圆”是“﹣3<m <5”的( )条件.A .必要不充分B .充要C .充分不必要D .不充分不必要5. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )A .{2,1,0}--B .{1,0,1,2}-C .{2,1,0}--D .{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力. 6. △ABC 的外接圆圆心为O ,半径为2,++=,且||=||,在方向上的投影为( )A .﹣3 B.﹣C.D .37. 已知M={(x ,y )|y=2x },N={(x ,y )|y=a},若M ∩N=∅,则实数a 的取值范围为( )A .(﹣∞,1)B .(﹣∞,1]C .(﹣∞,0)D .(﹣∞,0]8. 投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36 D .0.312班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 若函数f (x )=2sin (ωx+φ)对任意x 都有f (+x )=f (﹣x ),则f ()=( )A .2或0B .0C .﹣2或0D .﹣2或210.已知向量=(2,﹣3,5)与向量=(3,λ,)平行,则λ=( )A .B .C .﹣D .﹣11.某一简单几何体的三视图如所示,该几何体的外接球的表面积是( )A .13πB .16πC .25πD .27π12.设偶函数f (x )满足f (x )=2x ﹣4(x ≥0),则{x|f (x ﹣2)<0}=( ) A .{x|x <﹣2或x >4} B .{x|x <0或x >4} C .{x|x <0或x >6} D .{x|0<x <4}二、填空题13.已知函数f (x )=有3个零点,则实数a 的取值范围是 .14.在(1+x )(x 2+)6的展开式中,x 3的系数是 .15.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.16.若6()mx y +展开式中33x y 的系数为160-,则m =__________.【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想.17.长方体ABCD ﹣A 1B 1C 1D 1的棱AB=AD=4cm ,AA 1=2cm ,则点A 1到平面AB 1D 1的距离等于 cm .18.已知A (1,0),P ,Q 是单位圆上的两动点且满足,则+的最大值为 .三、解答题19.已知函数f (x )=2sin (ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示;(1)求ω,φ;(2)将y=f (x )的图象向左平移θ(θ>0)个单位长度,得到y=g (x )的图象,若y=g (x )图象的一个对称点为(,0),求θ的最小值.(3)对任意的x ∈[,]时,方程f (x )=m 有两个不等根,求m 的取值范围.20.(本题满分15分)已知抛物线C 的方程为22(0)y px p =>,点(1,2)R 在抛物线C 上.(1)求抛物线C 的方程;(2)过点(1,1)Q 作直线交抛物线C 于不同于R 的两点A ,B ,若直线AR ,BR 分别交直线:22l y x =+于M ,N 两点,求MN 最小时直线AB 的方程.【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.21.某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?22.如图,正方形ABCD中,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连接CF并延长交AB于点E.(Ⅰ)求证:AE=EB;(Ⅱ)若EF•FC=,求正方形ABCD的面积.23.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.24..(1)求证:(2),若.平乡县民族中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】考点:空间直线与平面的位置关系.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.2.【答案】B【解析】解:∵α,β为锐角△ABC的两个内角,可得α+β>90°,cosβ=sin(90°﹣β)<sinα,同理cosα<sinβ,∴f(x)=()|x﹣2|+()|x﹣2|,在(2,+∞)上单调递减,在(﹣∞,2)单调递增,由关于x的不等式f(2x﹣1)﹣f(x+1)>0得到关于x的不等式f(2x﹣1)>f(x+1),∴|2x﹣1﹣2|<|x+1﹣2|即|2x﹣3|<|x﹣1|,化简为3x2﹣1x+8<0,解得x∈(,2);故选:B.3.【答案】A【解析】考点:三视图.【方法点睛】本题主要考查几何体的三视图,空间想象能力.空间几何体的三视图是分别从空间几何体的正面,左面,上面用平行投影的方法得到的三个平面投影图.因此在分析空间几何体的三视图时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱,面的位置,再确定几何体的形状,即可得到结果. 要能够牢记常见几何体的三视图.4.【答案】C【解析】解:若方程+=1表示椭圆,则满足,即,即﹣3<m <5且m ≠1,此时﹣3<m <5成立,即充分性成立,当m=1时,满足﹣3<m <5,但此时方程+=1即为x 2+y 2=4为圆,不是椭圆,不满足条件.即必要性不成立.故“方程+=1表示椭圆”是“﹣3<m <5”的充分不必要条件.故选:C .【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题.5. 【答案】C 【解析】当{2,1,0,1,2,3}x ∈--时,||3{3,2,1,0}y x =-∈---,所以A B ={2,1,0}--,故选C .6. 【答案】C【解析】解:由题意,++=,得到,又||=||=||,△OAB 是等边三角形,所以四边形OCAB 是边长为2的菱形,所以在方向上的投影为ACcos30°=2×=;故选C .【点评】本题考查了向量的投影;解得本题的关键是由题意,画出图形,明确四边形OBAC 的形状,利用向量解答.7. 【答案】D 【解析】解:如图,M={(x,y)|y=2x},N={(x,y)|y=a},若M∩N=∅,则a≤0.∴实数a的取值范围为(﹣∞,0].故选:D.【点评】本题考查交集及其运算,考查了数形结合的解题思想方法,是基础题.8.【答案】A【解析】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.9.【答案】D【解析】解:由题意:函数f(x)=2sin(ωx+φ),∵f(+x)=f(﹣x),可知函数的对称轴为x==,根据三角函数的性质可知,当x=时,函数取得最大值或者最小值.∴f()=2或﹣2故选D.10.【答案】C【解析】解:∵向量=(2,﹣3,5)与向量=(3,λ,)平行,∴==,∴λ=﹣.故选:C.【点评】本题考查了空间向量平行(共线)的问题,解题时根据两向量平行,对应坐标成比例,即可得出答案.11.【答案】C【解析】解:几何体为底面为正方形的长方体,底面对角线为4,高为3,∴长方体底面边长为2.则长方体外接球半径为r,则2r==5.∴r=.∴长方体外接球的表面积S=4πr2=25π.故选C.【点评】本题考查了长方体的三视图,长方体与外接球的关系,属于中档题.12.【答案】D【解析】解:∵偶函数f(x)=2x﹣4(x≥0),故它的图象关于y轴对称,且图象经过点(﹣2,0)、(0,﹣3),(2,0),故f(x﹣2)的图象是把f(x)的图象向右平移2个单位得到的,故f(x﹣2)的图象经过点(0,0)、(2,﹣3),(4,0),则由f(x﹣2)<0,可得0<x<4,故选:D.【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题.二、填空题13.【答案】(,1).【解析】解:∵函数f(x)=有3个零点,∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,∴,解得<a<1,故答案为:(,1).14.【答案】20.【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为T r+1=•x12﹣3r,令12﹣3r=3,解得r=3,满足题意;令12﹣3r=2,解得r=,不合题意,舍去;所以展开式中x3的系数是=20.故答案为:20.15.【答案】4【解析】解:由PA⊥平面ABC,则△PAC,△PAB是直角三角形,又由已知△ABC是直角三角形,∠ACB=90°所以BC⊥AC,从而易得BC⊥平面PAC,所以BC⊥PC,所以△PCB也是直角三角形,所以图中共有四个直角三角形,即:△PAC,△PAB,△ABC,△PCB.故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.16.【答案】2【解析】由题意,得336160C m =-,即38m =-,所以2m =-.17.【答案】【解析】解:由题意可得三棱锥B 1﹣AA 1D 1的体积是=,三角形AB1D 1的面积为4,设点A 1到平面AB 1D 1的距离等于h ,则,则h=故点A 1到平面AB 1D 1的距离为.故答案为:.18.【答案】 .【解析】解:设=,则==,的方向任意.∴+==1××≤,因此最大值为.故答案为:.【点评】本题考查了数量积运算性质,考查了推理能力 与计算能力,属于中档题.三、解答题19.【答案】【解析】解:(1)根据函数f (x )=2sin (ωx+φ)(ω>0,﹣<φ<)的部分图象,可得•=,求得ω=2.再根据五点法作图可得2•+φ=,求得φ=﹣,∴f (x )=2sin (2x ﹣).(2)将y=f (x )的图象向左平移θ(θ>0)个单位长度,得到y=g (x )=2sin=2sin (2x+2θ﹣)的图象,∵y=g (x )图象的一个对称点为(,0),∴2•+2θ﹣=k π,k ∈Z ,∴θ=﹣,故θ的最小正值为.(3)对任意的x ∈[,]时,2x ﹣∈[,],sin (2x ﹣)∈,即f (x )∈,∵方程f (x )=m 有两个不等根,结合函数f (x ),x ∈[,]时的图象可得,1≤m <2.20.【答案】(1)24y x =;(2)20x y +-=.【解析】(1)∵点(1,2)R 在抛物线C 上,22212p p =⨯⇒=,…………2分即抛物线C 的方程为24y x =;…………5分21.【答案】【解析】(1)∵f(t)=10﹣=10﹣2sin(t+),t∈[0,24),∴≤t+<,故当t+=时,函数取得最大值为10+2=12,当t+=时,函数取得最小值为10﹣2=8,故实验室这一天的最大温差为12﹣8=4℃。
平乡县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案

平乡县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在复平面上,复数z=a+bi (a ,b ∈R )与复数i (i ﹣2)关于实轴对称,则a+b 的值为( ) A .1B .﹣3C .3D .22. 已知e 为自然对数的底数,若对任意的1[,1]x e∈,总存在唯一的[1,1]y ∈-,使得2ln 1y x x a y e -++=成立,则实数a 的取值范围是( )A.1[,]e eB.2(,]e eC.2(,)e +∞D.21(,)e e e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.3. 椭圆22:143x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )A .31,42⎡⎤--⎢⎥⎣⎦ B .33,48⎡⎤--⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.4. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D.5. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数12z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力. 6.在中,、、分别为角、、所对的边,若,则此三角形的形状一定是( ) A .等腰直角 B .等腰或直角 C .等腰 D .直角7. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0< B .0 C .0 D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 将函数()sin 2y x ϕ=+(0ϕ>)的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的最小值为( ) (A )43π ( B ) 83π (C ) 4π (D ) 8π9. 若复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,则a=( )A .3B .6C .9D .1210.若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为( )A .a >B .﹣<a <1 C .a <﹣1D .a >﹣111.12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( ) A .1 B .2 C .-1 D .-212.直角梯形OABC 中,,1,2AB OC AB OC BC ===,直线:l x t =截该梯形所得位于左边图 形面积为,则函数()S f t =的图像大致为( )二、填空题13.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.14.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,则其表面积为__________2cm .15.满足tan (x+)≥﹣的x 的集合是 .16.已知实数a>b,当a、b满足条件时,不等式<成立.17.设不等式组表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是.18.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是.三、解答题19.如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2﹣6x﹣91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线.20.在直角坐标系xOy中,过点P(2,﹣1)的直线l的倾斜角为45°.以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ,直线l和曲线C的交点为A,B.(1)求曲线C的直角坐标方程;(2)求|PA|•|PB|.21.已知a,b,c分别是△ABC内角A,B,C的对边,且csinA=acosC.(I)求C的值;(Ⅱ)若c=2a,b=2,求△ABC的面积.22.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.(1)求A∪B;(2)求(∁U A)∩B;(3)求∁U(A∩B).23.数列{a n}满足a1=,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).(Ⅰ)证明数列{tan2a n}是等差数列,并求数列{tan2a n}的前n项和;(Ⅱ)求正整数m,使得11sina1•sina2•…•sina m=1.24.已知,且.(1)求sinα,cosα的值;(2)若,求sinβ的值.平乡县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:∵z=a+bi(a,b∈R)与复数i(i﹣2)=﹣1﹣2i关于实轴对称,∴,∴a+b=2﹣1=1,故选:A.【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.2.【答案】B【解析】3.【答案】B4.【答案】A【解析】解:因为两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,l1与l2平行.所以,解得m=﹣7.故选:A.【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力.5.【答案】B【解析】6. 【答案】B【解析】 因为,所以由余弦定理得,即,所以或,即此三角形为等腰三角形或直角三角形,故选B答案:B7. 【答案】D【解析】解:∵A 1B ∥D 1C ,∴CP 与A 1B 成角可化为CP 与D 1C 成角.∵△AD 1C 是正三角形可知当P 与A 重合时成角为,∵P 不能与D 1重合因为此时D 1C 与A 1B 平行而不是异面直线,∴0<θ≤.故选:D .8. 【答案】B【解析】将函数()()sin 20y x ϕϕ=+>的图象沿x 轴向左平移8π个单位后,得到一个偶函数sin 2sin 284[()]()y x x ππϕϕ=++=++的图象,可得42ππϕ+=,求得ϕ的最小值为 4π,故选B .9. 【答案】A【解析】解:复数z===.由条件复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,得,18﹣a=3a+6,解得a=3.故选:A.【点评】本题考查复数的代数形式的混合运算,考查计算能力.10.【答案】B【解析】解:由x3﹣x2﹣x+a=0得﹣a=x3﹣x2﹣x,设f(x)=x3﹣x2﹣x,则函数的导数f′(x)=3x2﹣2x﹣1,由f′(x)>0得x>1或x<﹣,此时函数单调递增,由f′(x)<0得﹣<x<1,此时函数单调递减,即函数在x=1时,取得极小值f(1)=1﹣1﹣1=﹣1,在x=﹣时,函数取得极大值f(﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,要使方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,则﹣1<﹣a<,即﹣<a<1,故选:B.【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键.11.【答案】B【解析】考点:向量共线定理.12.【答案】C【解析】试题分析:由题意得,当01t <≤时,()2122f t t t t =⋅⋅=,当12t <≤时, ()112(1)2212f t t t =⨯⨯+-⋅=-,所以()2,0121,12t t f t t t ⎧<≤=⎨-<≤⎩,结合不同段上函数的性质,可知选项C 符合,故选C.考点:分段函数的解析式与图象.二、填空题13.【答案】 4【解析】解:由PA ⊥平面ABC ,则△PAC ,△PAB 是直角三角形,又由已知△ABC 是直角三角形,∠ACB=90°所以BC ⊥AC ,从而易得BC ⊥平面PAC ,所以BC ⊥PC ,所以△PCB 也是直角三角形,所以图中共有四个直角三角形,即:△PAC ,△PAB ,△ABC ,△PCB .故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.14.【答案】20 【解析】考点:棱台的表面积的求解.15.【答案】 [k π,+k π),k ∈Z .【解析】解:由tan (x+)≥﹣得+k π≤x+<+k π,解得k π≤x <+k π,故不等式的解集为[k π, +k π),k ∈Z ,故答案为:[k π,+k π),k ∈Z ,【点评】本题主要考查三角不等式的求解,利用正切函数的图象和性质是解决本题的关键.16.【答案】ab>0【解析】解,当ab>0时,∵a>b,∴>,即>,当ab<0时,∵a>b,∴<,即<,综上所述,当a、b满足ab>0时,不等式<成立.故答案为:ab>0,.【点评】本题考查二类不等式饿性质,属于基础题.17.【答案】.【解析】解:到坐标原点的距离大于2的点,位于以原点O为圆心、半径为2的圆外区域D:表示正方形OABC,(如图)其中O为坐标原点,A(2,0),B(2,2),C(0,2).因此在区域D内随机取一个点P,则P点到坐标原点的距离大于2时,点P位于图中正方形OABC内,且在扇形OAC的外部,如图中的阴影部分∵S正方形OABC=22=4,S阴影=S正方形OABC﹣S扇形OAC=4﹣π•22=4﹣π∴所求概率为P==故答案为:【点评】本题给出不等式组表示的平面区域,求在区域内投点使该到原点距离大于2的概率,着重考查了二元一次不等式组表示的平面区域和几何概型等知识点,属于基础题.18.【答案】.【解析】解:设剪成的小正三角形的边长为x,则:S==,(0<x<1)令3﹣x=t,t∈(2,3),∴S===,当且仅当t=即t=2时等号成立;故答案为:.三、解答题19.【答案】【解析】解:(方法一)设动圆圆心为M(x,y),半径为R,设已知圆的圆心分别为O1、O2,将圆的方程分别配方得:(x+3)2+y2=4,(x﹣3)2+y2=100,当动圆与圆O1相外切时,有|O1M|=R+2…①当动圆与圆O2相内切时,有|O2M|=10﹣R…②将①②两式相加,得|O1M|+|O2M|=12>|O1O2|,∴动圆圆心M(x,y)到点O1(﹣3,0)和O2(3,0)的距离和是常数12,所以点M的轨迹是焦点为点O1(﹣3,0)、O2(3,0),长轴长等于12的椭圆.∴2c=6,2a=12,∴c=3,a=6∴b2=36﹣9=27∴圆心轨迹方程为,轨迹为椭圆.(方法二):由方法一可得方程,移项再两边分别平方得:2两边再平方得:3x2+4y2﹣108=0,整理得所以圆心轨迹方程为,轨迹为椭圆.【点评】本题以两圆的位置关系为载体,考查椭圆的定义,考查轨迹方程,确定轨迹是椭圆是关键.20.【答案】【解析】(1)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,…∵ρcosθ=x,ρsinθ=y,∴曲线C的直角坐标方程为y2=4x …(2)∵直线l过点P(2,﹣1),且倾斜角为45°.∴l的参数方程为(t为参数).…代入y2=4x 得t2﹣6t﹣14=0…设点A,B对应的参数分别t1,t2∴t1t2=﹣14…∴|PA|•|PB|=14.…21.【答案】【解析】解:(I)∵a,b,c分别是△ABC内角A,B,C的对边,且csinA=acosC,∴sinCsinA=sinAcosC,∴sinCsinA﹣sinAcosC=0,∴sinC=cosC,∴tanC==,由三角形内角的范围可得C=;(Ⅱ)∵c=2a,b=2,C=,∴由余弦定理可得c2=a2+b2﹣2abcosC,∴4a2=a2+12﹣4a•,解得a=﹣1+,或a=﹣1﹣(舍去)∴△ABC的面积S=absinC==22.【答案】【解析】解:全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.(1)A∪B={1,2,3,4,5,7}(2)(∁U A)={1,3,6,7}∴(∁U A)∩B={1,3,7}(3)∵A∩B={5}∁U(A∩B)={1,2,3,4,6,7}.【点评】本题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键.23.【答案】【解析】(Ⅰ)证明:∵对任意正整数n,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).故tan2a n+1==1+tan2a n,∴数列{tan2a n}是等差数列,首项tan2a1=,以1为公差.∴=.∴数列{tan2a n}的前n项和=+=.(Ⅱ)解:∵cosa n>0,∴tana n+1>0,.∴tana n=,,∴sina1•sina2•…•sina m=(tana1cosa1)•(tana2•cosa2)•…•(tana m•cosa m)=(tana2•cosa1)•(tana3cosa2)•…•(tana m•cosa m﹣1)•(tana1•cosa m)=(tana1•cosa m)==,由,得m=40.【点评】本题考查了等差数列的通项公式及其前n项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题.24.【答案】【解析】解:(1)将sin+cos=两边平方得:(sin+cos)2=sin2+2sin cos+cos2=1+sinα=,∴sinα=,∵α∈(,π),∴cosα=﹣=﹣;(2)∵α∈(,π),β∈(0,),∴α+β∈(,),∵sin(α+β)=﹣<0,∴α+β∈(π,),∴cos(α+β)=﹣=﹣,则sinβ=sin=sin(α+β)cosα﹣cos(α+β)sinα=﹣×(﹣)﹣(﹣)×=+=.【点评】此题考查了两角和与差的正弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键.。
平乡县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

平乡县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)2. 已知||=3,||=1,与的夹角为,那么|﹣4|等于()A .2B .C .D .133. 如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值;(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA的长.【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.4. 函数y=+的定义域是()A .{x|x ≥﹣1}B .{x|x >﹣1且x ≠3}C .{x|x ≠﹣1且x ≠3}D .{x|x ≥﹣1且x ≠3}5. 对“a ,b ,c 是不全相等的正数”,给出两个判断:①(a ﹣b )2+(b ﹣c )2+(c ﹣a )2≠0;②a ≠b ,b ≠c ,c ≠a 不能同时成立,下列说法正确的是( )A .①对②错B .①错②对C .①对②对D .①错②错6. 已知a ∈R ,复数z=(a ﹣2i )(1+i )(i 为虚数单位)在复平面内对应的点为M ,则“a=0”是“点M 在第四象限”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7. 若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是()A .(﹣∞,1]B .[0,1]C .(﹣2,﹣1)∪(﹣1,1]D .(﹣∞,﹣2)∪(﹣1,1]8. 给出下列两个结论:①若命题p :∃x 0∈R ,x 02+x 0+1<0,则¬p :∀x ∈R ,x 2+x+1≥0;班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________②命题“若m >0,则方程x 2+x ﹣m=0有实数根”的逆否命题为:“若方程x 2+x ﹣m=0没有实数根,则m ≤0”;则判断正确的是( )A .①对②错B .①错②对C .①②都对D .①②都错9. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .10.设集合,,则( ){}|||2A x R x =∈≤{}|10B x Z x =∈-≥A B =I A.B.C. D. {}|12x x <≤{}|21x x -≤≤{}2,1,1,2--{}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.11.双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .412.等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=()A .6B .9C .36D .72二、填空题13.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________.14.已知点G 是△ABC 的重心,若∠A=120°,•=﹣2,则||的最小值是 .15.在正方形中,,分别是边上的动点,当时,则ABCD 2==AD AB N M ,CD BC ,4AM AN u u u u r u u u r⋅=MN的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.16. 设函数,.有下列四个命题:()xf x e =()lng x x m =+①若对任意,关于的不等式恒成立,则;[1,2]x ∈x ()()f x g x >m e <②若存在,使得不等式成立,则;0[1,2]x ∈00()()f x g x >2ln 2m e <-③若对任意及任意,不等式恒成立,则;1[1,2]x ∈2[1,2]x ∈12()()f x g x >ln 22em <-④若对任意,存在,使得不等式成立,则.1[1,2]x ∈2[1,2]x ∈12()()f x g x >m e <其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.17.已知面积为的△ABC 中,∠A=若点D 为BC 边上的一点,且满足=,则当AD 取最小时,BD 的长为 . 18.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 . 三、解答题19.本小题满分10分选修:几何证明选讲41-如图,是⊙的内接三角形,是⊙的切线,切点为,交于点,交⊙于点,ABC ∆O PA O A PB AC E O D ,,,.PE PA =︒=∠45ABC 1=PD 8=DB Ⅰ求的面积;ABP ∆Ⅱ求弦的长.AC 20.(本题满分12分)在中,已知角所对的边分别是,边,且ABC ∆,,A B C ,,a bc 72c =,又的面积为,求的值.tan tan tan AB A B +=-g ABC ∆ABC S ∆=a b +21.已知等差数列{a n }满足a 1+a 2=3,a 4﹣a 3=1.设等比数列{b n }且b 2=a 4,b 3=a 8(Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)设c n =a n +b n ,求数列{c n }前n 项的和S n .22.求下列曲线的标准方程:(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线.求双曲线C的方程.(2)焦点在直线3x﹣4y﹣12=0 的抛物线的标准方程.23.已知函数(a≠0)是奇函数,并且函数f(x)的图象经过点(1,3),(1)求实数a,b的值;(2)求函数f(x)的值域.24.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.(Ⅰ)证明:AM⊥PM;(Ⅱ)求点D到平面AMP的距离.平乡县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:∵M={x|x≥﹣1},N={x|x≤k},若M∩N≠¢,则k≥﹣1.∴k的取值范围是[﹣1,+∞).故选:B.【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.2.【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos<,>=3×1×=,即有|﹣4|===.故选:C.【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题. 3.【答案】【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A所以BD⊥平面PAC(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)所以=(1,,﹣2),设PB与AC所成的角为θ,则cosθ=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC⊥平面PDC,所以=0,即﹣6+=0,解得t=,所以PA=.【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力4.【答案】D【解析】解:由题意得:,解得:x≥﹣1或x≠3,故选:D.【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.5.【答案】A【解析】解:由:“a,b,c是不全相等的正数”得:①(a﹣b)2+(b﹣c)2+(c﹣a)2中至少有一个不为0,其它两个式子大于0,故①正确;但是:若a=1,b=2,c=3,则②中a≠b,b≠c,c≠a能同时成立,故②错.故选A.【点评】本小题主要考查不等关系与不等式等基础知识,考查运算求解能力,考查逻辑思维能力.属于基础题.6.【答案】A【解析】解:若a=0,则z=﹣2i(1+i)=2﹣2i,点M在第四象限,是充分条件,若点M在第四象限,则z=(a+2)+(a﹣2)i,推出﹣2<a<2,推不出a=0,不是必要条件;故选:A.【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题.7.【答案】D【解析】解:∵函数f(x)=﹣x2+2ax的对称轴为x=a,开口向下,∴单调间区间为[a ,+∞)又∵f (x )在区间[1,2]上是减函数,∴a ≤1∵函数g (x )=在区间(﹣∞,﹣a )和(﹣a ,+∞)上均为减函数,∵g (x )=在区间[1,2]上是减函数,∴﹣a >2,或﹣a <1,即a <﹣2,或a >﹣1,综上得a ∈(﹣∞,﹣2)∪(﹣1,1],故选:D【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围. 8. 【答案】C【解析】解:①命题p 是一个特称命题,它的否定是全称命题,¬p 是全称命题,所以①正确.②根据逆否命题的定义可知②正确.故选C .【点评】考查特称命题,全称命题,和逆否命题的概念.9. 【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m 可以取:0,1,2.故答案为:C 10.【答案】D 【解析】由绝对值的定义及,得,则,所以,故选D.||2x ≤22x -≤≤{}|22A x x =-≤≤{}1,2A B =I 11.【答案】C【解析】解:双曲线4x 2+ty 2﹣4t=0可化为:∴∴双曲线4x 2+ty 2﹣4t=0的虚轴长等于故选C . 12.【答案】D【解析】解:设等比数列{a n }的公比为q ,∵a 1=3,a 1+a 3+a 5=21,∴3(1+q 2+q 4)=21,解得q 2=2.则a 2a 6=9×q 6=72.故选:D . 二、填空题13.【答案】(,0)(4,)-∞+∞U 【解析】试题分析:把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可,设关于的函数44)2(24)4(x f(x)y 22+-+-=-+-+==x x a x a x a 对任意的2],[-2a ∈,当-2a =时,044)42(x )2(f(a)y 2>++--+=-==x f ,即086x )2(2>+-=-x f ,解得4x 2x ><或;当2a =时,044)42(x )2(y 2>-+-+==x f ,即02x )2(2>-=x f ,解得2x 0x ><或,∴的取值范围是{x|x 0x 4}<>或;故答案为:(,0)(4,)-∞+∞U .考点:换主元法解决不等式恒成立问题.【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简洁,是易错题.把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围.14.【答案】 .【解析】解:∵∠A=120°,•=﹣2,∴||•||=4,又∵点G 是△ABC 的重心,∴||=|+|==≥=故答案为:【点评】本题考查的知识点是向量的模,三角形的重心,基本不等式,其中利用基本不等式求出|+|的取值范围是解答本题的关键,另外根据点G 是△ABC 的重心,得到=(+),也是解答本题的关键.15.【答案】2](,)上的点到定点,最大值为,故的取值02x ££02y ££(,)x y (2,2)2MN范围为.2]x16.【答案】①②④【解析】17.【答案】 .【解析】解:AD 取最小时即AD ⊥BC 时,根据题意建立如图的平面直角坐标系,根据题意,设A (0,y ),C (﹣2x ,0),B (x ,0)(其中x >0),则=(﹣2x ,﹣y ),=(x ,﹣y ),∵△ABC 的面积为,∴⇒=18,∵=cos=9,∴﹣2x2+y 2=9,∵AD⊥BC ,∴S=••=⇒xy=3,由得:x=,故答案为:.【点评】本题考查了三角形的面积公式、利用平面向量来解三角形的知识. 18.【答案】 (﹣∞,]∪[,+∞) .【解析】解:数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,∴数列{a n }是以1为首项,以为公比的等比数列,S n ==2﹣()n ﹣1,对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,∴x 2+tx+1≥2,x 2+tx ﹣1≥0,令f (t )=tx+x 2﹣1,∴,解得:x ≥或x ≤,∴实数x 的取值范围(﹣∞,]∪[,+∞).三、解答题19.【答案】【解析】Ⅰ是⊙的切线,切点为 ∴ Q PA O A PAE ∠=45ABC ∠=︒又∵ ∴,PE PA =PEA ∠=45︒APE ∠=90︒由于,,所以由切割线定理可知,既1=PD 8=DB 92=⋅=PB PD PA 3==PA EP 故的面积为. ABP ∆12PA BP ⋅=272Ⅱ在中,由勾股定理得Rt APE ∆APE AE =由于,,所以由相交弦定理得2=-=PD EP ED 6=-=DE DB EB所以,故. EC EA EB ED ⋅=⋅12=222312==EC =AC 20.【答案】.112【解析】试题解析:由tan tan tan A B A B +=g可得,即.tan tan 1tan tan A B A B +=-g tan()A B +=∴,∴,∴tan()C π-=tan C -=tan C =∵,∴.(0,)C π∈3C π=又的面积为,∴,即.ABC ∆ABC S ∆=1sin 2ab C =12ab =6ab =又由余弦定理可得,∴,2222cos c a b ab C =+-2227(2cos 23a b ab π=+-∴,∴,∵,∴.122227()()32a b ab a b ab =+-=+-2121()4a b +=0a b +>112a b +=考点:解三角形问题.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到两角和与两角差的正切函数公式、三角形的面积、正弦定理和余弦定理,以及特殊角的三角函数值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,其中熟练掌握基本公式和灵活运用公式是解答本题的关键,属于中档试题.21.【答案】【解析】解:(1)设等差数列{a n }的公差为d ,则由,可得,…解得:,∴由等差数列通项公式可知:a n =a 1+(n ﹣1)d=n ,∴数列{a n }的通项公式a n =n ,∴a 4=4,a 8=8设等比数列{b n}的公比为q,则,解得,∴;(2)∵…∴,=,=,∴数列{c n}前n项的和S n=.22.【答案】【解析】解:(1)由椭圆+=1,得a2=8,b2=4,∴c2=a2﹣b2=4,则焦点坐标为F(2,0),∵直线y=x为双曲线的一条渐近线,∴设双曲线方程为(λ>0),即,则λ+3λ=4,λ=1.∴双曲线方程为:;(2)由3x﹣4y﹣12=0,得,∴直线在两坐标轴上的截距分别为(4,0),(0,﹣3),∴分别以(4,0),(0,﹣3)为焦点的抛物线方程为:y2=16x或x2=﹣12y.【点评】本题考查椭圆方程和抛物线方程的求法,对于(1)的求解,设出以直线为一条渐近线的双曲线方程是关键,是中档题.23.【答案】【解析】解:(1)∵函数是奇函数,则f(﹣x)=﹣f(x)∴,∵a≠0,∴﹣x+b=﹣x﹣b,∴b=0(3分)又函数f(x)的图象经过点(1,3),∴f(1)=3,∴,∵b=0,∴a=2(6分)(2)由(1)知(7分)当x>0时,,当且仅当,即时取等号(10分)当x<0时,,∴当且仅当,即时取等号(13分)综上可知函数f(x)的值域为(12分)【点评】本题主要考查函数的奇偶性和单调性的应用,转化函数研究性质是问题的关键. 24.【答案】【解析】(Ⅰ)证明:取CD的中点E,连接PE、EM、EA∵△PCD为正三角形∴PE⊥CD,PE=PDsin∠PDE=2sin60°=∵平面PCD⊥平面ABCD∴PE⊥平面ABCD∵四边形ABCD是矩形∴△ADE、△ECM、△ABM均为直角三角形由勾股定理得EM=,AM=,AE=3∴EM2+AM2=AE2,∴∠AME=90°∴AM⊥PM(Ⅱ)解:设D点到平面PAM的距离为d,连接DM,则V P﹣ADM=V D﹣PAM∴而在Rt△PEM中,由勾股定理得PM=∴∴∴,即点D到平面PAM的距离为。
平乡县第三中学校2018-2019学年高三上学期11月月考数学试卷含答案

x2 y 2 7. 双曲线 2 2 1 a 0, b 0 的左右焦点分别为 F1、F2 ,过 F2 的直线与双曲线的右支交于 a b ) A、B 两点,若 F1 AB 是以 A 为直角顶点的等腰直角三角形,则 e 2 (
A. 1 2 2
2
B. 4 2 2
2
C. 5 2 2
故选:C. 【点评】本题考查了等差数列的通项公式及其首项 a1 和公差 d 的求法,属于基础题. 5. 【答案】C 【解析】解:命题“若 α= “若 tan α≠1,则 α≠ 故选:C. 6. 【答案】A 【解析】解:∵60.5>60=1, 0<0.56<0.50=1, log0.56<log0.51=0. ∴log0.56<0.56<60.5. 故选:A 【点评】本题考查了不等关系与不等式,考查了指数函数和对数函数的性质,对于此类大小比较问题,有时借 助于 0 和 1 为媒介,能起到事半功倍的效果,是基础题. 7. 【答案】C 【解析】 试 题 分 析 : 设 ”. ,则 tan α=1”的逆否命题是
平乡县第三中学校 2018-2019 学年高三上学期 11 月月考数学试卷含答案 一、选择题
1. 为了得到函数 y= A.向右平移 班级_______________ 座号______ 姓名_______________ 分数_______________ ___________________________________________________________________________________________________ sin3x 的图象,可以将函数 y= 个单位 sin(3x+ )的图象( )
) B.2 C. 3 D. 2
是( A. 5
郊区外国语学校2018-2019学年高三上学期11月月考数学试卷含答案(1)

郊区外国语学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m ,n 为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a 和b ,则一定有()A .a >bB .a <bC .a=bD .a ,b 的大小与m ,n 的值有关2. 一个骰子由六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( )1~6A .6B .3C .1D .23. 某班有50名学生,一次数学考试的成绩ξ服从正态分布N (105,102),已知P (95≤ξ≤105)=0.32,估计该班学生数学成绩在115分以上的人数为( )A .10B .9C .8D .74. 与函数 y=x 有相同的图象的函数是( )A .B .C .D .5. 直线的倾斜角是( )A .B .C .D .6. 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( )A .1372B .2024C .3136D .44957. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(1,+∞)B .(0,1)C .(﹣1,0)D .(﹣∞,﹣1)8. 若命题“p ∧q ”为假,且“¬q ”为假,则( )A .“p ∨q ”为假B .p 假C .p 真D .不能判断q 的真假9. 在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.B.C.D.10.如图,直三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=,则异面直线A1C 与B1C1所成的角为()A.30°B.45°C.60°D.90°11.设双曲线=1(a>0,b>0)的渐近线方程为y=x,则该双曲线的离心率为()A.B.2C.D.12.等差数列{a n}中,已知前15项的和S15=45,则a8等于()A.B.6C.D.3二、填空题13.已知函数f(x)=x m过点(2,),则m= .14.函数f(x)=(x>3)的最小值为 .15.已知直线l过点P(﹣2,﹣2),且与以A(﹣1,1),B(3,0)为端点的线段AB相交,则直线l的斜率的取值范围是 .16.设全集U=R,集合M={x|2a﹣1<x<4a,a∈R},N={x|1<x<2},若N⊆M,则实数a的取值范围是 .17.设i是虚数单位,是复数z的共轭复数,若复数z=3﹣i,则z•= .18.已知函数f(x)=x2+x﹣b+(a,b为正实数)只有一个零点,则+的最小值为 .三、解答题19.已知函数f(x)=|2x+1|,g(x)=|x|+a(Ⅰ)当a=0时,解不等式f(x)≥g(x);(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.20.已知函数f(x)=sin(ωx+φ)+1(ω>0,﹣<φ<)的最小正周期为π,图象过点P(0,1)(Ⅰ)求函数f(x)的解析式;(Ⅱ)设函数g(x)=f(x)+cos2x﹣1,将函数g(x)图象上所有的点向右平行移动个单位长度后,所得的图象在区间(0,m)内是单调函数,求实数m的最大值.21.某同学在研究性学习中,了解到淘宝网站一批发店铺在今年的前五个月的销售量(单位:百件)的数据如表:月份x12345销售量y(百件)44566(Ⅰ)该同学为了求出y关于x的回归方程=x+,根据表中数据已经正确算出=0.6,试求出的值,并估计该店铺6月份的产品销售量;(单位:百件)(Ⅱ)一零售商现存有从该淘宝批发店铺2月份进货的4件和3月份进货的5件产品,顾客甲现从该零售商处随机购买了3件,后经了解,该淘宝批发店铺今年2月份的产品都有质量问题,而3月份的产品都没有质量问题.记顾客甲所购买的3件产品中存在质量问题的件数为X,求X的分布列和数学期望.22.已知数列{a n}中,a1=1,且a n+a n+1=2n,(1)求数列{a n}的通项公式;(2)若数列{a n}的前n项和S n,求S2n.23.已知函数f(x)=|x﹣a|.(1)若f(x)≤m的解集为{x|﹣1≤x≤5},求实数a,m的值.(2)当a=2且0≤t<2时,解关于x的不等式f(x)+t≥f(x+2).24.已知函数f(x)=x2﹣ax+(a﹣1)lnx(a>1).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若a=2,数列{a n}满足a n+1=f(a n).(1)若首项a1=10,证明数列{a n}为递增数列;(2)若首项为正整数,且数列{a n}为递增数列,求首项a1的最小值. 郊区外国语学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:根据茎叶图中的数据,得;甲得分的众数为a=85,乙得分的中位数是b=85;所以a=b.故选:C.2.【答案】A【解析】1,4,31,2,51,3,5试题分析:根据与相邻的数是,而与相邻的数有,所以是相邻的数,故“?”表示的数是,故选A.考点:几何体的结构特征.3.【答案】B【解析】解:∵考试的成绩ξ服从正态分布N(105,102).∴考试的成绩ξ关于ξ=105对称,∵P(95≤ξ≤105)=0.32,∴P(ξ≥115)=(1﹣0.64)=0.18,∴该班数学成绩在115分以上的人数为0.18×50=9故选:B.【点评】本题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩ξ关于ξ=105对称,利用对称写出要用的一段分数的频数,题目得解.4.【答案】D【解析】解:A:y=的定义域[0,+∞),与y=x的定义域R不同,故A错误B:与y=x的对应法则不一样,故B错误C:=x,(x≠0)与y=x的定义域R不同,故C错误D:,与y=x是同一个函数,则函数的图象相同,故D正确故选D【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题 5.【答案】A【解析】解:设倾斜角为α,∵直线的斜率为,∴tanα=,∵0°<α<180°,∴α=30°故选A.【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握.6.【答案】C【解析】【专题】排列组合.【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.综上可知,可得不同三角形的个数为1372+1764=3136.故选:C.【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.7.【答案】D【解析】解:若a=0,则函数f(x)=﹣3x2+1,有两个零点,不满足条件.若a≠0,函数的f(x)的导数f′(x)=6ax2﹣6x=6ax(x﹣),若f(x)存在唯一的零点x0,且x0>0,若a>0,由f′(x)>0得x>或x<0,此时函数单调递增,由f′(x)<0得0<x<,此时函数单调递减,故函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若x0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件.若a<0,由f′(x)>0得<x<0,此时函数递增,由f′(x)<0得x<或x>0,此时函数单调递减,即函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若存在唯一的零点x0,且x0>0,则f()>0,即2a()3﹣3()2+1>0,()2<1,即﹣1<<0,解得a<﹣1,故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.8.【答案】B【解析】解:∵命题“p∧q”为假,且“¬q”为假,∴q为真,p为假;则p∨q为真,故选B.【点评】本题考查了复合命题的真假性的判断,属于基础题.9.【答案】D【解析】解:双曲线(a>0,b>0)的渐近线方程为y=±x联立方程组,解得A(,),B(,﹣),设直线x=与x轴交于点D∵F为双曲线的右焦点,∴F(C,0)∵△ABF为钝角三角形,且AF=BF,∴∠AFB>90°,∴∠AFD>45°,即DF<DA∴c﹣<,b<a,c2﹣a2<a2∴c2<2a2,e2<2,e<又∵e>1∴离心率的取值范围是1<e<故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式.10.【答案】C【解析】解:因为几何体是棱柱,BC∥B1C1,则直线A1C与BC所成的角为就是异面直线A1C与B1C1所成的角.直三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=,BA1=,CA1=,三角形BCA1是正三角形,异面直线所成角为60°.故选:C.11.【答案】C【解析】解:由已知条件知:;∴;∴;∴.故选C.【点评】考查双曲线的标准方程,双曲线的渐近线方程的表示,以及c2=a2+b2及离心率的概念与求法.12.【答案】D【解析】解:由等差数列的性质可得:S15==15a8=45,则a8=3.故选:D.二、填空题13.【答案】 ﹣1 .【解析】解:将(2,)代入函数f(x)得:=2m,解得:m=﹣1;故答案为:﹣1.【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题.14.【答案】 12 .【解析】解:因为x>3,所以f(x)>0由题意知:=﹣令t=∈(0,),h(t)==t﹣3t2因为h(t)=t﹣3t2的对称轴x=,开口朝上知函数h(t)在(0,)上单调递增,(,)单调递减;故h(t)∈(0,]由h(t)=⇒f(x)=≥12故答案为:1215.【答案】 [,3] .【解析】解:直线AP的斜率K==3,直线BP的斜率K′==由图象可知,则直线l的斜率的取值范围是[,3],故答案为:[,3],【点评】本题给出经过定点P的直线l与线段AB有公共点,求l的斜率取值范围.着重考查了直线的斜率与倾斜角及其应用的知识,属于中档题.16.【答案】 [,1] .【解析】解:∵全集U=R,集合M={x|2a﹣1<x<4a,a∈R},N={x|1<x<2},N⊆M,∴2a﹣1≤1 且4a≥2,解得2≥a≥,故实数a的取值范围是[,1],故答案为[,1].17.【答案】 10 .【解析】解:由z=3﹣i,得z•=.故答案为:10.【点评】本题考查公式,考查了复数模的求法,是基础题.18.【答案】 9+4 .【解析】解:∵函数f(x)=x2+x﹣b+只有一个零点,∴△=a﹣4(﹣b+)=0,∴a+4b=1,∵a,b为正实数,∴+=(+)(a+4b)=9++≥9+2=9+4当且仅当=,即a=b时取等号,∴+的最小值为:9+4故答案为:9+4【点评】本题考查基本不等式,得出a+4b=1是解决问题的关键,属基础题.三、解答题19.【答案】【解析】解:(Ⅰ)当a=0时,由f(x)≥g(x)得|2x+1|≥x,两边平方整理得3x2+4x+1≥0,解得x≤﹣1 或x≥﹣∴原不等式的解集为(﹣∞,﹣1]∪[﹣,+∞)(Ⅱ)由f(x)≤g(x)得a≥|2x+1|﹣|x|,令h(x)=|2x+1|﹣|x|,即h(x)=,故h(x)min=h(﹣)=﹣,故可得到所求实数a的范围为[﹣,+∞).【点评】本题主要考查带有绝对值的函数,绝对值不等式的解法,求函数的最值,属于中档题.20.【答案】【解析】解:(Ⅰ)∵函数f(x)=sin(ωx+φ)+1(ω>0,﹣<φ<)的最小正周期为π,∴ω==2,又由函数f(x)的图象过点P(0,1),∴sinφ=0,∴φ=0,∴函数f(x)=sin2x+1;(Ⅱ)∵函数g(x)=f(x)+cos2x﹣1=sin2x+cos2x=sin(2x+),将函数g(x)图象上所有的点向右平行移动个单位长度后,所得函数的解析式是:h(x)=sin[2(x﹣)+]=sin(2x﹣),∵x∈(0,m),∴2x﹣∈(﹣,2m﹣),又由h(x)在区间(0,m)内是单调函数,∴2m﹣≤,即m≤,即实数m的最大值为.【点评】本题考查的知识点是正弦型函数的图象和性质,函数图象的平移变换,熟练掌握正弦型函数的图象和性质,是解答的关键.21.【答案】【解析】解:(1),=5…且,代入回归直线方程可得∴=0.6x+3.2,x=6时,=6.8,…(2)X的取值有0,1,2,3,则,,,…其分布列为:X0123P…【点评】本题考查线性回归方程、离散型随机变量的分布列及其数学期望,考查学生分析解决问题的能力. 22.【答案】【解析】解:(1)∵a 1=1,且a n +a n+1=2n ,∴当n ≥2时,.∴a n+1﹣a n ﹣1=2n ﹣1,当n=1,2,3时,a 1+a 2=2,a 2+a 3=22,.解得a 2=1,a 3=3,a 4=5.当n 为偶数2k (k ∈N *)时,a 2k =(a 2k ﹣a 2k ﹣2)+(a 2k ﹣2﹣a 2k ﹣4)+…+(a 6﹣a 4)+(a 4﹣a 2)+a 2=22k ﹣2+22k ﹣4+…+24+22+1==.当n 为奇数时,,∴,∴(k ∈N *).(2)S 2n =(a 2+a 4+…+a 2n )+(a 1+a 3+…+a 2n ﹣1)=(a 2+a 4+…+a 2n )+[(2﹣a 2)+(23﹣a 4)+…+(a 2n ﹣1﹣a 2n )]=2+23+…+22n ﹣1==.【点评】本题考查了等比数列的通项公式及其前n 项和公式、“累加求和”,考查了分类讨论思想方法,考查了推理能力与计算能力,属于中档题.23.【答案】【解析】解:(1)∵f (x )≤m ,∴|x ﹣a|≤m ,即a ﹣m ≤x ≤a+m ,∵f (x )≤m 的解集为{x|﹣1≤x ≤5},∴,解得a=2,m=3.(2)当a=2时,函数f(x)=|x﹣2|,则不等式f(x)+t≥f(x+2)等价为|x﹣2|+t≥|x|.当x≥2时,x﹣2+t≥x,即t≥2与条件0≤t<2矛盾.当0≤x<2时,2﹣x+t≥x,即0,成立.当x<0时,2﹣x+t≥﹣x,即t≥﹣2恒成立.综上不等式的解集为(﹣∞,].【点评】本题主要考查绝对值不等式的解法,要求熟练掌握绝对值的化简技巧.24.【答案】【解析】解:(Ⅰ)∵,∴(x>0),当a=2时,则在(0,+∞)上恒成立,当1<a<2时,若x∈(a﹣1,1),则f′(x)<0,若x∈(0,a﹣1)或x∈(1,+∞),则f′(x)>0,当a>2时,若x∈(1,a﹣1),则f′(x)<0,若x∈(0,1)或x∈(a﹣1,+∞),则f′(x)>0,综上所述:当1<a<2时,函数f(x)在区间(a﹣1,1)上单调递减,在区间(0,a﹣1)和(1,+∞)上单调递增;当a=2时,函数(0,+∞)在(0,+∞)上单调递增;当a>2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a﹣1,+∞)上单调递增.(Ⅱ)若a=2,则,由(Ⅰ)知函数f(x)在区间(0,+∞)上单调递增,(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2>a1>0,假设0<a k<a k+1(k≥1),因为函数f(x)在区间(0,+∞)上单调递增,∴f(a k+1)>f(a k),即得a k+2>a k+1>0,由数学归纳法原理知,a n+1>a n对于一切正整数n都成立,∴数列{a n}为递增数列.(2)由(1)知:当且仅当0<a1<a2,数列{a n}为递增数列,∴f(a1)>a1,即(a1为正整数),设(x≥1),则,∴函数g(x)在区间上递增,由于,g(6)=ln6>0,又a1为正整数,∴首项a1的最小值为6.【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题.选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分.如果多做,则按所做的前两题计分.【选修4-2:矩阵与变换】。
平乡县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

平乡县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知数列{}满足().若数列{}的最大项和最小项分别为n a nn n a 2728-+=*∈N n n a M 和,则()m =+m M A .B .C .D .21122732259324352. 在中,、、分别为角、、所对的边,若,则此三角形的形状一定是( )A .等腰直角B .等腰或直角C .等腰D .直角3. 如图,空间四边形ABCD 中,M、G 分别是BC 、CD 的中点,则等()A .B .C .D .4. 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点M (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A .3B .C .D .5. 在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( )A .7049B .7052C .14098D .141016. 已知数列的各项均为正数,,,若数列的前项和为5,则{}n a 12a =114n n n n a a a a ++-=+11n n a a +⎧⎫⎨⎬+⎩⎭n ( )n =A . B .C .D .35361201217. 若则的值为( )⎩⎨⎧≥<+=-)2(,2)2(),2()(x x x f x f x)1(f A .8B .C .2D .81218. 定义新运算⊕:当a ≥b 时,a ⊕b=a ;当a <b 时,a ⊕b=b 2,则函数f (x )=(1⊕x )x ﹣(2⊕x ),x ∈[﹣2,2]的最大值等于( )A .﹣1B .1C .6D .12 9. 若函数是R 上的单调减函数,则实数a 的取值范围是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .(﹣∞,2)B .C .(0,2)D .10.已知集合A={x|x 是平行四边形},B={x|x 是矩形},C={x|x 是正方形},D={x|x 是菱形},则( )A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆D34意在考查学生空间想象能力和计算能﹣,,xOy 中,P 是曲线上xC y e :=c 的值为________.14.已知,,则的值为 .1sin cos 3αα+=(0,)απ∈sin cos 7sin 12ααπ-15.【泰州中学2018届高三10月月考】设函数,其中,若存在唯一的整数()()21xf x e x ax a =--+1a <,使得,则的取值范围是0x ()00f x <a 16.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .17.【2017-2018第一学期东台安丰中学高三第一次月考】若函数在其定义域上恰有两()2,0,{,0x x x f x x lnx x a+≤=->个零点,则正实数的值为______.a18.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .三、解答题19.(本小题满分12分)已知过抛物线的焦点,斜率为的直线交抛物线于2:2(0)C y px p =>11A x y (,)和()两点,且.22B x y (,)12x x <92AB =(I )求该抛物线的方程;C (II )如图所示,设为坐标原点,取上不同于的点,以为直径作圆与相交另外一点,O C O S OS C R 求该圆面积的最小值时点的坐标.S20.根据下列条件求方程.(1)若抛物线y 2=2px 的焦点与椭圆+=1的右焦点重合,求抛物线的准线方程 (2)已知双曲线的离心率等于2,且与椭圆+=1有相同的焦点,求此双曲线标准方程.21.(本小题满分12分)已知圆:的圆心在第二象限,半径为,且圆与直线及轴都C 022=++++F Ey Dx y x 2C 043=+y x y 相切.(1)求;F E D 、、(2)若直线与圆交于两点,求.022=+-y x C B A 、||AB 22.永泰青云山特产经营店销售某种品牌蜜饯,蜜饯每盒进价为8元,预计这种蜜饯以每盒20元的价格销售时该店一天可销售20盒,经过市场调研发现每盒蜜饯的销售价格在每盒20元的基础上每减少一元则增加销售4盒,每增加一元则减少销售1盒,现设每盒蜜饯的销售价格为x 元.(1)写出该特产店一天内销售这种蜜饯所获得的利润y (元)与每盒蜜饯的销售价格x 的函数关系式;(2)当每盒蜜饯销售价格x 为多少时,该特产店一天内利润y (元)最大,并求出这个最大值.23.如图,点A 是单位圆与x 轴正半轴的交点,B (﹣,).(I )若∠AOB=α,求cos α+sin α的值;(II )设点P 为单位圆上的一个动点,点Q 满足=+.若∠AOP=2θ,表示||,并求||的最大值.24.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.平乡县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】D 【解析】试题分析:数列,,、n n n a 2728-+=112528++-+=∴n n n a 11252722n nn nn n a a ++--∴-=-,当时,,即;当时,,()11252272922n n n n n ++----+==41≤≤n n n a a >+112345a a a a a >>>>5≥n n n a a <+1即.因此数列先增后减,为最大项,,,最...765>>>a a a {}n a 32259,55==∴a n 8,→∞→n a n 2111=a 、∴小项为,的值为.故选D.211M m +∴3243532259211=+考点:数列的函数特性.2. 【答案】B 【解析】因为,所以由余弦定理得,即,所以或,即此三角形为等腰三角形或直角三角形,故选B 答案:B3. 【答案】C【解析】解:∵M 、G 分别是BC 、CD 的中点,∴=,=∴=++=+=故选C【点评】本题考查的知识点是向量在几何中的应用,其中将化为++,是解答本题的关键. 4. 【答案】B【解析】解:依题设P 在抛物线准线的投影为P ′,抛物线的焦点为F ,则F (,0),依抛物线的定义知P 到该抛物线准线的距离为|PP ′|=|PF|,则点P 到点M (0,2)的距离与P 到该抛物线准线的距离之和,d=|PF|+|PM|≥|MF|==.即有当M ,P ,F 三点共线时,取得最小值,为.故选:B .【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想. 5. 【答案】B【解析】解:∵a n+1a n +2=2a n+1+2a n (n ∈N +),∴(a n+1﹣2)(a n ﹣2)=2,当n ≥2时,(a n ﹣2)(a n ﹣1﹣2)=2,∴,可得a n+1=a n ﹣1,因此数列{a n }是周期为2的周期数列.a 1=3,∴3a 2+2=2a 2+2×3,解得a 2=4,∴S 2015=1007(3+4)+3=7052.【点评】本题考查了数列的周期性,考查了计算能力,属于中档题. 6. 【答案】C【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前项和.由n 114n n n na a a a ++-=+得,∴是等差数列,公差为,首项为,∴,由得2214n n a a +-={}2n a 44244(1)4n a n n =+-=0n a >.,∴数列的前项和为na=1112n n a a +==+11n n a a +⎧⎫⎨⎬+⎩⎭n ,∴,选C.11111)1)52222-+++==L 120n =7. 【答案】B 【解析】试题分析:,故选B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平乡县外国语学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 复数i i -+3)1(2的值是( )A .i 4341+-B .i 4341-C .i 5351+-D .i 5351-【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题.2. 从单词“equation ”选取5个不同的字母排成一排,含有“qu ”(其中“qu ”相连且顺序不变)的不同排列共有( ) A .120个B .480个C .720个D .840个3. 已知两点M (1,),N (﹣4,﹣),给出下列曲线方程: ①4x+2y ﹣1=0;②x 2+y 2=3;③+y 2=1;④﹣y 2=1.在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( ) A .①③ B .②④ C .①②③ D .②③④4. 记,那么ABC D5. i 是虚数单位,计算i+i 2+i 3=( )A .﹣1B .1C .﹣iD .i6.已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,若双曲线右支上存在一点P ,使得F 2关于直线PF 1的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( ) A .1<e<B .e>C .e>D .1<e<7. 设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.M=P B.P⊊M C.M⊊P D.M∪P=R8.抛物线y=x2的焦点坐标为()A.(0,)B.(,0)C.(0,4) D.(0,2)9.i是虚数单位,i2015等于()A.1 B.﹣1 C.i D.﹣i10.双曲线上一点P到左焦点的距离为5,则点P到右焦点的距离为()A.13 B.15 C.12 D.1111.命题“∃x∈R,使得x2<1”的否定是()A.∀x∈R,都有x2<1 B.∃x∈R,使得x2>1C.∃x∈R,使得x2≥1 D.∀x∈R,都有x≤﹣1或x≥112.某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S的值为()A.9.6 B.7.68 C.6.144 D.4.9152二、填空题13.已知曲线y=(a﹣3)x3+lnx存在垂直于y轴的切线,函数f(x)=x3﹣ax2﹣3x+1在[1,2]上单调递减,则a的范围为.14.已知双曲线的一条渐近线方程为y=x,则实数m等于.15.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}22sincos []1x x +=的实数解为6π-;③若3n n a ⎡⎤=⎢⎥⎣⎦(n N *∈),则数列{}n a 的前3n 项之和为23122n n -;④当0100x ≤≤时,函数{}22()sin []sin 1f x x x =+-的零点个数为m ,函数{}()[]13xg x x x =⋅--的 零点个数为n ,则100m n +=.其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。
16.已知,0()1,0x e x f x x ì³ï=í<ïî,则不等式2(2)()f x f x ->的解集为________.【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力. 17.对于|q|<1(q 为公比)的无穷等比数列{a n }(即项数是无穷项),我们定义S n (其中S n 是数列{a n }的前n 项的和)为它的各项的和,记为S ,即S=S n=,则循环小数0.的分数形式是 .18.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .三、解答题19.如图所示,两个全等的矩形ABCD 和ABEF 所在平面相交于AB ,M AC ∈,N FB ∈,且AM FN =,求证://MN 平面BCE .20.己知函数f (x )=|x ﹣2|+a ,g (x )=|x+4|,其中a ∈R . (Ⅰ)解不等式f (x )<g (x )+a ;(Ⅱ)任意x ∈R ,f (x )+g (x )>a 2恒成立,求a 的取值范围.21.如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ∥DE ,DE=3AF ,BE 与平面ABCD 所成角为60°.(Ⅰ)求证:AC ⊥平面BDE ;(Ⅱ)求二面角F ﹣BE ﹣D 的余弦值;(Ⅲ)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.22.已知m ∈R ,函数f (x )=(x 2+mx+m )e x . (1)若函数f (x )没有零点,求实数m 的取值范围;(2)若函数f (x )存在极大值,并记为g (m ),求g (m )的表达式;(3)当m=0时,求证:f (x )≥x 2+x 3.23.(本小题满分12分)如图(1),在三角形PCD 中,AB 为其中位线,且2BD PC =,若沿AB 将三角形PAB 折起,使PAD θ∠=,构成四棱锥P ABCD -,且2PC CDPF CE==.(1)求证:平面 BEF ⊥平面PAB ; (2)当 异面直线BF 与PA 所成的角为3π时,求折起的角度.245(Ⅱ)若同一次考试成绩之差的绝对值不超过5分,则称该次考试两人“水平相当”.由上述5次摸底考试成绩统计,任意抽查两次摸底考试,求恰有一次摸底考试两人“水平相当”的概率.平乡县外国语学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】C【解析】i i i i i i i i i i 53511062)3)(3()3(2323)1(2+-=+-=+-+=-=-+.2. 【答案】B【解析】解:要选取5个字母时首先从其它6个字母中选3个有C 63种结果,再与“qu “组成的一个元素进行全排列共有C 63A 44=480,故选B .3. 【答案】 D【解析】解:要使这些曲线上存在点P 满足|MP|=|NP|,需曲线与MN 的垂直平分线相交.MN 的中点坐标为(﹣,0),MN 斜率为=∴MN 的垂直平分线为y=﹣2(x+),∵①4x+2y ﹣1=0与y=﹣2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知①不符合题意.②x 2+y 2=3与y=﹣2(x+),联立,消去y 得5x 2﹣12x+6=0,△=144﹣4×5×6>0,可知②中的曲线与MN 的垂直平分线有交点,③中的方程与y=﹣2(x+),联立,消去y 得9x 2﹣24x ﹣16=0,△>0可知③中的曲线与MN 的垂直平分线有交点,④中的方程与y=﹣2(x+),联立,消去y 得7x 2﹣24x+20=0,△>0可知④中的曲线与MN 的垂直平分线有交点, 故选D4. 【答案】B 【解析】【解析1】,所以【解析2】,5. 【答案】A【解析】解:由复数性质知:i2=﹣1故i+i2+i3=i+(﹣1)+(﹣i)=﹣1故选A【点评】本题考查复数幂的运算,是基础题.6.【答案】B【解析】解:设点F2(c,0),由于F2关于直线PF1的对称点恰在y轴上,不妨设M在正半轴上,由对称性可得,MF1=F1F2=2c,则MO==c,∠MFF2=60°,∠PF1F2=30°,1设直线PF1:y=(x+c),代入双曲线方程,可得,(3b2﹣a2)x2﹣2ca2x﹣a2c2﹣3a2b2=0,则方程有两个异号实数根,则有3b2﹣a2>0,即有3b2=3c2﹣3a2>a2,即c>a,则有e=>.故选:B.7.【答案】B【解析】解:P={x|x=3},M={x|x>1};∴P⊊M.故选B.8.【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,∴焦点坐标为(0,2).故选:D.【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.9.【答案】D【解析】解:i2015=i503×4+3=i3=﹣i,故选:D【点评】本题主要考查复数的基本运算,比较基础.10.【答案】A【解析】解:设点P到双曲线的右焦点的距离是x,∵双曲线上一点P到左焦点的距离为5,∴|x﹣5|=2×4∵x>0,∴x=13故选A.11.【答案】D【解析】解:命题是特称命题,则命题的否定是∀x∈R,都有x≤﹣1或x≥1,故选:D.【点评】本题主要考查含有量词的命题的否定,比较基础.12.【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(1﹣20%)x,结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C.二、填空题13.【答案】.【解析】解:因为y=(a﹣3)x3+lnx存在垂直于y轴的切线,即y'=0有解,即y'=在x>0时有解,所以3(a﹣3)x3+1=0,即a﹣3<0,所以此时a<3.函数f(x)=x3﹣ax2﹣3x+1在[1,2]上单调递减,则f'(x)≤0恒成立,即f'(x)=3x2﹣2ax﹣3≤0恒成立,即,因为函数在[1,2]上单调递增,所以函数的最大值为,所以,所以.综上.故答案为:.【点评】本题主要考查导数的基本运算和导数的应用,要求熟练掌握利用导数在研究函数的基本应用.14.【答案】4.【解析】解:∵双曲线的渐近线方程为y=x,又已知一条渐近线方程为y=x ,∴ =2,m=4,故答案为4.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得渐近线方程为 y=x ,是解题的关键.15.【答案】①③【解析】对于①,由高斯函数的定义,显然1[]x x x -<≤,①是真命题;对于②,由{}22sincos []1x x +=得,{}22sin 1cos []x x =-,即{}22sin sin []x x =.当12x << 时,011x <-<,0sin(1)sin1x <-<,此时{}22sin sin []x x =化为22sin (1)sin 1x -=,方程无解;当23x ≤< 时,021x ≤-<,0sin(2)sin1x ≤-<,此时{}22sinsin []x x =化为sin(2)sin 2x -=,所以22x -=或22x π-+=,即4x =或x π=,所以原方程无解.故②是假命题;对于③,∵3n n a ⎡⎤=⎢⎥⎣⎦(n N *∈),∴1103a ⎡⎤==⎢⎥⎣⎦,2203a ⎡⎤==⎢⎥⎣⎦,3313a ⎡⎤==⎢⎥⎣⎦,4413a ⎡⎤==⎢⎥⎣⎦,…,31311[]133n n a n n --⎡⎤==-=-⎢⎥⎣⎦,33[]3n n a n n ⎡⎤===⎢⎥⎣⎦,所以数列{}n a 的前3n 项之和为3[12(1)]n n +++-+=23122n n -,故③是真命题;对于④,由16.【答案】(-【解析】函数()f x 在[0,)+?递增,当0x <时,220x ->,解得0x -<<;当0x ³时,22x x ->,解得01x ?,综上所述,不等式2(2)()f x f x ->的解集为(.17.【答案】 .【解析】解:0. = + +…+==,故答案为:.【点评】本题考查数列的极限,考查学生的计算能力,比较基础.18.【答案】2.【解析】解:整理函数解析式得f(x)﹣1=log a(x﹣1),故可知函数f(x)的图象恒过(2,1)即A(2,1),故2m+n=1.∴4m+2n≥2=2=2.当且仅当4m=2n,即2m=n,即n=,m=时取等号.∴4m+2n的最小值为2.故答案为:2三、解答题19.【答案】证明见解析.【解析】考点:直线与平面平行的判定与证明.20.【答案】【解析】解:(Ⅰ)不等式f(x)<g(x)+a即|x﹣2|<|x+4|,两边平方得:x2﹣4x+4<x2+8x+16,解得:x>﹣1,∴原不等式的解集是(﹣1,+∞);(Ⅱ)f(x)+g(x)>a2可化为a2﹣a<|x﹣2|+|x+4|,又|x﹣2|+|x+4|≥|(x﹣2)﹣(x+4)|=6,∴a2﹣a<6,解得:﹣2<a<3,∴a的范围是(﹣2,3).【点评】本题考察了解绝对值不等式问题,考察转化思想,是一道基础题.21.【答案】【解析】【分析】(I)由已知中DE⊥平面ABCD,ABCD是边长为3的正方形,我们可得DE⊥AC,AC⊥BD,结合线面垂直的判定定理可得AC⊥平面BDE;(Ⅱ)以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF 和平面BDE的法向量,代入向量夹角公式,即可求出二面角F﹣BE﹣D的余弦值;(Ⅲ)由已知中M是线段BD上一个动点,设M(t,t,0).根据AM∥平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置.【解答】证明:(Ⅰ)因为DE⊥平面ABCD,所以DE⊥AC.因为ABCD是正方形,所以AC⊥BD,从而AC⊥平面BDE.…(4分)解:(Ⅱ)因为DA,DC,DE两两垂直,所以建立空间直角坐标系D﹣xyz如图所示.因为BE与平面ABCD所成角为600,即∠DBE=60°,所以.由AD=3,可知,.则A(3,0,0),,,B(3,3,0),C(0,3,0),所以,.设平面BEF的法向量为=(x,y,z),则,即.令,则=.因为AC⊥平面BDE,所以为平面BDE的法向量,.所以cos.因为二面角为锐角,所以二面角F﹣BE﹣D的余弦值为.…(8分)(Ⅲ)点M是线段BD上一个动点,设M(t,t,0).则.因为AM∥平面BEF,所以=0,即4(t﹣3)+2t=0,解得t=2.此时,点M坐标为(2,2,0),即当时,AM∥平面BEF.…(12分)22.【答案】【解析】解:(1)令f(x)=0,得(x2+mx+m)e x=0,所以x2+mx+m=0.因为函数f(x)没有零点,所以△=m2﹣4m<0,所以0<m<4.(2)f'(x)=(2x+m)e x+(x2+mx+m)e x=(x+2)(x+m)e x,令f'(x)=0,得x=﹣2,或x=﹣m,当m>2时,﹣m<﹣2.列出下表:x (﹣∞,﹣m)﹣m (﹣m,﹣2)﹣2 (﹣2,+∞)f'(x)+0 ﹣0 +f(x)↗me﹣m↘(4﹣m)e﹣2↗当x=﹣m时,f(x)取得极大值me﹣m.当m=2时,f'(x)=(x+2)2e x≥0,f(x)在R上为增函数,所以f(x)无极大值.当m<2时,﹣m>﹣2.列出下表:x (﹣∞,﹣2)﹣2 (﹣2,﹣m)﹣m (﹣m,+∞)f'(x)+0 ﹣0 +f(x)↗(4﹣m)e﹣2↘me﹣m↗当x=﹣2时,f(x)取得极大值(4﹣m)e﹣2,所以(3)当m=0时,f (x )=x 2e x ,令ϕ(x )=e x ﹣1﹣x ,则ϕ'(x )=e x﹣1,当x >0时,φ'(x )>0,φ(x )为增函数;当x <0时,φ'(x )<0,φ(x )为减函数,所以当x=0时,φ(x )取得最小值0.所以φ(x )≥φ(0)=0,e x ﹣1﹣x ≥0,所以e x≥1+x ,因此x 2e x ≥x 2+x 3,即f (x )≥x 2+x 3.【点评】本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键.23.【答案】(1)证明见解析;(2)23πθ=. 【解析】试题分析:(1)可先证BA PA ⊥,BA AD ⊥从而得到BA ⊥平面PAD ,再证CD FE ⊥,CD BE ⊥可得CD ⊥平面BEF ,由//CD AB ,可证明平面BEF ⊥平面PAB ;(2)由PAD θ∠=,取BD 的中点G ,连接,FG AG ,可得PAG ∠即为异面直线BF 与PA 所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1 试题解析:(2)因为PAD θ∠=,取BD 的中点G ,连接,FG AG ,所以//FG CD ,12FG CD =,又//AB CD ,12AB CD =,所以//FG AB ,FG AB =,从而四边形ABFG 为平行四边形,所以//BF AG ,得;同时,因为PA AD =,PAD θ∠=,所以PAD θ∠=,故折起的角度23πθ=.考点:点、线、面之间的位置关系的判定与性质. 24.【答案】【解析】解:(Ⅰ)解法一:依题意有,答案一:∵∴从稳定性角度选甲合适.(注:按(Ⅱ)看分数的标准,5次考试,甲三次与乙相当,两次优于乙,所以选甲合适.答案二:∵乙的成绩波动大,有爆发力,选乙合适.解法二:因为甲5次摸底考试成绩中只有1次90,甲摸底考试成绩不低于90的概率为;乙5次摸底考试成绩中有3次不低于90,乙摸底考试成绩不低于90的概率为. 所以选乙合适.(Ⅱ)依题意知5次摸底考试,“水平相当”考试是第二次,第三次,第五次,记为A ,B ,C .“水平不相当”考试是第一次,第四次,记为a ,b .从这5次摸底考试中任意选取2次有ab ,aA ,aB ,aC ,bA ,bB ,bC ,AB ,AC ,BC 共10种情况. 恰有一次摸底考试两人“水平相当”包括共aA ,aB ,aC ,bA ,bB ,bC 共6种情况.∴5次摸底考试成绩统计,任意抽查两次摸底考试,恰有一次摸底考试两人“水平相当”概率.【点评】本题主要考查平均数,方差,概率等基础知识,运算数据处理能力、运算求解能力、应用意识,考查化归转化思想、或然与必然思想.。