Apoptosis in cumulus cells during in vitro maturation of bovine cumulus-enclosed oocytes

合集下载

内皮祖细胞膜微粒与脑卒中治疗相关性研究进展

内皮祖细胞膜微粒与脑卒中治疗相关性研究进展

内皮祖细胞膜微粒与脑卒中治疗相关性研究进展邱文姬;陈煜森【摘要】Vascular endothelial dysfunction is related to the occurrence and development of stroke.Endothelial progenitor cells-derived microvesicles (EPC-MVs) can slow the progression of stroke and improve the prognosis of stroke by repairing the damaged vascular endothelium,providing a new method for the treatment of stroke.This article reviews the correlation between EPC-MVs and stroke treatment.%血管内皮功能障碍与脑卒中的发生发展互为因果.内皮祖细胞膜微粒可以通过修复损伤的血管内皮来延缓脑卒中的进展和改善脑卒中患者的预后,为脑卒中的治疗提供了新的方法.本文就内皮祖细胞膜微粒与脑卒中治疗相关性进行综述.【期刊名称】《海南医学》【年(卷),期】2018(029)005【总页数】4页(P674-677)【关键词】内皮祖细胞;内皮祖细胞膜微粒;脑卒中;修复;治疗【作者】邱文姬;陈煜森【作者单位】广东医科大学,广东湛江524000;广东医科大学附属医院,广东湛江524000【正文语种】中文【中图分类】R743.3脑卒中俗称“中风”,是以高发生率、高致残率、高致死率和高复发率为特点的急性脑血管循环障碍性疾病。

一般分为缺血性卒中(如脑梗死)和出血性卒中(如脑出血)两大类。

由于脑供血动脉闭塞,使该动脉的供血区得不到血液中的氧气和营养而发生坏死,被称为缺血性脑卒中,约占80%~85%;而由于脑动脉硬化而血管破裂,血液进入脑内和脑周围间隙,使脑细胞得不到正常血管内运输的氧气和营养供应而发生坏死,另被称为出血性脑卒中,占15%~20%。

疏绵状嗜热丝孢菌中cap的敲除、互补及功能研究

疏绵状嗜热丝孢菌中cap的敲除、互补及功能研究

中文摘要疏绵状嗜热丝孢菌中CAP的敲除、互补及功能研究疏绵状嗜热丝孢菌(Thermomyces lanuginosus)是一种与人类的日常生活密切相关且分布广泛的嗜热真菌,在真核生物中生长上限温度是最高的。

目前,从该菌中已分离得到了多种嗜热酶,真核表达后广泛应用于工、农业生产和微生物研究中,使得该菌在医药、酿造业、发酵业、废物处理等多个领域中的影响越来越大。

因而,近年来科研工作者的研究主要集中在热稳定的蛋白酶、脂肪酶、糖化酶、几丁质分解酶及木聚糖酶等嗜热酶基因的克隆及其生理生化性质方面,而对于该菌株特定基因遗传功能的研究至今少有报道。

对于丝状真菌而言,在稻瘟病菌中CAP基因缺失后,会影响细胞的活力及附着胞的形成进而降低致病能力。

通过序列比对发现,在疏绵状嗜热丝孢菌中也存在CAP同源基因,且与稻瘟病菌中的CAP1基因的同源性为42.75%。

通过生物信息学分析可知,CAP属于CAP_C超家族中的成员,亚细胞定位预测定位于细胞膜上,含有CARP结构域且高度保守。

NJ法建立系统发育树,分析亲缘关系可知:与曲霉菌(Aspergillus lentulus)的进化距离最近,其与人类(Homo sapiens)、小家鼠(Mus musculus)的进化距离最远。

为了进一步探知CAP的功能,我们通过构建CAP基因的敲除载体及互补/亚细胞定位载体,进而采用ATMT法转化疏绵状嗜热丝孢菌的分生孢子获得了CAP基因的敲除突变株△CAP;然后,以十字花科炭疽病菌中的CAP(CH07570-△CAP,CH14404-△CAP)/稻瘟病菌中的CAP(MGG01722.6-△CAP)基因为互补序列,通过PEG介导的遗传转化疏绵状嗜热丝孢菌原生质体,得到了互补/亚细胞定位突变株△CAP/CAP。

以野生型菌株9w-WT及上述突变株为研究材料,结果发现:△CAP营养生长比9w-WT稍快;△CAP与9w-WT气生菌丝类似。

进行孢子振荡培养试验,观察上述菌株的孢子形态发现,振荡培养后的9w-WT 孢子呈表面光滑中空的大小较均一的圆球体,而敲除菌株△CAP则呈两头尖的刺状不规则球体,互补菌株CH07570-△CAP、CH14404-△CAP呈现大小差异较大的中空的圆球体,互补菌株MGG01722.6-△CAP呈辐射状表面粗糙的不规则圆球体。

医学细胞生物学专业英语词汇

医学细胞生物学专业英语词汇

医学细胞生物学专业英语词汇* acrocentric chromosome 近端着丝粒染色体 actin 肌动蛋白 actin filament 肌动蛋白丝 actinomycin D 放线菌素D activator 活化物 active transport 主动运输 adenine 腺嘌呤 adenosine monophosphate, AMP 腺苷一磷酸, 腺苷酸 adenyl cyclase, AC 腺苷酸环化酶 adhesion plaque 黏着斑agranular endoplasmic reticulum 无颗粒内质网 Alzheimer disease 阿尔茨海默病 amino acid 氨基酸 aminoacyl site, A site 氨基酰位,A位 amitosis; direct division 无丝分裂;直接分裂 amphipathic molecule 双型性分子anaphase 后期anchoring junction 锚定连接 annular granule 孔环颗粒 anticoding strand 反编码链 antigen 抗原antiparallel 逆平行性 apoptic body 凋亡小体 apoptosis 凋亡assembly 组装aster 星体asymmetry 不对称性autolysis 自溶作用 autophagolysosome 自噬性溶酶体 autophagy 自噬作用autoradiography 放射自显影技术 autosome 常染色体 B lymphocyte B淋巴细胞bacteria 细菌 base substitution 碱基替换 belt desmosome 带状桥粒bioblast 生命小体 biological macromolecule 生物大分子 biomembrane 生物膜biotechnology 生物技术 bivalent 二价体 breakage 断裂 cadherin 钙粘连素calmodulin, CaM 钙调蛋白 cAMP 环一磷酸腺苷 cAMP-dependent protein kinase 环一磷酸腺苷依赖型蛋白激酶capping 戴帽 carrier protein 载体蛋白 cat cry syndrome 猫叫综合症cell division cycle gene CDC基因 cell 细胞 cell and molecular biology 细胞分子生物学 cell biology 细胞生物学 cell coat; glycocalyx 细胞衣;糖萼 cell culture 细胞培养 cell cycle 细胞周期cell cycle-regulating protein 细胞周期调节蛋白 cell cycle time 细胞周期时间 cell determination 细胞决定 cell differentiation 细胞分化 cell division cycle, CDC 细胞分裂周期 cell division cycle gene, CDC gene 细胞分裂周期基因 cell engineering 细胞工程 cell fractionation 细胞分级分离cell fusion 细胞融合 cell junction 细胞连接 cell line 细胞系 cell membrane; plasma membrane 细胞膜;质膜 cell plate 细胞板 cell proliferation 细胞增殖 cell recognition 细胞识别 cell surface antigen 细胞表面抗原 cell theory 细胞学说 cell strain 细胞株 cell aging 细胞衰老cell synchronization 细胞同步化 cellular oxidation 细胞氧化 cellular respiration 细胞呼吸 central granule 中央颗粒 centromere 着丝粒 chalone 抑素 channel protein 通道蛋白 chemiosmotic hypothesis 化学渗透假说chiasmata 交叉 cholesterol 胆固醇chromatid 染色单体 chromatin 染色质 chromomere 染色粒 chromosome 染色体 chromosome arm 染色体臂 chromosome banding 染色体带 chromosome disease 染色体病 chromosome engineering 染色体工程 chromosome scaffold 染色体支架 chromosome syndrome 染色体综合症 cis Golgi network 顺面高尔基网状结构 cisterna(pl. cisternae)扁平囊 clathrin 笼蛋白 clone 克隆coated pit 有被小窝 coated vesicle 包被小泡 coding strand 编码链 codon 密码子 codon degeneracy 密码子兼并性 coenzyme 辅酶 collagenfibronectin, FN 纤连蛋白 communication junction 通讯连接 complementation 互补性condensation stage 凝集期 confocal laser scanning microscope 共焦激光扫描显微镜 connexin 连接子 constitutive heterochromatin 结构异染色质continuous microtubules 极微管 converting enzyme 转变酶crista(pl. cristae)嵴 cyanine 胞嘧啶 cyclin 细胞周期素cydoeximide 放线菌酮 cytidine monophosphate, CMP 胞苷一磷酸,胞苷酸cytokinesis 细胞质分裂 cytology 细胞学 cytoplasm 细胞质 cytoplasm engineering 细胞质工程 cytoplasm substitution 细胞质代换 cytoplasmic plaque 胞质斑 cytoskeleton 细胞骨架 dark field microscope 暗视野显微镜dedifferentiation 去分化 degeneracy 兼并 deletion 缺失 density gradient centrifugation 密度梯度离心 deoxyadenosine monophosphate, dAMP 脱氧腺苷酸 deoxycytidine monophosphate, dCMP 脱氧胞苷酸 deoxyguanosine monophosphate, dGMP 脱氧鸟苷酸 deoxyribonucleic acid, DNA 脱氧核糖核酸deoxythymidine monophosphate, dTMP 脱氧胸苷酸 desmosome 桥粒 diakinesis 终变期 differential centrifugation 差速离心 differential expression 差异性表达 differentiation induction 分化诱导 differentiation inhibition 分化抑制 diplococcus pneumonia 肺炎双球菌diplotene 双线期 disassembly 去组装 DNA probe DNA探针 DNA synthesis phase DNA合成期 dosage compensation 剂量补偿 doublet 二联管 duplication 重复 effector 效应器 electric coupling 电偶联 electron microscope 电子显微镜 elementary particle 基粒 eletronfusion 电融合 elongation factor, EF 延长因子 embryonic induction 胚胎诱导作用 endocytosis 内吞作用endolysosome 内体性溶酶体 endomembrane system 内膜系统 endoplasmic reticulum, ER 内质网 enhancer 增强子 enzyme 酶 equatorial plane 赤道面eucaryotes 真核生物 euchromatin 常染色质 eukaryotic cell 真核细胞exocytosis 胞吐作用 exon 外显子 extracellular matrix, ECM 细胞外基质extrinsic; peripheral protein 外在蛋白;外周蛋白 F body 荧光小体facilitated diffusion 易化扩散 facultative heterochromatin 兼性异染色质 fibrillar component 原纤维成分 fibronectin, FN 纤粘连蛋白 fibrous actin, F-actin 纤维状肌动蛋白 flanking sequence 侧翼顺序 fluid mosaic model 液态镶嵌模型 fluorescence microscope 荧光显微镜 fluorescence recovery after 荧光漂白恢复 photobleaching, FRAPfork-initiation protein 叉起始蛋白 frameshift mutation 移码突变 free cell 游离细胞 free diffusion 自由扩散 free energy 自由能galactocerebroside 半乳糖脑苷脂 ganglioside 神经节苷脂 gap junction 间隙连接 gene 基因 gene cluster 基因簇 gene engineering 基因工程 gene expression 基因表达 gene family 基因家族 gene mutation 基因突变 genetic code 遗传密码 genetic message 遗传信息 genome 基因组 genome engineering 染色体工程 genomic DNA library 基因组DNA文库glycogen storage disease type? ?型糖原蓄积病 glycolipid 糖脂glycoprotein 糖蛋白 glycosaminoglycan, GAG 氨基聚糖 glycosylation 糖基化Golgi apparatus 高尔基器 Golgi body 高尔基体 Golgi complex 高尔基复合体granular component 颗粒成分 granular drop 脱粒 granular endoplasmic reticulum 颗粒内质网 growth factor 生长因子 GT-AG rule GT-AG法则guanine 鸟嘌呤 guanosine monophosphate, GMP 鸟苷一磷酸,鸟苷酸hemidesmosome 半桥粒 hereditary factor 遗传因子 heterochromatin 异染色质heterogeneous nuclear RNA, hnRNA 不均一核RNA heterokaryon 异核体heterophagolysosome 异噬性溶酶体 heterophagy 异噬作用 heteropyknosis 异固缩 highly repetitive sequence 高度重复序列 histone 组蛋白 holoenzyme全酶 homokaryon 同核体 housekeeping gene 管家基因 housekeeping protein管家蛋白human leukocyte antigen, HLA 人白细胞抗原 hyaluronic acid, HA 透明质酸 hybrid cell 杂交细胞 hyperdiploid 超二倍体 hypodiploid 亚二倍体immunofluorescence microscopy 免疫荧光显微镜技术 immunoglobulin 免疫球蛋白 in vitro 离体的 in vivo 体内的 inactive X hypothesis 失活X假说inborn errors of metabolism 先天性代谢缺陷病 inducer 诱导物 induction 诱导 inhibitor of mitotic factor, IMF 有丝分裂因子抑制物 initiation factor, IF 起始因子 inner membrane 内膜 inner nuclear membrane 内层核膜insertion sequence, IS 插入顺序 Integral protein 整合蛋白 integrin 整连蛋白 inter membrane space; outer chamber 膜间腔;外室 intercellular communication 细胞间通讯 intercristal space; inner chamber 嵴间腔;内室intermediate filament 中间纤维 internal membrane 内膜 internal reticular apparatus 内网器 interphase 间期 interstitial deletion 中间缺失interzonal microtubules 区间微管intracristal space 嵴内腔 intra-nucleolar chromatin 核仁内染色质intrinsic; integral protein 内在蛋白;整合蛋白 intron 内含子 inversion倒位 inverted repetitive sequence 倒位重复顺序 ionic channel 离子通道ionic coupling 离子偶联 jumping gene 跳跃基因 karyotype 核型 kinetochore 着丝点 kinetochore microtubules 动粒微管Klinefelter’s syndrome 先天性睾丸发育不全症 lagging strand 后随链 laminin, LN 层粘连蛋白 lateral diffusion 侧向扩散 leading strand 前导链 leptotene 细线期 ligand; chemical signal 配体;化学信号 light microscope 光学显微镜 linear polymer 线性多聚体 linker 连接线 liposome 脂质体 liquid crystal 液晶 lowdensity lipoprotein, LDL 低密度脂蛋白 luxury gene 奢侈基因 luxuryprotein 奢侈蛋白 lymphokine 淋巴激活素 lymphotoxin 淋巴毒素lysosome 溶酶体 major histocompatibility complex, MHC 组织相容性复合体 malignancy 恶性 matrical granule 基质颗粒 matrix 基质 matrix fibronectin, mFN 基质纤连蛋白 maturation-prompting factor, MPF 成熟促进因子 medial Golgi stack 高尔基中间囊膜 meiosis 减数分裂 membrane antigen 膜抗原 membrane carbohydrate 膜碳水化合物 membrane flow 膜流 membrane lipid 膜脂 membrane protein 膜蛋白 membrane receptor 膜受体 membranous structure 膜相结构 messenger RNA 信使核糖核酸 mesosome 中间体 metabolic coupling 代谢偶联 metacentric chromosome 中央着丝粒染色体 metaphase 中期micelle 微团 microfilament 微丝 microscopy 显微镜技术 microsome 微粒体microtrabecular lattice 微梁网格 microtubule 微管 microtubule associated protein, MAP 微管结合蛋白 microtubule organizing centers, MTOC 微管组织中心microvillus 微绒毛 middle repetitive sequence 中度重复序列 miniband 微带 missense mutation 错义突变 mitochondria 线粒体 mitosis 有丝分裂mitosis phase 有丝分裂期 mitotic apparatus 有丝分裂器 mitotic factor, MF 有丝分裂因子 mobility 流动性 model for controlling gene expression 基因表达调控模型 molecular biology 分子生物学 molecular disease 分子病monopotent cell 单能细胞 monosomy 单体性 multiple coiling model 多级螺旋模型 multipotent cell 多能细胞 myasthenia gravis 重症肌无力症 mycoplasma 支原体 myofibrils 肌原纤维 necrosis 坏死 neuropeptide 神经肽 non-continuation 不连续性 non-histone 非组蛋白 non-membranous structure 非膜相结构 nonsense mutation 无义突变 nuclear envelope 核被膜 nuclear lamina 核纤层 nuclear matrix 核基质nuclear pore 核孔 nuclear pore complex 核孔复合体 nuclear sap 核液nuclear sex 核性别 nuclear skeleton 核骨架 nucleic acid 核酸 nucleic acid hybridization 核酸分子杂交 nucleo-cytoplasmic ratio 核质比 nucleoid 类核体 nucleoids 拟核 nucleolar associated chromatin 核仁相随染色质nucleolar organizing region 核仁组织区 nucleolus 核仁 nucleosome 核小体nucleotide 核苷酸 nucleosome core 核小体核心 nucleus 细胞核 nucleus transplantation 核移植法 nucleus-cytoplasm hybrid 核质杂种 Okazaki fragment 岗崎片段 oligomer fibronectin,oFN 寡聚纤连蛋白 oncogene 癌基因operator gene 操纵基因 operon 操纵子 operon theory 操纵子学说 organelle 细胞器 origin 起点 outer membrane 外膜 outer nuclear membrane 外层核膜overlapping gene 重叠基因 oxidative phosphorylation 氧化磷酸化pachytene 粗线期 pairing stage 配对期 partial monosome 部分单体 partial trisomy 部分三体 passive transport 被动运输 patching 成斑现象 peptide bond 肽键 peptidyl site, P site 肽基位;P位 perinuclear space 核间隙perinucleolar chromatin 核仁周围染色质 peripheral granule 周边颗粒peripheral protein 外周蛋白 permeability 通透性 peroxisome; microbody 过氧化物酶体;微体 phagocytosis 吞噬作用 phagolysosome 吞噬性溶酶体phagosome 自噬体 phase contrast microscope 相差显微镜 phenylalanine hydroxylase, PAH 苯丙氨酸羟化酶 phenylketonuria, PKU 苯丙酮尿症phosphatidylinositol, PL 磷脂酰肌醇 phosphodiester bond 磷酸二酯键phosphodiesterase, PDE 磷酸二酯酶 phosphoglyceride 磷酸甘油酯phospholipase C,PLC 磷脂酶C phospholipid 磷脂 pinocytosis 胞饮作用pinocytotic vesicle 吞饮泡 plasma cell 浆细胞 plasma fibronectin, pFN 血浆纤连蛋白 plasmid 质粒 point mutation 点突变 polar microtubule 极间微管 polarizing microscope 偏光显微镜 polyadenylation 多聚腺苷酸反应polyploid 多倍体 polyribosome 多聚核糖体 premature condensed chromosome, PCC 早熟染色体 premeiosis interphase 减数分裂前间期 primary constriction 主缢痕 primary culture 原代培养 primary culture cell 原代细胞 programmed cell death 细胞程序性死亡 prokaryotes 原核生物 prokaryotic cell 原核细胞promotor 启动子 promotor gene 启动基因 prophase 前期 protein 蛋白质protein kinase C, PKC 蛋白激酶C proteoglycan, PG 蛋白聚糖 protofilament 原纤维 protooncogene 原癌基因 protoplasm 原生质 purine 嘌呤碱 pyrimidine 嘧啶碱receptor mediated endocytosis 受体介导的内吞作用 reciprocal translocation 相互易位 recombinant DNA technology 重组DNA技术recombination nodules 重组小节 recombination stage 重组期 recondensation stage 再凝集期 redifferentiation 再分化 regulator gene 调节基因 release factor, RF 释放因子 replication 复制 replication eyes 复制眼 replication fork 复制叉 replicon 复制子 repressor 阻碍物 resolving power 分辨力residual body 残体 respiratory chain 呼吸链 restriction endonuclease 限制性内切核酸酶 restriction point 限制点 reverse transcription 逆转录 rho factor, ρ ρ因子 ribonucleic acid, RNA 核糖核酸 ribophorin 核糖体结合蛋白 ribosomal RNA 核糖体核糖核酸 ribosome 核糖核蛋白体 RNA polymerase RNA聚合酶 rough endoplasmic reticulum, rER 粗面内质网 sac 扁平囊 same sense mutation 同义突变sarcoplasmic reticulum 肌质网 satellite 随体 scanning electron microscope 扫描电子显微镜 scanning tunneling microscope 扫描隧道电子显微镜 secondary constriction 次缢痕 secondary culture 传代培养semiautonomous organelle 半自主性的细胞器 semiconservative replication 半保留复制 semidiscontinuous replication 半不连续复制 sensor 感受器sequential expression 顺序表达 sex chromosome 性染色体 signal codon 信号密码子 signal hypothesis 信号肽假说 signal molecule 信号分子 signal peptide 信号肽 signal recognition particle, SPR 信号识别颗粒 simple diffusion 简单扩散 single sequence 单一序列 single-stranded DNA binding protein 单链DNA结合蛋白 singlet 单管 small nuclear RNA, snRNA 小分子细胞核RNA smooth endoplasmic reticulum, sER 滑面内质网 solenoid 螺线管sparsomycin 稀疏酶素 sphingomyelin 神经鞘磷脂 spindle 纺锤体 splicing 剪接 split gene 断裂基因start codon 起始密码子 stem cell 干细胞 stress fiber 张力基因structural gene 结构基因 submetacentric chromosome 亚中着丝粒染色体supersolenoid 超螺线管 suppressor tRNA 校正tRNA synapsis 联会synaptonemal complex 联会复合体 synkaryon 合核体 synonymous codon 同义密码子 synonymous mutation 同义突变 T lymphocyte T淋巴细胞 tailing 加尾telomere 端粒 telophase 末期 terminal deletion 末端缺失 terminalization 端化 terminator 终止子 tetrad 四分体 tetraploid 四倍体 thymine 胸腺嘧啶three dimensional structure,3D 三维结构 tight junction 紧密连接 tissue cell 组织细胞 tissue engineering 组织工程 totipotency 全能性 trans Golgi network 反面高尔基网状结构 transcribed spacer 转录间隔区transcription 转录 transdifferentiation 转分化 transfer RNA 转运核糖核酸 transformation 转化 transition 转换 translation 翻译 translocation 易位 transport protein 运输蛋白 transposition 转座 transversion 颠换transmission electron microscope 透视电子显微镜 tricarboxylic acid cycle 三羧酸循环 trigger protein 触发蛋白 triplet 三联管 triploid 三倍体triskelion 三臂蛋白 trisomy 三体 tubulin 微管蛋白 tumor necrosis factor 肿瘤坏死因子Turner’s syndrome 先天性卵巢发育不全症 tyrosinase, TN 酪氨酸酶 ultravoltage electron microscope 超高压电子显微镜 unit membrane 单位膜 untranscribed spacer 非转录间隔区 unwinding protein 解链蛋白 uracil 尿嘧啶 uridine monophosphate, UMP 尿苷一磷酸;尿苷酸 vacuole 大囊泡vector 载体vesicle 小囊泡 vinculin 粘着斑连接蛋白 wobble hypothesis 摇摆学说 X chromatin X染色质 Y chromatin Y染色质 zygotene 偶线期。

肠道菌群代谢产物与心肌纤维化关系的研究进展

肠道菌群代谢产物与心肌纤维化关系的研究进展

[收稿日期]㊀2019-12-10[修回日期]㊀2020-03-26[基金项目]㊀山西省回国留学人员重点科研资助项目(2015-重点5)[作者简介]㊀韩冰清,硕士研究生,研究方向为心力衰竭,E-mail 为1062646850@㊂通信作者白春林,主任医师,硕士研究生导师,研究方向为心力衰竭,E-mail 为bcl602@㊂[文章编号]㊀1007-3949(2021)29-01-0087-06㊃文献综述㊃肠道菌群代谢产物与心肌纤维化关系的研究进展韩冰清1,白春林2(1.山西医科大学,山西省太原市030001;2.山西医科大学第二医院心血管内科,山西省太原市030013)[关键词]㊀心肌纤维化;㊀肠道菌群代谢产物;㊀发病机制[摘㊀要]㊀心肌纤维化(MF )以细胞外基质积聚㊁成纤维细胞活化㊁转化为肌成纤维细胞为特征,是心脏损伤后心脏重构的特征之一,MF 包括两种基本类型:反应性纤维化和修复性纤维化,在心室重构的过程中,两种纤维化常合并存在,MF 可导致充血性心力衰竭㊁恶性心律失常和猝死,成为心室重构持续发展和难以逆转的重要原因㊂一些研究表明,肠道菌群代谢产物,包括氧化三甲胺㊁短链脂肪酸㊁吲哚氧基硫酸盐和对甲酚硫酸盐等参与到心肌纤维化的过程中并起到了重要的作用,有望成为治疗心力衰竭的新靶点㊂本文将对肠道菌群代谢产物在心肌纤维化中的作用机制进行阐述,同时介绍通过干预肠道菌群改善心肌纤维化的研究进展㊂[中图分类号]㊀R5[文献标识码]㊀AResearch progress on the relationship between metabolites of intestinal microflora and myocardial fibrosisHAN Bingqing 1,BAI Chunlin 2(1.Shanxi Medical University ,Taiyuan ,Shanxi 030001,China ;2.Department of Cardiology ,the Second Hospital of Shanxi Medical University ,Taiyuan ,Shanxi 030013,China )[KEY WORDS ]㊀myocardial fibrosis;㊀metabolites of intestinal flora;㊀pathogenesis[ABSTRACT ]㊀㊀Aim ㊀Myocardial fibrosis(MF)is characterized by extracellular matrix accumulation,fibroblast acti-vation,and transformation into myofibroblast,which is one of the features of cardiac remodeling after cardiac injury.㊀MF includes two basic types:reactive fibrosis and repair fibrosis.㊀Two kinds of fibrosis often coexist in the process of ventric-ular remodeling.㊀MF can lead to congestive heart failure,malignant arrhythmia and sudden death,and become an impor-tant cause of sustainable development and irreversible ventricular remodeling.㊀Some studies have shown that metabolites of intestinal flora,including trimethylamine oxide,short chain fatty acids,indole oxyl sulfate and p cresol sulfate,are in-volved in the process of myocardial fibrosis and play an important role in the treatment of heart failure.㊀It is expected to become a new target for the treatment of heart failure.㊀In this paper,the mechanism of intestinal flora metabolites in myo-cardial fibrosis is described,and the research progress of improving myocardial fibrosis by intervention of intestinal flora isalso introduced.㊀㊀心力衰竭(heart failure,HF)是多种心血管疾病的终末期表现,也是导致心血管疾病患者死亡的主要原因㊂心力衰竭的进展部分源于心肌纤维化的发展㊂ 心力衰竭肠道假说 认为心力衰竭时肠道缺血和水肿造成的肠道菌群移位和循环内毒素水平升高,增强了炎症反应和氧化应激,从而加重了心力衰竭㊂目前这方面研究尚处于初级阶段,对于肠道菌群及其代谢产物作用于心力衰竭的具体机制尚未阐明㊂本文将对肠道菌群代谢产物在心肌纤维化中的作用机制进行阐述㊂1㊀肠道菌群及其代谢产物的概述人体肠道含有数万亿个微生物细胞,是人体健康生理生态系统的重要组成部分㊂这些细菌㊁真菌㊁古菌和病毒的群落通常被统称为 微生物区系 ,它们的基因组被称为 微生物组 [1]㊂根据对人体的影响,这些细菌大致可分为三类:①生理细菌(与宿主共生),如双歧杆菌㊁乳酸菌;②有条件的病原体,例如肠杆菌科㊁肠球菌;③病原体,如变形杆菌㊁金黄色葡萄球菌㊂肠道内的微生物群在维持人体健康的过程中起到了重要的作用,并通过不同的途径影响宿主,它作为一个具有巨大代谢能力的生物反应器,在许多生物学功能中与宿主协同形成一个共生的哺乳动物超生物体[2]㊂肠道微生物群结构的改变可能会对宿主生物化学途径和代谢网络的调控产生重要影响㊂美国的一项全国性分析显示,心力衰竭患者的迪氏梭状芽孢杆菌感染率较高,并与明显较高的住院死亡率有关[3]㊂而在另一项基于宏基因组学和代谢组学的慢性心力衰竭患者肠道菌群的研究中表明,普拉梭菌减少而活泼瘤胃球菌增加是慢性心力衰竭患者肠道菌群紊乱最为重要的特征,普拉梭菌是肠道中丰度最高的产丁酸盐菌,丁酸盐在抗炎和维持肠道屏障功能完整性中具有极为重要的作用㊂而活泼瘤胃球菌具有促炎特性,进一步加剧慢性心力衰竭患者的慢性炎症状态[4]㊂肠道菌群可产生一些具有生物活性的代谢产物,这些具有生物活性的代谢产物可以被肠黏膜细胞吸收使用,或者被吸收入血液循环后运送到肝脏,在那里被转化㊂这些代谢产物主要来源于2种参与食物消化的分解代谢途径,第一条代谢途径为糖代谢途径,在此途径中,肠道微生物群分解糖并产生大部分短链脂肪酸(short-chain fatty acid, SCFA);第二条分解代谢途径为蛋白质代谢途径,此途径可生成氨㊁各种胺㊁硫醇㊁酚类㊁吲哚及少量SC-FA,其中一些代谢物主要由肾脏清除,被称为尿毒症毒素[5-6]㊂2㊀肠道菌群代谢产物与心肌纤维化2.1㊀氧化三甲胺研究表明,膳食中的胆碱和L-肉碱可以通过肠道微生物代谢为三甲胺(trimethylamine,TMA),随后,TMA被吸收入血并通过门静脉循环进入肝脏,并迅速被肝Flavin单加氧酶(flavin monooxygenase enzyme,FMO)家族,特别是FMO3氧化为氧化三甲胺(trimethylamine oxide,TMAO)[7]㊂在Cui等[4]的研究中发现,慢性心力衰竭患者的肠道菌群中与脂多糖合成㊁色氨酸代谢㊁脂类代谢以及氧化三甲胺生成相关的细菌基因呈显著增加,且细菌的胆碱三甲胺裂解酶(TMAO生成的关键酶)的基因呈显著增加㊂多项研究表明,升高的TMAO水平与心血管不良结果的风险增加有关,包括心脏病发作和死亡风险[8-9]㊂有动物模型研究结果表明,在心肌梗死的小鼠模型中,TMAO和高胆碱饲料对小鼠心功能和心肌纤维化均有明显影响,其机制可能为通过促进成纤维细胞向肌成纤维细胞的转化,从而激活转化生长因子β(transforming growth factor-β,TGF-β)受体I/Smad2通路,TMAO增加了TGF-βRI的表达,促进了Smad2的磷酸化,上调了α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)和I型胶原的表达,降低了新生鼠成纤维细胞中TGF-β受体I的泛素化,TMAO还能抑制Smurf2的表达[10]㊂而Li 等[11]的研究也证实了TMAO可以直接引起心肌肥厚和纤维化,主动脉缩窄(transverse aortic constriction,TAC)诱导的大鼠心肌肥厚模型血浆中TMAO水平显著升高,TMAO在体内外直接刺激心肌肥厚和纤维化,抗体治疗可降低TAC大鼠血浆TMAO水平,减轻心肌肥厚,在TMAO诱导的心肌肥厚中,Smad3信号被激活,Smad3抑制剂SIS3对Smad3的抑制作用可减弱TMAO所致的心肌肥厚㊂此前一项动物模型研究表明,给予主动脉缩窄致心力衰竭的小鼠模型高胆碱饮食或含有TMAO的饮食12周后,评估心脏和血管纤维化及心脏脑钠素㊁胆碱和TMAO水平的血样㊂与对照组相比,喂食TMAO或胆碱补充饮食的小鼠肺水肿㊁心脏增大和左心室射血分数明显差,心肌纤维化也明显更大[12] (图1)㊂但Tomasz等[13]研究表明,在自发高血压大鼠模型中,血浆TMA升高4~5倍不会对循环系统产生负面影响,相反,增加的饮食TMAO似乎降低了大鼠在压力超负荷的心脏中的舒张期功能障碍㊂其机制可能为TMAO与心脏蛋白的相互作用,即TMAO作为压电电解质使大鼠心肌细胞对于心室舒张收缩期变化所引起的静水压变化具有更强抵抗力,从而使心肌细胞的生物力学功能得以保存,纤维化程度降低㊂既往研究表明,TMAO在增加的静水压力的条件下稳定脱氧核糖核酸(DNA)[14],而暴露在高静水压力和(或)渗透压下的生物体会积累TMAO,以保护其细胞免受渗透压力和静水压力的胁迫[15-17]㊂因此,TMAO对心肌纤维化的具体作用机制仍需进一步研究㊂2.2㊀肠源性尿毒症毒素色氨酸被大肠杆菌等肠道细菌转化为吲哚后进入肝循环,在肝细胞内由细胞色素P450介导的羟基化转化为吲哚酚,随后通过磺基转移酶在肝细胞中与硫酸盐结合生成硫酸吲哚酚(Indoleol sulfate,IS)[18],苯丙氨酸或酪氨酸由肠道细菌代谢为4-羟基苯乙酸,经脱羧反应生成对甲酚,随后在肝脏发生硫转移酶介导的硫酸化,形成对甲酚硫酸盐(P-cresol sulfate,PCS)[19],这些尿毒症毒素因与白蛋白结合而不容易被血液透析滤过㊂一项研究显示,进行血液透析的老年患者体内对甲酚硫酸盐的水平可以预测心血管事件的发生率和全因死亡率[20]㊂Yisireyili 等[21]的研究表明IS 具有促纤维化和促肥厚作用,高血压大鼠模型心脏和左心室质量增加,心肌细胞增大,纤维化面积增大,TGF-β1㊁I 型胶原和α-SMA 等纤维标记物染色增多㊂同时,一些研究表明,在IS 介导的肾大部切除术模型中,促纤维化基因和心脏成纤维细胞中的表达与核因子κB (nuclear factor kappa-B,NF-κB)㊁TGF-β1㊁凋亡信号调节激酶1(apoptosis signal-regulated kinase 1,ASK1)和丝裂原活化蛋白激酶(mitogen activatedprotein kinase,MAPK )激活有关[22-24],也增加miRNA 21和miRNA 29b 在心肌梗死后的表达[25]㊂而体外的一些研究同样观察到肠源性尿毒症毒素的促肥厚作用㊂ASK1㊁细胞外调节激酶1/2(extra-cellular regulated kinase 1/2,ERK 1/2)㊁p38MAPKs 和NF-κB 活化被证明可介导IS 和PCS 诱导新生大鼠心肌细胞肥大和纤维化,同时还可引起心肌细胞的促肥厚基因,包括心房钠素和肌球蛋白重链,以及促纤维化基因如TGF-β1和结缔组织生长因子(connective tissue growth factor,CTGF)[26]㊂此外,AMP 激活的蛋白激酶-解偶联蛋白2信号也在IS 的影响下减弱,伴随着心房钠尿肽(atrial natriuretic factor,ANF)㊁脑钠肽(brain natriuretic peptide,BNP)和β-肌球蛋白重链(beta myosin heavy chain,β-MHC)的上调[27],这可能是肠源性尿毒症毒素介导的肥大的另一个机制(图1)㊂图1.肠道菌群代谢产物影响心肌纤维化的机制肠道菌群通过两种主要的参与食物代谢的途径产生一些活性物质如短链脂肪酸㊁氨㊁各种胺㊁尿毒症毒素等,其中氧化三甲胺可通过激活TGF-β1/Smad 2及TGF-β1/Smad 3通路加重心肌纤维化,尿毒症毒素在激活NF-κB㊁TGF-β1㊁ASK1㊁MAPK 的同时还可减弱AMPK-UCP2信号来加重心肌细胞肥大和纤维化,而短链脂肪酸则通过上调TCAP 和TIMP4基因的表达及下调Egr1mRNA 基因的表达来减轻心肌纤维化㊂Figure 1.Mechanism of intestinal flora metabolites affecting myocardial fibrosis2.3㊀短链脂肪酸SCFAs 是由盲肠和近端结肠中的厌氧肠道细菌发酵膳食纤维(如非淀粉多糖和低可消化糖类)及少量蛋白质和多肽产生的[28],其中含量最丰富的是丁酸盐㊁乙酸酯和丙酸盐[29]㊂SCFAs 可作为肠黏膜细胞的能量来源,或者转移到循环中,为机体产生重要的热量和能量,还可以充当信号分子㊂丙酸和丁酸经肠道菌群合成后具有局部效应,可作为肠道黏膜细胞(丁酸盐)和通过不同机制激活肠糖异生物(丙酸盐)的主要能量来源[30-31]㊂SCFAs 的信号转导由G 蛋白偶联受体GPR41和GPR43介导,主要表达于脂肪组织㊁肠道和免疫细胞[32]㊂来自随机对照试验的两个独立荟萃分析的结果表明,摄入益生菌或膳食纤维引起的SCFAs 增加与高血压患者的血压降低有关[33-34]㊂在Cui 等[4]研究中显示,慢性心力衰竭患者的肠道菌群中,与包括甲酸盐㊁丙酸盐以及丁酸盐等在内的短链脂肪酸生成相关的细菌显著减低,并且发现在慢性心力衰竭患者的肠道菌群中生成丁酸盐关键酶(丁酰辅酶A /乙酸辅酶A 转移酶)的基因显著减少㊂一项动物研究表明,去氧皮质酮处理后的小鼠模型心脏和肾脏的质量比增加,左心室壁厚度和收缩尺寸较对照组明显增加,出现了广泛的血管周围和间质心脏纤维化[35]㊂高纤维饮食和醋酸纤维饮食均能显著降低左心室壁厚度的增加,高纤维处理使左心室舒张功能恢复到正常水平,醋酸纤维处理的小鼠模型左心室舒张功能恢复到或接近正常水平㊂其机制一方面可能为上调了对心脏病有预防作用基因的表达,如肌联蛋白capc(titin-capc,TCAP)和组织金属肽酶抑制剂4(tissue metallopepti-dase inhibitor4,TIMP4),并且下调了早期生长反应蛋白1(early growth response protein,Egr1)mRNA(心血管病理的主要调节因子)基因的表达(图1),另一方面可能为降低了小鼠模型的血压间接减轻了心肌纤维化㊂3㊀干预肠道微生物治疗心肌纤维化3.1㊀调节肠道微生物相关代谢产物既往已有动物实验证据表明,给予心力衰竭合并慢性肾衰竭的小鼠模型一定量的AST-120能吸附肠道内的TMA及吲哚硫酸酚,降低这些代谢产物在血液中的水平,从而延缓小鼠心室肥大及心肌纤维化进程[23]㊂最近的一项研究表明,在心力衰竭的犬模型中,使用AST-120降低血浆硫酸吲哚酯水平可以减轻心肌纤维化,改善心功能,且AST-120可以有效地抑制了TGF-β1的表达和ERK的磷酸化,但以上研究结果尚未在临床试验中进行验证[36]㊂3,3-二甲基-1-丁醇是一种胆碱类似物,存在于一些冷榨特级纯橄榄油中(地中海饮食的主要组成部分),通过抑制微生物的TMA裂解酶,降低TMA的产生,并降低高水平肉碱或胆碱饮食小鼠的TMAO水平可逆转高胆碱饮食对心功能的损害,从而辅助冠心病治疗,有望进入临床试验成为治疗冠心病的新药物[9,37-38]㊂3.2㊀饮食调节饮食模式通过为肠道微生物提供基质来影响肠道菌群的组成㊂目前,饮食调节是临床治疗慢性代谢性疾病的主要治疗手段㊂地中海饮食的主要组成部分包括水果㊁蔬菜㊁豆类㊁橄榄油㊁坚果㊁海鲜和葡萄酒㊂研究[39]表明,地中海饮食依从性较高的参与者粪便大肠埃希菌数较低,双歧杆菌与大肠杆菌的比例较高,白色念珠菌数和流行率较高㊂而鱼类和红肉含有高浓度的TMA前体和TMAO,并且,富含鱼和红肉的饮食还会改变肠道菌群的组成,如梭菌和前肠杆菌,从而提高血液中TMAO的水平㊂遵循地中海式饮食与SCFAs浓度增加及TMAO水平减低有关,地中海饮食依从性较高的个体粪便SCFAs浓度较高[39-40]㊂同时有研究表明,高纤维饮食和醋酸纤维饮食均能显著降低去氧皮质酮处理后的小鼠模型左心室壁厚度的增加,高纤维处理使左心室舒张功能恢复到正常水平,醋酸纤维处理的小鼠模型左心室舒张功能恢复到或接近正常水平[35]㊂然而,支持这些饮食与肠道菌群成分和代谢物变化之间相关性的大多数证据主要来自流行病学研究,需要进一步的研究以提高我们对饮食模式如何改变肠道菌群及其代谢产物的理解㊂3.3㊀益生菌与益生元乳酸菌㊁双歧杆菌是最常见的益生菌种类㊂最近一项研究证明,植物乳杆菌ZDY04通过调节毛螺旋菌属㊁丹毒丝菌科㊁拟杆菌科和牧斯皮氏菌属在小鼠体内的相对丰度而降低血清TMAO和盲肠TMA水平,而不影响肝脏FMO3的表达水平和代谢胆碱㊁TMA和TMAO[41]㊂益生元是通过选择性发酵导致肠道微生物群的组成和(或)活性特异性改变,赋予宿主健康的成分,包括菊粉㊁大豆低聚糖㊁低聚木糖㊁低聚异麦芽糖㊁乳果糖㊁焦糊精㊁膳食纤维㊁抗性淀粉以及其他不被消化的低聚糖㊂有动物实验表明增加益生元摄入有利于降低体脂㊁控制血糖,其可通过改善心血管疾病危险因素而延缓疾病进程[42-43],未来还需更多大规模临床㊁基础研究进一步探讨㊂4㊀小㊀结在过去的几年里,不断有证据表明肠道微生物群与心血管疾病之间存在着重要的联系,然而大多数研究都集中在微生物组成的特征化上,而不是它们的功能改变和下游物质㊂我们现在认识到,肠道微生物群依赖的代谢也可能导致代谢产物产生潜在的心血管不良影响,这些研究为预防和治疗心血管疾病提供了新的治疗策略,包括个性化的饮食干预㊁益生菌和益生元,而一旦确定生成它们的特定途径(例如TMA的产生),针对生成途径的药物也将具有多项潜在的治疗效果,包括减少许多高危人群(2型糖尿病㊁慢性肾脏病和HF患者)的肾功能下降㊁HF进展和不良结果㊂然而,目前仍需要强有力的前瞻性研究来验证这一新的治疗方法.同样需要强调的是,心脏代谢疾病很可能是由几种代谢物引起的,这些代谢物可能在不同的高或低易感性个体中造成不同程度的变化,而TMAO㊁肠源性尿毒症毒素㊁短链脂肪酸很可能只是 冰山一角 ㊂未来微生物产生的代谢物的鉴定以及它们是否与心脏代谢疾病有因果关系,将为改善心血管健康和预防提供令人兴奋的潜在的新机会㊂[参考文献][1]Cerf BN,Gaboriau RV.The immune system and the gut mi-crobiota:friends or foes?[J].Nat Rev Immunol,2010,10 (10):735-744.[2]Tremaroli V,Bäckhed F.Functional interactions between the gut microbiota and host metabolism[J].Nature,2012, 489(7415):242-249.[3]Mamic P,Heidenreich PA,Hedlin H,et al.Hospitalized patients with heart failure and common bacterial infections: a nationwide analysis of concomitant clostridium difficile in-fection rates and in-hospital mortality[J].J Card Fail, 2016,22(11):891-900.[4]Cui X,Ye L,Li J,et al.Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients[J].Sci Rep,2018,8(1):635-650.[5]Sekirov I,Russell SL,Antunes LC,et al.Gut microbiota inhealth and disease[J].Physiol Rev,2010,90(3): 859-904.[6]Nallu A,Sharma S,Ramezani A,et al.Gut microbiome inchronic kidney disease:challenges and opportunities[J]. Transl Res,2017,179:24-37.[7]Tang WH,Li DY,Hazen SL.Dietary metabolism,the gut microbiome,and heart failure[J].Nat Rev Cardiol,2019, 16(3):137-154.[8]Tang WH,Wang Z,Fan Y,et al.Prognostic value of ele-vated levels of intestinal microbe-generated metabolite trim-ethylamine-N-oxide in patients with heart failure:refining the gut hypothesis[J].J Am Coll Cardiol,2014,64(18): 1908-1914.[9]Lever M,George PM,Slow S,et al.Betaine and trimeth-ylamine-N-oxide as predictors of cardiovascular outcomes show different patterns in diabetes mellitus:an observational study[J].PloS One,2014,9(12):e114969. [10]Yang WL,Zhang SN,Zhu JB,et al.Gut microbe-derived metabolite trimethylamine N-oxide accelerates fi-broblast-myofibroblast differentiation and induces cardiacfibrosis[J].J Mol Cell Cardiol,2019,134:119-130.[11]Li ZH,Wu ZY,Yan JY,et al.Gut microbe-derived me-tabolite trimethylamine N-oxide induces cardiac hypertrophyand fibrosis[J].Lab Invest,2019,99(3):346-357. [12]Organ CL,Otsuka H,Bhushan S,et al.Choline diet andits gut microbe-derived metabolite,trimethylamine N-ox-ide,exacerbate pressure overload-induced heart failure[J].Circ Heart Fail,2016,9(1):e002314. [13]Tomasz H,Adrian D,Marta G,et al.Chronic,low-doseTMAO treatment reduces diastolic dysfunction and heartfibrosis in hypertensive rats[J].Am J Physiol Heart CircPhysiol,2018,315(6):H1805-H1820. [14]Patra S,Anders C,Schummel PH,et al.Antagonisticeffects of natural osmolyte mixtures and hydrostatic pres-sure on the conformational dynamics of a DNA hairpinprobed at the single-molecule level[J].Phys ChemChem Phys,2018,20(19):13159-13170. [15]Yancey PH,Siebenaller JF.Co-evolution of proteins andsolutions:protein adaptation versus cytoprotective micro-molecules and their roles in marine organisms[J].J ExpBiol,2015,218(Pt12):1880-1896. [16]Yancey PH,SpeersRB,Atchinson S,et al.Osmolyte ad-justments as a pressure adaptation in deep-sea chondrich-thyan fishes:an intraspecific test in arctic skates(am-blyraja hyperborea)along a depth gradient[J].PhysiolBiochem Zool,2018,91(2):788-796. [17]Yin QJ,Zhang WJ,Qi XQ,et al.High hydrostatic pres-sure inducible trimethylamine N-oxide reductase improvesthe pressure tolerance of piezosensitive bacteria vibrio flu-vialis[J].Front Microbiol,2017,8:2646. [18]Wang WJ,Cheng MH,Sun MF,et al.Indoxyl sulfate in-duces renin release and apoptosis of kidney mesangialcells[J].J Toxicol Sci,2014,39(4):637-643. [19]Ito S,Yoshida M.Protein-bound uremic toxins:new cul-prits of cardiovascular events in chronic kidney diseasepatients[J].Toxins(Basel),2014,6(2):665-678.[20]Lin CJ,Chuang CK,Jayakumar T,et al.Serum p-cresylsulfate predicts cardiovascular disease and mortality inelderly hemodialysis patients[J].Arch Med Sci,2013,9(4):662-668.[21]Yisireyili M,Shimizu H,Saito S,et al.Indoxyl sulfatepromotes cardiac fibrosis with enhanced oxidative stress inhypertensive rats[J].Life Sci,2013,92(24-26):1180-1185.[22]Aoki K,Teshima Y,Kondo H,et al.Role of indoxyl sulfateas a predisposing factor for atrial fibrillation in renal dys-function[J].J Am Heart Assoc,2015,4(10):e002023.[23]Lekawanvijit S,Kompa AR,Manabe M,et al.Chronickidney disease-induced cardiac fibrosis is ameliorated by re-ducing circulating levels of a non-dialysable uremic toxin,indoxyl sulfate[J].PloS One,2012,7(7):e41281. [24]Savira F,Cao L,Wang L,et al.Apoptosis signal-regula-ting kinase1inhibition attenuates cardiac hypertrophyand cardiorenal fibrosis induced by uremic toxins:Impli-cations for cardiorenal syndrome[J].PloS One,2017,12(11):e0187459.[25]Rana I,Kompa AR,Skommer J,et al.Contribution ofmicroRNA to pathological fibrosis in cardio-renal syn-drome:impact of uremic toxins[J].Physiol Rep,2015,3(4):e12371.[26]Lekawanvijit S,Adrahtas A,Kelly DJ,et al.Does indoxylsulfate,a uraemic toxin,have direct effects on cardiacfi-broblasts and myocytes?[J].Eur Heart J,2010,31(14):1771-1779.[27]Yang K,Xu X,Nie L,et al.Indoxyl sulfate induces oxi-dative stress and hypertrophy in cardiomyocytes by inhibi-ting the AMPK/UCP2signaling pathway[J].ToxicologyLetters,2015,234(2):110-119.[28]Koh A,De VF,Kovatcheva DP,et al.From dietary fiberto host physiology:short-chain fatty acids as key bacterialmetabolites[J].Cell,2016,165(6):1332-1345. [29]LeBlanc JG,Chain F,Martín R,et al.Beneficial effectson host energy metabolism of short-chain fatty acids andvitamins produced by commensal and probiotic bacteria[J].Microb Cell Fact,2017,16(1):79. [30]De VF,Kovatcheva DP,Goncalves D,et al.Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J].Cell,2014,156(1-2):84-96.[31]Donohoe DR,Garge N,Zhang X,et al.The microbiomeand butyrate regulate energy metabolism and autophagy inthe mammalian colon[J].Cell Metabolism,2011,13(5):517-526.[32]Brown AJ,Goldsworthy SM,Barnes AA,et al.Theorphan G protein-coupled receptors GPR41and GPR43areactivated by propionate and other short chain carboxylicacids[J].J Biol Chem,2003,278(13):11312-11319.[33]Whelton SP,Hyre AD,Pedersen B,et al.Effect of diet-ary fiber intake on blood pressure:a meta-analysis of ran-domized,controlled clinical trials[J].J Hypertens,2005,23(3):475-481.[34]Khalesi S,Sun J,Buys N,et al.Effect of probiotics onblood pressure:a systematic review andmeta-analysis ofrandomized,controlled trials[J].Hypertension,2014,64(4):897-903.[35]Marques FZ,Nelson E,Chu PY,et al.High-fiber dietand acetate supplementation change the gut microbiotaand prevent the development of hypertension and heartfailure in hypertensive mice[J].Circulation,2017,135(10):964-977.[36]Hiroshi A,Hyemoon C,Shin I,et al.AST-120,an Ad-sorbent of irenic toxins,improve the path physiology ofheart failure in conscious dogs[J].Cardiovasc Drugs T-her,2019,33(3):277-286.[37]Roberts AB,Gu XD,Buffa JA,et al.Development of agut microbe-targeted nonlethal therapeutic to inhibitthrombosis potential[J].Nat Med,2018,24(9):1407-1417.[38]Wang ZN,Roberts AB,BUFFA JA,et al.Non-lethal in-hibition of gut microbial trimethylamine production for thetreatment of atherosclerosis[J].Cell,2015,163(7):1585-1595.[39]McGuire Shelley.Scientific Report of the2015DietaryGuidelines Advisory Committee.Washington,DC:USDepartments of Agriculture and Health and Human Serv-ices,2015[J].Adv Nutr(Bethesda),2016,7(1):202-204.[40]De FF,Pellegrini N,Vannini L,et al.High-level adher-ence to a Mediterranean diet beneficially impacts the gutmicrobiota and associated metabolome[J].Gut,2016,65(11):1812-1821.[41]Qiu L,Tao XY,Xiong H,et ctobacillus plantarumZDY04exhibits a strain-specific property of loweringTMAO via the modulation of gut microbiota in mice[J].Food Funct,2018,9(8):4299-4309. [42]Cani PD,Possemiers S,Van WT,et al.Changes in gutmicrobiota control inflammation in obese mice through amechanism involving GLP-2-driven improvement of gutpermeability[J].Gut,2009,58(8):1091-1103. [43]Cani PD,Neyrinck AM,Fava F,et al.Selectiveincreases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanismassociated with endotoxaemia[J].Diabetologia,2007,50(11):2374-2383.(此文编辑㊀朱雯霞)。

2种灌木柳叶片细胞膜相稳定性及抗氧化酶活性对NaCl胁迫的响应

2种灌木柳叶片细胞膜相稳定性及抗氧化酶活性对NaCl胁迫的响应

第41卷第2期江苏林业科技Vol.41No.2 2014年4月Journal of Jiangsu Forestry Science&Technology Apr.2014文章编号:1001-7380(2014)02-0001-052种灌木柳叶片细胞膜相稳定性及抗氧化酶活性对NaCl胁迫的响应周鹏1,方炎明1,孙婷1,王保松2,张敏2*(1.南京林业大学森林资源与环境学院,江苏南京210037;2.江苏省林业科学研究院,江苏南京211153)摘要:以2个灌木柳无性系(耐盐型JW2345,盐敏感型SW2367)为试验材料,水培法培养幼苗,盐胁迫(NaCl浓度分别为0,50,100和200mmol/L)处理幼苗12d,研究盐胁迫对柳树生长、叶片细胞膜相稳定性及抗氧化酶活性的影响。

结果显示:NaCl胁迫抑制了灌木柳幼苗的生长,JW2345受抑制程度明显小于JW2367;在100mmol/L NaCl处理下,随着NaCl胁迫时间的延长,其细胞膜相稳定性下降,MDA含量增加,但无性系不同,变化幅度不同。

叶片CAT活性均先升高后下降,SOD和POD活性变化规律显著不同,JW2345中SOD和POD均显著高于对照,且随处理时间的延长呈升高趋势;短期胁迫对JW2367的SOD活性无影响,长期胁迫诱导其显著上升,而POD活性先增加后降低。

研究认为:NaCl胁迫抑制灌木柳幼苗的生长,破坏膜相稳定性。

耐盐性较强的JW2345受破坏程度较低,这可能与其维持抗氧化系统平衡密切相关,其中SOD、POD起关键作用。

关键词:灌木柳;细胞膜稳定性;丙二醛;抗氧化酶系统中图分类号:S792.12文献标识码:A doi:10.3969/j.issn.1001-7380.2014.02.001Membrane stability and antioxidant enzyme activity in the leaves of two clones of shrub willow in response to salinity stressZHOU Peng1,FANG Yan-ming1,SUN Ting1,WANG Bao-song2,ZHANG Min2*(1.College of ForestResources and Environment,Nanjing Forestry University,Nanjing210037,China;2.Jiangsu Academy of Forestry,Nanjing211153,China)Abstract:Differential response of two clones of shrub willow,namely,salt-tolerant clone JW2345and salt-sensitive clone JW2367,to salinity stress in relation to membrane stability and antioxidant enzyme activity were evaluated.The plantlets were treated with NaCl solution at0,50,100,or200mmol/L for12days.The results showed that the growth of shrub wil-low plantlets was inhibited,and the extent of inhibition for Clone JW2345was less than that for Clone JW2367.Under100 mmol/L NaCl stress,the membrane stability decreased with the stress time duration while the contents of MDA increased.Moreover,the degree of variation in different clones was different.CAT activities increased at the sixth day and decreased at the twelfth day in both clones.In the leaves of Clone JW2345,NaCl treatment elevated the activities of SOD and POD,and the enzymatic activities increased with the treatment time duration.In contrast,there was no obvious alteration in SOD activities in Clone JW2367at the sixth day,however,the activities increased dramatically at the twelfth day.POD activities increased sharply at the sixth day,and then the activities declined after the treatment with NaCl for12days.Altogether,these results suggested that the growth of shrub willow was inhibited by salinity stress,and the membrane stability was de-stroyed.Furthermore,the membrane stability of the salt-tolerant clone JW2345received less attack,which might be at-tributed to the maintenance of the balance of antioxidant system,among which SOD and POD played a critic role.Key words:Shrub willow;Membrane stability;MDA;Antioxidant enzymes收稿日期:2014-03-10;修回日期:2014-03-14基金项目:国家自然科学基金“NaCl胁迫下一氧化氮调控灌木柳液泡膜H+-ATPase的分子机制”(31300515);江苏省自然科学基金“柳树H+-ATPase响应NaCl胁迫的分子机制”(BK2011872)作者简介:周鹏(1989-),男,硕士研究生,主要从事植物生理生化研究。

美从光秃库盘尼树皮中分离出新的可抗癌细胞和病原细菌化合物

美从光秃库盘尼树皮中分离出新的可抗癌细胞和病原细菌化合物
维普资讯
7 6
浙 江 林
业 科

2 卷 6
【 5 】张泽华.日本青森县 苹果省力化低 成本 栽培技术的发展 【. J 落叶果 树 ,20 ,3 6 1 04 6( ):5 —5 0 1
L b r a iga d E oo a n g me t d l a o vn n c lgc l S i Ma a e n Mo es a d E au t nf r l ie F ut c a d n v la i l d r i0r h r o o Hi s
1 . , ,4 乙酰..- .[ 3 . O2 三 a 鼠李糖吡喃糖. 1+ ) BD 吡喃型葡萄糖】 L (— 2 . . . 十六烷 , 并将这种新的长链脂肪醇糖苷 称之为库盘尼糖苷。还利用 2 维核磁共振分析了这种化合物的化学结构。 试验证明 , 库盘尼糖苷具有离体抗人肝细胞癌 H p 2 eC 、乳腺腺癌 MD . .3 、 AMB2 1 乳腺导管癌 H 58 、乳 5 T 7
Zh -i n1 LU e .h ng , HE io y ng , XI Ja . u W iz o X a .o 2 E in qi3 LAIJ n s e 3 W AN G il u h ng



( .uh F rsy ueu f eag Yn e 2 60C i ; .i u Si c rm t n et o Ze agLsu 330, h ; 1Yne oet B ra  ̄ j n。 uh 3 30, hn 2Ls ic ne o oi ne f  ̄j n, i i 200 C i r o i a h e P oC r i h a n
腺腺癌 MC .、原发性乳腺癌 5 3 和前列腺癌 P 细胞毒性。还证明,库盘尼糖苷具有抗蜡样芽孢杆菌、金 F7 67 C3 黄色葡萄球菌和大肠杆菌的抗病原细菌毒性 。

国际检验医学介绍

国际检验医学介绍

聚集素与肿瘤的研究进展综述审校聚集素(Clusterin,CLU)亦称异二聚体硫酸糖蛋白(sulfated glycoprotein-2,SGP-2),是一种前列腺雄激素抑制物。

1983年由Blaschuk等首次从山羊睾丸网液(ram fete testis fluid)中分离出来,因其支持细胞聚集而得名,于1992年统一命名为聚集素(Clusterin)。

其后逐渐发现在聚集素广泛存在于人类与各种动物的许多器官与组织中,如睾丸、附睾、肾脏、肝脏、肺脏、子宫、卵巢、乳腺及前列腺等器官, 在睾丸、附睾、肝、肾等脏器表达水平较高。

也几乎存在于包括血浆、乳汁、尿液、脑脊液和精液等所有体液中[1]。

聚集素蛋白在进化中高度保守,在氨基酸水平上不同动物间具有很好的同源性。

最近发现,聚集素在细胞凋亡、脂类的运输、细胞周期调、DNA损伤、细胞黏附、组织重塑中起重要作用[2]。

这些作用提示聚集素可能在各种恶性肿瘤的发生发展过程中起重要作用。

目前对聚集素的认识源于一些肿瘤细胞对聚集素的研究。

一、聚集素的结构功能及其基因定位人类的聚集素基因是单拷贝基因,定位于8p12-p21,由9个外显子组成,含有1651个碱基,编码449个氨基酸组成的多肽链。

研究也证实了聚集素在体内可发挥具有相互矛盾的双重作用,这可能与CLU在细胞内通过选择性剪接形成糖基化和非糖基化两种蛋白质亚型有关,即分泌型的clusterin(sCLU)和核型clusterin(nCLU) ,其中sCLU是生理条件下聚集素的主要存在形式。

sCLU是一种细胞保护因子。

sCLU是一种相对分子量为76~80ku的糖基化蛋白[3],对大多数细胞来说是一种具有细胞保护作用的因子。

sCLU的表达由全长聚集素mRNA的第一个AUG密码子开始翻译 ,表达相对分子量为60ku的sCLU蛋白前体。

该蛋白可在前导肽引导下定位于内质网,经过加工,暴露出其αβ位点,并在由内质网向高尔基体转运过程中进行糖基化。

恩格列净联合二甲双胍治疗2型糖尿病的效果评价

恩格列净联合二甲双胍治疗2型糖尿病的效果评价

恩格列净联合二甲双胍治疗2型糖尿病的效果评价林智化厦门大学附属第一医院同安院区(厦门市第三医院)内分泌科,福建厦门361100[摘要]目的分析恩格列净联合二甲双胍治疗2型糖尿病的效果。

方法选取2021年3月—2022年4月厦门大学附属第一医院同安院区(厦门市第三医院)收治的98例2型糖尿病患者为研究对象,按照随机数表法分为观察组和对照组,每组49例。

两组均予以二甲双胍治疗,同时观察组加行恩格列净治疗。

比较两组血糖水平、血脂水平、胰岛β细胞功能、不良反应发生率以及临床疗效。

结果治疗6个月后,与对照组相比,观察组血糖水平、血脂水平均较低,胰岛β细胞功能的改善情况较好,差异有统计学意义(P<0.05)。

观察组不良反应发生率8.16%与对照组6.12%对比,差异无统计学意义(P>0.05)。

观察组治疗总有效率95.92%较对照组83.67%更高,差异有统计学意义(P<0.05)。

结论应用恩格列净联合二甲双胍治疗,效果突出,可有效调节糖脂代谢,纠正胰岛β细胞功能。

[关键词] 恩格列净;二甲双胍;2型糖尿病;糖脂代谢;胰岛β细胞功能[中图分类号] R446.1 [文献标识码] A [文章编号] 1672-4062(2023)08(a)-0087-04 Efficacy Evaluation of Empagliflozin Combined with Metformin in the Treatment of Type 2 Diabetes MellitusLIN ZhihuaDepartment of Endocrinology, Tong'an District of the First Affiliated Hospital of Xiamen University (Xiamen Third Hospital), Xiamen, Fujian Province, 361100 China[Abstract] Objective To analyze the effect of Empagliflozin combined with metformin in the treatment of type 2 dia⁃betes mellitus. Methods From March 2021 to April 2022, 98 patients with type 2 diabetes treated in Tong 'an District the First Affiliated Hospital of Xiamen University (Xiamen Third Hospital) were selected as the research objects. Ac⁃cording to the random number table method, they were divided into observation group and control group, 49 cases in each group. Both groups were treated with metformin, while the observation group was treated with empagliflozin. The blood glucose level, blood lipid level, islet β cell function, incidence of adverse reactions and clinical efficacy were compared between the two groups. Results After 6 months of treatment, compared with the control group, the blood glucose level and blood lipid level in the observation group were lower, and the improvement of islet β cell function was better, the difference was statistically significant (P<0.05). There was no statistically significant difference in the incidence of adverse reactions between the observation group (8.16%) and the control group (6.12%) (P>0.05). The to⁃tal effective rate of treatment in the observation group was 95.92% higher than that in the control group (83.67%), and the difference was statistically significant (P<0.05). Conclusion The treatment of Empagliflozin combined with metfor⁃min has a remarkable effect, which can effectively regulate the metabolism of glucose and lipid and correct the func⁃tion of islet beta cells.[Key words] Empagliflozin; Metformin; Type 2 diabetes; Glycolipid metabolism; Islet beta cell function2型糖尿病是最为常见的糖尿病类型,由于多发于成年,故又称成人发病型糖尿病,疾病早期症状不典型,随着疾病进展,患者可出现多饮、多食、多尿、消瘦或短期内体质量减轻等典型症状[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Reproduction(2003)125,369–376Research Apoptosis in cumulus cells during in vitro maturation of bovinecumulus-enclosed oocytesS.Ikeda,H.Imai and M.Y amada*Laboratory of Reproductive Biology,Division of Applied Biosciences,Graduate School of Agriculture,Kyoto University,Kyoto606-8502,JapanThe aim of this study was to investigate whether apoptosis occurs in cumulus cells during in vitro maturation(IVM) of bovine cumulus-enclosed oocytes(CEOs).The bovine CEOs obtained from ovaries from an abattoir were cultured for24h in IVM medium in the presence or absence of10% (v/v)fetal bovine serum.The developmental competence of enclosed oocytes,as assessed by the development of the blastocyst after IVF,was significantly higher in the serum-treated group than in the control group.The morphological features of apoptosis that were analysed by orcein staining were hardly detectable in the cumulus cells at the start (0h)of IVM,but were evident at the end(24h)of IVM both in the control and serum-treated groups.Genomic DNA was extracted from CEOs at0,6,12,18and24h of IVM and subjected to ligation-mediated PCR(LM-PCR) to detect apoptotic internucleosomal DNA fragmentation.DNA fragmentation was hardly detectable at the start of IVM,but increased in a time-dependent manner as the IVM culture proceeded.DNA fragmentation was not observed in the oocytes,indicating that fragmentation occurs in cumulus cells.The degree of fragmentation was lower in the serum-treated group compared with the control group.The LM-PCR analysis of DNA extracted from CEOs at24h of IVM,in which the DNA had been pretreated with Klenow enzyme or T4DNA polymerase, revealed that the characteristic forms of the DNA ends generated during cumulus cell apoptosis were mainly 3 -overhangs and blunt ends.In conclusion,the results of the present study demonstrate that cumulus cells in bovine CEOs spontaneously undergo apoptosis during IVM. The degree of apoptosis may be correlated with the developmental competence of the enclosed oocytes.IntroductionIn the cyclic recruitment of bovine ovarian follicles during each oestrous cycle,although a cohort of antral follicles start their growth in a wave-like pattern,only one follicle is selected for dominance and the remainder of the cohort regresses(Ginther et al.,2001).This regression of follicles is known as atresia.Atresia associated with cyclic follicle selection in farm animals seems to be initiated and manifested by the apoptosis of granulosa cells rather than of other follicular components,such as theca cells,cumulus cells and oocytes(Manabe et al., 1996;Y ang and Rajamahendran,2000).In vitro maturation(IVM)of bovine oocytes is a well-established procedure for in vitro production of bovine embryos(Nagai,2001).In the IVM system,a group of oocytes,which are usually enclosed within cumulus cell masses,that is,cumulus-enclosed oocytes (CEOs),is collected from a cohort of antral follicles,and then cultured until oocytes reach the second meiotic metaphase from thefirst meiotic prophase(germinal vesicle stage).The importance of the presence of cumulus cells during the IVM period has been demonstrated in *CorrespondenceEmail:masayasu@kais.kyoto-u.ac.jp terms of developmental competence of the surrounded oocytes after IVF(Zhang et al.,1995;Kim et al., 1997;Ikeda et al.,2000).Although there have been many reports on apoptosis in bovine ovarian follicles or cultured granulosa cells(Jolly et al.,1994;Quirk et al., 2000;Y ang and Rajamahendran,2000),information on apoptosis in cumulus cells during IVM of bovine CEOs is limited(Luciano et al.,2000).The objective of the present study was to investigate whether bovine cumulus cells in CEOs collected from ovaries derived from an abattoir undergo apoptosis during the period of IVM under conventional culture conditions.For this purpose,the morphological changes and apoptotic DNA fragmentation in cumulus cells during IVM were assessed.In addition,the characteristic forms of the DNA ends generated in apoptotic DNA fragmentation in cumulus cells were determined.Materials and MethodsCulture mediaThe washing medium for collection and sampling of CEOs was modified PBS(mPBS)which contained 0.9mmol CaCl2l−1,0.49mmol MgCl2l−1,1.19mmolc 2003Society for Reproduction and Fertility1470-1626/2003370S.Ikeda et al.NaHCO3l−1,0.33mmol sodium pyruvate l−1,1.5mmol glucose l−1and0.5mg polyvinyl alcohol ml−1(PVA; Sigma,St Louis,MO).The basal medium for IVM (IVMM)was a modified synthetic oviductfluid(mSOF) described by Ikeda et al.(2000).This medium consisted of synthetic oviductfluid(Tervit et al.,1972),2% (v/v)basal medium Eagle(BME)amino acids solution (Sigma),1%(v/v)minimum essential medium(MEM) non-essential amino acids solution(Sigma),0.5mg PVA ml−1,1.0␮g oestradiol ml−1(Sigma)and100iu hCG ml−1(Sankyo Co.,Tokyo).The medium for IVF was modified Tyrode’s balanced salt solution(BO)(Brackett and Oliphant,1975).The washing medium for frozen–thawed bull spermatozoa was BO supplemented with10mmol caffeine sodium benzoate l−1(Sigma)and20␮g heparin ml−1(Sigma) (BO-1).The medium used for co-incubation of sperma-tozoa and oocytes was a50:50(v:v)mixture of BO-1and BO supplemented with20mg BSA ml−1(Sigma)(BO-2). The medium for in vitro culture(IVC)of embryos after IVF(IVCM)was mSOF described above supplemented with1or5%(v/v)heat-inactivated fetal bovine serum (FBS;JRH Biosciences,Lenexa,KS)and without PVA and hormones.IVM,IVF and IVC of CEOsOvaries collected from Japanese black cattle at a local abattoir were transported to the laboratory within3h in saline(0.9%(w/v)NaCl)at35–38◦C.The ovaries were pooled regardless of the stage of the oestrous cycle of the donors.Follicular contents were aspirated from follicles with a diameter of2–5mm and diluted with mPBS. The CEOs consisting of oocytes with homogeneous and evenly granulated cytoplasm and an intact cumulus cell mass were selected from the follicular contents. Groups of10CEOs were randomly transferred to50␮l drops of IVMM with or without10%(v/v)FBS,covered with paraffin oil and then cultured for up to24h at39◦C in5%CO2in air.After24h of IVM,some oocytes were freed from cumulus cells and the extrusion of thefirst polar body was assessed under a microscope to evaluate the nuclear maturation rates.The remaining CEOs were subjected to IVF and IVC as described elsewhere(Ikeda et al., 2000).In brief,after frozen bull semen was thawed, spermatozoa were washed with BO-1,resuspended at a concentration of4–5×106ml−1in BO-2and prepared as a100␮l suspension.Groups of8–12CEOs at24h of IVM were transferred into the sperm suspension and incubated for6h.Thereafter,oocytes were freed from surrounding cumulus cells and transferred into50␮l drops of IVCM containing1%FBS and cultured at39◦C under5%CO2,5%O2and90%N2.At48h after insemination,cleaved embryos of normal morphology were transferred to IVCM containing5%FBS and cultured until day8(fertilization=day0).The cleavage rates were assessed at48h after insemination.The percentage of embryos reaching the blastocyst stage was recorded on day8.Morphological analysis of apoptosisThe CEOs at0and24h of IVM were mounted on glass slides,fixed with ethanol:acetic acid(3:1,v:v), stained with1%(w/v)orcein and then observed under a microscope to identify apoptotic cells.Apoptotic cells and bodies were defined on the basis of morphological criteria reported by Y ang and Rajamahendran(2000),that is,cells with nuclei containing condensed chromatin that had either aggregated in large compact granular masses that abut the nuclear membrane(marginated chromatin),had shrunken into a single regularly shaped, dense,homogeneously stained mass(pyknotic appear-ance),or had fragmented into multiple densely stained masses(multiple fragments),or discrete membrane-bound structures with roughly spherical or ovoid shape containing variable amounts of condensed chromatin, cytoplasm,or of both dispersed in the intercellular spaces (apoptotic bodies).Extraction of genomic DNA from CEOsThe individual groups of ten CEOs were washed with mPBS and transferred into microcentrifuge tubes with50␮l mPBS.The tubes,each containing10CEOs, were immersed in liquid nitrogen and stored at–80◦C until DNA extraction.After thawing,the CEOs were lysed by the addition of50␮l of×2strengthened lysis buffer(20mmol Tris–HCl l−1,200mmol NaCl l−1, 50mmol EDTA l−1,1%(w/v)SDS,0.2mg proteinase K ml−1,pH8.0)and incubation at50◦C for18h with gentle shaking.The DNA was extracted by the phenol:chloroform:isoamyl alcohol(25:24:1,v:v:v,PCI) method and precipitated using ethanol.The DNA pellets were dried and resuspended in20␮l TE buffer(10mmol Tris–HCl l−1,1mmol EDTA l−1,pH8.0).This solution (20␮l)contained DNA corresponding to eight CEOs.PCR reactions upon theβ-actin gene as an internal control were performed using the DNA solution to verify the equality of the amounts of the DNA extracted. Two microlitres of DNA solution(corresponding to0.8 CEO)was mixed in a50␮l reaction mixture containing 200␮mol dNTP l−1,2.5U Ex-Taq DNA polymerase (Takara Bio.Inc.)and a pair of primers(0.25␮mol l−1) specific for theβ-actin gene and amplified for30cycles of30s at94◦C,30s at60◦C and1min at72◦C. Detection of apoptotic DNA fragmentation by LM-PCR The detection of the nucleosomal DNA ladder of apoptotic cells was performed using an ApoAlert ligation-mediated PCR(LM-PCR)ladder assay kit(Clontech,PaloApoptosis in cumulus cells during IVM of bovine CEOs371Alto,CA)according to the manufacturer’s instructions with minor modifications.Among its advantages,the LM-PCR assay is reported to be semiquantitative,allowing comparison of the relative extent of apoptosis in different samples(Staley et al.,1997).Genomic DNA correspond-ing to three CEOs was mixed with1nmol each of24bp (5 -AGCACTCTCGAGCCTCTCACCGCA-3 )and12bp (5 -TGCGGTGAGAGG-3 )unphosphorylated oligo-nucleotides in a49␮l reaction volume with1×ligation mix(Clontech).The oligonucleotides were annealed by heating to55◦C for10min and cooling gradually to10◦C over1h followed by incubation at10◦C for 10min.Four hundred U(1␮l)of T4DNA ligase (Clontech)was added and ligation was performed at16◦C for16h.This procedure allowed the unphosphorylated adaptors to ligate to the5 -phosphorylated blunt ends of the DNA fragments generated during the IVM culture. Adaptor-ligated DNA solution(50␮l)was stored at −20◦C until PCR was performed.Adaptor-ligated DNA solution(8␮l)corresponding to half of a CEO was mixed with5␮l of10×LM-PCR mix (Clontech)containing the24bp oligonucleotides(linker primer)and36.5␮l of water in a PCR tube.The tube was heated to72◦C for3min followed by the addition of 2.5U(0.5␮l)of Ex-Taq DNA polymerase and further in-cubation at72◦C for5min tofill in the5 protruding ends of the ligated DNA.The24bp oligonucleotide could now serve as a primer,and the DNA fragments with adaptors on both ends could be exponentially amplified. PCR reactions were performed for24–26cycles of1min at94◦C and3min at72◦C.All of the procedures described above were also performed using the oocytes that were mechanically stripped of cumulus cells at the end of IVM to confirm whether the apoptotic DNA fragmentation detected in the CEOs was derived from cumulus cells or from oocytes.Assessment of fragmented DNA ends generated in cumulus cell apoptosisThe mode of DNA cleavage in cumulus cell apoptosis was assessed by pretreating DNA fragments in CEOs either with Klenow enzyme or T4DNA polymerase,and then subjecting them to LM-PCR analysis as described above.Genomic DNA from16CEOs at24h of IVM culture under the control condition was extracted as described above and dissolved in20␮l distilled water. The genomic DNA was treated with either2U Klenow enzyme(Takara Bio.Inc.)in10mmol Tris–HCl l−1 (pH7.5),7.0mmol MgCl2l−1,0.1mmol dithiothreitol l−1and20␮mol dNTP l−1or4U T4DNA polymerase (Toyobo,Osaka)in50mmol Tris–HCl l−1(pH8.5), 7.0mmol MgCl2l−1,15mmol(NH4)2SO4l−1,10mmol 2-mercaptoethanol l−1,0.1mmol EDTA l−1and 0.3mmol dNTP l−1for30min at37◦C.In parallel control reactions,the enzymes were omitted.Enzymes were removed by the PCI method and the DNA wasprecipitated using ethanol,dried and resuspended in20␮l of TE buffer.Two microlitres of the DNA solutionwas subjected to PCR reactions for theβ-actin gene and7.5␮l were used for LM-PCR.The expected activities of Klenow enzyme and T4DNA polymerase used in these experiments wereconfirmed by performing the parallel reaction withthe Klenow enzyme on Pvu II-Bam HI fragments of pBluescript II SK(–)(pBS)plasmid DNA,which have bluntand5 -overhang ends,and the reaction with the T4DNApolymerase on Pst I-Ase I fragments having3 -and5 -overhangs,respectively.Thereafter,the enzyme-treatedpBS fragments were subjected to LM-PCR.Quantification of apoptotic indexAll the PCR products(50␮l)were subjected toelectrophoresis through2%(w/v)agarose gels containing0.8␮g ethidium bromide ml−1.After electrophoresis for60min at8V cm−1in Tris-borate–EDTA buffer,the gelswere photographed on a UV transilluminator.The band intensities of the PCR products weremeasured by densitometry using a model4.0Atto dens-itograph(Atto,Tokyo).The intensity of ladder-like bandsderived from the apoptotic DNA fragments(<1kb)was expressed relative to the intensity of the band for β-actin.The relative intensity for the onset of IVM(0h) was subtracted from that for each time point andthe difference was designated as the apoptotic index.Experiments were repeated a minimum of three times. Statistical analysisThe statistical analyses of data were performed usingthe StatView4.02(Abacus Concepts Inc.,Berkeley,CA).Developmental rates were analysed by t test.Raw apoptotic indexes were logarithmically transformed to stabilize the variances,and subjected to one-factor ANOVA and Fisher’s PLSD test to detect significant differences among the treatments and time points. Significance was accepted at P<0.05.ResultsThe rates of nuclear maturation and development after fertilization of bovine oocytes matured in IVMM with (serum group)or without(control group)serum is shown(Table1).Most oocytes(>70%)achieved nuclear maturation at24h after IVM and cleaved by day2 after IVF in both groups.The rate of oocytes tested that developed to the blastocyst stage was significantly greater (P<0.05)in the serum-treated group than in the control group.The blastocyst yield from cleaved oocytes was also significantly higher(P<0.05)in the serum-treated group than in the control group.372S.Ikeda et al.Table1.Effect of serum during in vitro maturation(IVM)on nuclear maturation and development ofbovine oocytes after fertilizationNumber of Blastocyst(%±SEM)Number of Nuclear IVM/IVFIVM oocytes maturation oocytes Cleavage Per IVM/IVF Per cleaved IVM condition(replicates)(%±SEM)(replicates)(%±SEM)oocyte oocyteControl56(5)76.6±3a127(5)70.1±5a18.3±2a27.3±4aFBS62(5)76.8±5a126(5)74.8±5a37.7±4b52.0±8ba,b Values within the same column with different superscripts are significantly different(P<0.05).FBS:fetal bovine serum.(a)(b)(c)(d)Fig. 1.Morphological features of apoptosis in cumulus cells of bovine cumulus-enclosed oocytes(CEOs)at the end of in vitro maturation(IVM)culture.(a)Cellswith nuclei containing marginated chromatin,(b)cells with a single small nucleus withdensely stained chromatin(pyknotic appearance),(c)cells containing multiple nuclearfragments and(d)membrane-bound structures containing variable amounts of chromatin,cytoplasm,or both(apoptotic bodies).Arrows indicate cumulus cells at each stage ofapoptosis.Scale bar represents10␮m.The apoptotic morphological features were hardly seen at the start(0h)of IVM,whereas they were evident in cumulus masses of CEOs at the end(24h)of IVM both in IVMM with and without serum supplementation (Fig.1).The apoptotic morphological features observed in the cumulus cells were as follows:marginated chro-matin(Fig.1a),pyknotic appearance(Fig.1b),multiple nuclear fragments(Fig.1c)and apoptotic bodies(Fig.1d). The number and distribution of these apoptotic cells and subcellular structures were variable among the CEOs.Apoptosis in cumulus cells during IVM of bovine CEOs373 The results of LM-PCR using genomic DNA frombovine CEOs and oocytes matured in serum-free IVMM(CEOs:0and24h,oocytes:24h of IVM)is shown (Fig.2).The ladder-like PCR products in CEOs were hardly detectable at0h of IVM,whereas they were clearly visible after24h of culture.The sizes of the ladders were,as expected,185bp multiples with an add-itional24bp oligonucleotides at each DNA end. However,no ladder could be obtained from oocytes that were freed from CEOs after24h of culture.Therefore, thisfinding indicates that the ladder observed in CEOs (24h)was derived from the DNA of apoptotic cumulus cells.The time-dependent occurrence of DNA fragment-ation characteristic of apoptosis in CEOs during IVM culture with or without serum is shown(Fig.3).The extent of DNA cleavage into185bp multiple ladders significantly increased after12h of culture,and then toward the end of IVM(24h)irrespective of the addition of serum.When compared at a given time point, the apoptotic index was significantly(P<0.05)lower in the serum-treated group than in the control group at 18h of IVM.The results of LM-PCR on the DNA extracted from CEOs at24h of IVM culture that had been pretreated with either Klenow enzyme or T4DNA polymerase are shown(Fig.4a).Filling in5 -overhangs with Klenow enzyme slightly increased the amplification of ladders (Fig.4a,lanes1and2),whereas the combination of filling in5 -overhangs and removing3 -overhangs with T4DNA polymerase greatly increased the amplification (Fig.4a,lanes3and4).Under parallel conditions, Klenow enzyme was shown tofill in the5 -overhangs of Pvu II-Bam HI fragments of pBS,and T4DNA polymerase tofill in and remove the5 -and3 -overhangs of Pst I-Ase I fragments,respectively.DiscussionCumulus cells are a subpopulation of granulosa cells that surround the oocyte,providing nutrients and signals that regulate its growth and maturation(Eppig,1991; Picton et al.,1998;Tanghe et al.,2002).In the present study,it was demonstrated for thefirst time that cumulus cells of bovine CEOs spontaneously undergo apoptosis during IVM culture.In CEOs collected from the antral follicles of ovaries,the morphological features and a biochemical hallmark of apoptosis(internucleosomal DNA fragmentation)were hardly detectable in the cumulus cells.Thisfinding is consistent with the observation that apoptosis is not found in cumulus cells even in atretic follicles(Y ang and Rajamahendran,2000). In contrast,in the present study,the apoptotic cells and DNA fragmentation markedly increased as the IVM culture proceeded.Luciano et al.(2000)reported that cumulus cells of bovine CEOs cultured in definedmediaM02424IVM (h)3 nuc2 nuc1 nuc-actinCEO OFig. 2.Ligation-mediated PCR(LM-PCR)analysis of inter-nucleosomal ladder in bovine cumulus-enclosed oocytes(CEOs) cultured for0or24h and oocytes(O)matured in vitro(IVM)for 24h.PCR products derived from adaptor-ligated DNA corres-ponding to half of a CEO or half of an oocyte were subjected to electrophoresis and then photographed.The lower panel shows a control PCR assay for theβ-actin gene to confirm that equivalent amounts of DNA were analysed.1nuc to3nuc:the PCR ladder derived from1to3nucleosomal units of DNA fragments.M:100bp DNA marker.did not undergo apoptosis after24h of IVM,which is not consistent with thefindings of the present study.This discrepancy remains to be explained,but it might be attributable to the fact that Luciano et al.(2000)had focused on only a limited number of cumulus cells(3.2×103cells surrounding one oocyte)as the cumulus region, whereas in the present study CEOs with more cumulus cells were used(6–10×103cells per CEO).The time-course experiments on the detection of DNA fragmentation in the cumulus cells of bovine CEOs during the IVM period showed an induction period both in the control and the serum-treated groups,(for12and18h from the beginning of IVM culture,respectively).Thereafter,the degree of DNA fragmentation was accelerated toward the end of IVM in both groups.Thisfinding implies that a self-amplifying drive was involved in apoptosis.The difference in the duration of the induction period between the control and the serum-treated groups may reflect the effects of the different culture conditions upon the apoptotic drive.In addition,apoptosis in cumulus cells during IVM of CEOs occurred irrespective of addition of serum, although serum deprivation is a well-known apoptosis-inducing stimulus for granulosa cells(Tilly et al.,1992; Guthrie et al.,1998;Peng et al.,1998;Hu et al.,2001), indicating that serum addition is not sufficient to prevent the cumulus cells from undergoing apoptosis during IVM.374S.Ikeda et al.M624Serum 3 nuc 2 nuc 1 nuc-actinControl 12186241218(a)(b)1.21.00.80.60.40.2006121824IVM (h)A p o p t o t i c i n d e xIVM (h)ab Fig.3.(a)Ligation-mediated PCR (LM-PCR)analysis of internucleosomal ladder in bovine cumulus-enclosed oocytes (CEOs)during in vitro maturation (IVM)culture with or without addition of serum.M:100bp DNA marker.(b)Apoptotic index calculated from the results of the LM-PCR assay during IVM culture.Values with asterisks differ significantly from the value at 0h (*P <0.05,**P <0.01,***P <0.001).Different letters depict significant differences between the treatments at the same time point (P <0.05).᭜,Control;ᮀ,serum.It is not known whether apoptosis occurs in cumulus cells during natural oocyte maturation in cyclic follicle recruitment in cattle.However,Szoltys et al .(2000)reported that apoptotic cumulus cells were not detected 1–2h before ovulation,and were generally scarce and confined to the peripheral parts of CEOs even at 9–10h after ovulation in rats showing a regular oestrous cycle.Thus,it seems likely that apoptosis does not occur in cumulus cells of CEOs that are in the ovarian follicle,at least during natural oocyte maturation.If the degree of cumulus cell apoptosis during oocyte maturation differs between ovarian follicles in animals showing a natural oestrous cycle and IVM,the apoptosis observed in IVM is not a physiological,but an artificial phenomenon.This aspect is interesting from the viewpoint of invest-igating the differences between the in vivo and in vitro maturation of oocytes.Many studies have determined the incidence of apoptosis in cumulus cells in human CEOs obtained by hyperstimulation for IVF or intracytoplasmic sperm injection (ICSI)programmes (Nakahara et al .,1997a,b;Host et al .,2000,2002;Lee et al .,2001;Raman et al .,2001).Hyperstimulation is also an artificial technique that overrides natural follicle recruitment and oocyte maturation.The apoptosis reported in these studies might also be due to the non-physiological oocyte maturation.Furthermore,these studies were all concerned with the relationship between apoptosis in cumulus cells and the developmental competence of the corresponding oocytes.Except for the report by Raman et al .(2001),these previous studies indicate that a low degree of apoptosis in cumulus cells of CEOs is correlated with a higher developmental competence after IVF or ICSI.In the present study,apoptosis was observed irrespective of addition of serum in cumulus cells of bovine CEOs during the IVM period;however,the degree of apoptosis was lower in CEOs cultured with serum.The developmental competence of CEOs assessed by blastocyst development after IVF was significantly higher in the serum-treatedApoptosis in cumulus cells during IVM of bovine CEOs375 group than in the control group.Therefore,the viabilityof cumulus cells of bovine CEOs in IVM culture mightbe correlated with the greater competence of theoocytes.Although LM-PCR is a method to detect onlyDNA fragments with blunt ends(Staley et al.,1997), substantial amounts of such fragments were detected inthe present study.In the present study,the characteristicforms of DNA ends generated by DNA fragmentation inthe cumulus cell apoptosis during IVM were assessed.When the5 -overhangs werefilled in by Klenow enzymetreatment,the amplification of ladders was slightlyincreased.However,when both the5 -and3 -overhangswere changed to blunt ends by T4DNA polymerase,the amplification was greatly increased.These resultsindicate that the characteristic forms of the DNA endsare mainly3 -overhangs and blunt ends.Thisfindingprovides insight into the nucleases involved in apoptosisin cumulus cells.Deoxyribonuclease I(DNase I)cleavesnucleosomal DNA to produce DNA fragments withshort3 -overhangs(Lutter,1979;Cusick et al.,1989). Boon and Tsang(1997)reported that DNase I wasimmunolocalized in nuclei of antral follicle granulosacells in rats.Caspase-activated nuclease(CPAN),alsoknown as the40kDa subunit of DNA fragmentationfactor(DFF40),is a deoxyribonuclease which generatesblunt ends and5 -overhangs(Liu et al.,1999;Widlak et al.,2000).Furthermore,because double-stranded DNA breaks are apoptotic signals,the cleavage ofgenomic DNA by CPAN is considered to trigger anamplifying cycle of apoptosis(Liu et al.,1999).The possible involvement of such a self-amplifying drive isconsistent with the results of the time course experimentsreported here.Therefore,these endonucleases might beresponsible for apoptotic DNA fragmentation in cumuluscells during IVM.The apoptosis-inhibiting effect of serum on granulosacells has been considered to be due to the growthfactors,such as insulin-like growth factor I,epidermalgrowth factor and basicfibroblast growth factor that itcontains(Quirk et al.,2000).The reduced amount of apoptosis in cumulus cells treated with serum during IVM in the present study may also be attributed to the action of such factors.However,it was noted that the apoptosis of cumulus cells occurs irrespective of the pres-ence of serum and the possibility that cumulus cell apoptosis observed in IVM is substantially different from granulosa cell apoptosis with respect to the growth factor dependency cannot be ruled out.In summary,the results of the present study demon-strate that cumulus cells of bovine CEOs undergoapoptosis during IVM culture.The difference in cumuluscell apoptosis between natural oocyte maturation andIVM,the relationship between cumulus cell apoptosisand the developmental competence of the correspondingoocytes,and the mechanisms of cumulus cell apoptosisseem worthy of further investigation.+T4 DNA polymerase3 nuc2 nuc1 nuc-actin Klenow enzyme–(a)(b)+–pBSfragments Pvu II–Bam HI Pst I–Ase IFig.4.(a)Ligation-mediated PCR(LM-PCR)analysis in combi-nation with Klenow enzyme or T4DNA polymerase reaction. Genomic DNA extracted from bovine cumulus-enclosed oocytes (CEOs)at24h of in vitro maturation(IVM)culture under the serum-free condition was treated with(+)or without(−)Klenow enzyme or T4DNA polymerase and subjected to LM-PCR.(b)The enzymes used in this experiment showed the expected activities in parallel reactions on fragments of pBluescript II SK(–)(pBS).Klenow enzyme was shown tofill in the5 -overhangs of Pvu II-Bam HI fragments, whereas T4DNA polymerasefilled in and removed the5 -and 3 -overhangs of Pst I-Ase I fragments.This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education,Culture,Sports,Science and Technology,Japan.The authors thank the staff at the Second Wholesale Market of Kyoto City,especially K.Naka and T.Ohnishi, for allowing us access to bovine ovaries.ReferencesBoone DL and Tsang BK(1997)Identification and localization of deoxyribonuclease I in the rat ovary Biology of Reproduction57813–821Brackett BG and Oliphant G(1975)Capacitation of rabbit spermatozoa in vitro.Biology of Reproduction12260–274Cusick ME,Wassarman PM and DePamphilis ML(1989)Application of nucleases to visualizing chromatin organization at replication forks Methods in Enzymology170290–316Eppig JJ(1991)Intercommunication between mammalian oocytes and companion somatic cells Bioessays13569–574Ginther OJ,Beg MA,Bergfelt DR,Donadeu FX and Kot K(2001)Follicle selection in monovular species Biology of Reproduction65638–647。

相关文档
最新文档