最新人教A版必修一高一数学2.3幂函数公开课教学设计

合集下载

高中数学 (幂函数)示范教案 新人教A版必修1

高中数学 (幂函数)示范教案 新人教A版必修1

2.3 幂函数整体设计 教学分析幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数.学生已经有了学习指数函数和对数函数的图象和性质的学习经历,幂函数概念的引入以及图象和性质的研究便水到渠成.因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习.本节通过实例,让学生认识到幂函数同样也是一种重要的函数模型,通过研究y =x,y =x 2,y =x 3,y =x -1,y =x 21等函数的性质和图象,让学生认识到幂指数大于零和小于零两种情形下,幂函数的共性:当幂指数α>0时,幂函数的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增;当幂指数α<0时,幂函数的图象都经过点(1,1),且在第一象限内函数单调递减且以两坐标轴为渐近线.在方法上,我们应注意从特殊到一般地去进行类比研究幂函数的性质,并注意与指数函数进行对比学习.将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质.其中,学生在初中已经学习了y=x,y=x 2,y=x -1等三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识.现在明确提出幂函数的概念,有助于学生形成完整的知识结构.学生已经了解了函数的基本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了基本思路和方法.因此,教材安排学习幂函数,除内容本身外,掌握研究函数的一般思想方法是另一目的,另外,应让学生了解利用信息技术来探索函数图象及性质是一个重要途径.学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析. 三维目标1.通过生活实例引出幂函数的概念,会画幂函数的图象,通过观察图象,了解幂函数图象的变化情况和性质,加深学生对研究函数性质的基本方法和流程的经验,培养学生概括抽象和识图能力,使学生体会到生活中处处有数学,激发学生的学习兴趣.2.了解几个常见的幂函数的性质,通过这几个幂函数的性质,总结幂函数的性质,通过画图比较,使学生进一步体会数形结合的思想,利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望.3.应用幂函数的图象和性质解决有关简单问题,培养学生观察分析归纳能力,了解类比法在研究问题中的作用,渗透辩证唯物主义观点和方法论,培养学生运用具体问题具体分析的方法去分析和解决问题的能力. 重点难点教学重点:从五个具体的幂函数中认识幂函数的概念和性质. 教学难点:根据幂函数的单调性比较两个同指数的指数式的大小. 课时安排 1课时教学过程导入新课 思路11.如果张红购买了每千克1元的水果w 千克,那么她需要付的钱数p (元)和购买的水果量w (千克)之间有何关系?根据函数的定义可知,这里p 是w 的函数.2.如果正方形的边长为a,那么正方形的面积S=a 2,这里S 是a 的函数.3.如果正方体的边长为a,那么正方体的体积V=a 3,这里V 是a 的函数. 4.如果正方形场地面积为S,那么正方形的边长a=S 21,这里a 是S 的函数.5.如果某人t s 内骑车行进了1 km,那么他骑车的速度v=t -1km/s,这里v 是t 的函数. 以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量).(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题:幂函数).思路2.我们前面学习了三类具体的初等函数:二次函数、指数函数和对数函数,这一节课我们再学习一种新的函数——幂函数,教师板书课题:幂函数. 推进新课 新知探究 提出问题问题①:给出下列函数:y=x,y=x 21,y=x 2,y=x -1,y=x 3,考察这些解析式的特点,总结出来,是否为指数函数?问题②:根据①,如果让我们起一个名字的话,你将会给他们起个什么名字呢?请给出一个一般性的结论.问题③:我们前面学习指对数函数的性质时,用了什么样的思路?研究幂函数的性质呢? 问题④:画出y=x,y=x 21,y=x 2,y=x -1,y=x 3五个函数图象,完成下列表格.问题⑤:通过对以上五个函数图象的观察,哪个象限一定有幂函数的图象?哪个象限一定没有幂函数的图象?哪个象限可能有幂函数的图象,这时可以通过什么途径来判断? 问题⑥:通过对以上五个函数图象的观察和填表,你能类比出一般的幂函数的性质吗?活动:考虑到学生已经学习了指数函数与对数函数,对函数的学习、研究有了一定的经验和基本方法,所以教学流程又分两条线,一条以内容为明线,另一条以研究函数的基本内容和方法为暗线,教学过程中同时展开,学生相互讨论,必要时,教师将解析式写成指数幂形式,以启发学生归纳,学生作图,教师巡视,学生小组讨论,得到结论,必要时,教师利用几何画板演示. 讨论结果:①通过观察发现这些函数的变量在底数位置,解析式右边都是幂,因为它们的变量都在底数位置上,不符合指数函数的定义,所以都不是指数函数.②由于函数的指数是一个常数,底数是变量,类似于我们学过的幂的形式,因此我们称这种类型的函数为幂函数,如果我们用字母α来表示函数的指数,就能得到一般的式子,即幂函数的定义:一般地,形如y=x α(x∈R )的函数称为幂函数,其中x 是自变量,α是常数.如y=x 2,y=x 21,y=x 3等都是幂函数,幂函数与指数函数、对数函数一样,都是基本初等函数. ③我们研究指对数函数时,根据图象研究函数的性质,由具体到一般;一般要考虑函数的定义域、值域、单调性、奇偶性;有时也通过画函数图象,从图象的变化情况来看函数的定义域、值域、单调性、奇偶性等性质,研究幂函数的性质也应如此.④学生用描点法,也可应用函数的性质,如奇偶性、定义域等,画出函数图象.利用描点法,在同一坐标系中画出函数y=x,y=x 21,y=x 2,y=x 3,y=x -1的图象. 列表:图2-3-1让学生通过观察图象,分组讨论,探究幂函数的性质和图象的变化规律,教师注意引导学生用类比研究指数函数、对数函数的方法研究幂函数的性质.⑤第一象限一定有幂函数的图象;第四象限一定没有幂函数的图象;而第二、三象限可能有,也可能没有图象,这时可以通过幂函数和定义域和奇偶性来判断.⑥幂函数y=x α的性质.(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:1x=1); (2)当α>0时,幂函数的图象都通过原点,并且在\[0,+∞)上是增函数(从左往右看,函数图象逐渐上升).特别地,当α>1时,x∈(0,1),y=x 2的图象都在y=x 图象的下方,形状向下凸,α越大,下凸的程度越大.当0<α<1时,x∈(0,1),y=x 2的图象都在y=x 的图象上方,形状向上凸,α越小,上凸的程度越大.(3)当α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x 向原点靠近时,图象在y 轴的右方无限逼近y 轴正半轴,当x 慢慢地变大时,图象在x 轴上方并无限逼近x 轴的正半轴. 应用示例思路1例1判断下列函数哪些是幂函数. ①y=0.2x;②y=x -3;③y=x -2;④y=x 51.活动:学生独立思考,讨论回答,教师巡视引导,及时评价学生的回答.根据幂函数的定义判别,形如y=x α(x∈R )的函数称为幂函数,变量x 的系数为1,指数α是一个常数,严格按这个标准来判断.解:①y=0.2x的底数是0.2,因此不是幂函数;②y=x -3的底数是变量,指数是常数,因此是幂函数;③y=x -2的底数是变量,指数是常数,因此是幂函数; ④y=x 51的底数是变量,指数是常数,因此是幂函数. 点评:判断函数是否是幂函数要严格按定义来判断. 变式训练判别下列函数中有几个幂函数?①y=x 31;②y=2x 2;③y=x 32;④y=x 2+x;⑤y=-x 3.解:①③的底数是变量,指数是常数,因此①③是幂函数;②的变量x 2的系数为2,因此不是幂函数;④的变量是和的形式,因此也不是幂函数;⑤的变量x 3的系数为-1,因此不是幂函数.例2求下列幂函数的定义域,并指出其奇偶性、单调性. (1)y=x 32,(2)y=x23 ,(3)y=x -2.活动:学生思考,小组讨论,教师引导,学生展示思维过程,教师评价.根据你的学习经历,回顾求一个函数的定义域的方法,判断函数奇偶性、单调性的方法.判断函数奇偶性、单调性的方法,一般用定义法.解决有关函数求定义域的问题时,可以从以下几个方面来考虑:列出相应不等式或不等式组,解不等式或不等式组即可得到所求函数的定义域.解:(1)要使函数y=x 32有意义,只需y=32x 有意义,即x∈R .所以函数y=x 32的定义域是x∈R.又f(-x)=f(x),所以函数y=x 32是偶函数,它在(-∞,0]上是减函数,在[0,+∞)上是增函数.(2)要使函数y=x23-有意义,只需y=231x 有意义,即x∈R +,所以函数y=x23-的定义域是R +,由于函数y=x23-的定义域不关于原点对称,所以函数y=x23-是非奇非偶的函数,它在(0,+∞)上是减函数.(3)要使函数y=x -2有意义,只需y=21x有意义,即x≠0,所以函数y=x -2的定义域是x≠0,又f(-x)=f(x),所以函数y=x -2是偶函数,它在(-∞,0)上是增函数,在(0,+∞)上是减函数. 点评:在函数解析式中含有分数指数时,可以把它们的解析式化成根式,根据“偶次根号下非负”这一条件来求出对应函数的定义域;当函数解析式的幂指数为负数时,根据负指数幂的意义将其转化为分式形式,根据分式的分母不能为0这一限制条件来求出对应函数的定义域,求函数的定义域的本质是解不等式或不等式组. 例3证明幂函数f(x)=x 在[0,+∞)上是增函数.活动:学生先思考或讨论,再回答,教师根据实际,可以提示引导. 证明函数的单调性一般用定义法,有时利用复合函数的单调性. 证明:任取x 1,x 2∈[0,+∞),且x 1<x 2,则 f(x 1)-f(x 2)=21x -x =212121))((x x x x x x ++-=2121x x x x +-,因为x 1-x 2<0,x 1+x 2>0,所以2121x x x x +-<0.所以f(x 1)<f(x 2),即f(x)=x 在[0,+∞)上是增函数.点评:证明函数的单调性要严格按步骤和格式书写,利用作商的方法比较大小,f(x 1)与f(x 2)的符号要一致. 思路2例1函数y =(x 2-2x )21-的定义域是( )A.{x|x≠0或x≠2}B.(-∞,0)∪(2,+∞)C.(-∞,0]∪[2,+∞)D.(0,2) 分析:函数y =(x 2-2x )21-化为y=xx 212-,要使函数有意义需x 2-2x >0,即x >2或x <0,所以函数的定义域为{x|x >2或x <0}. 答案:B 变式训练函数y =(1-x 2)21的值域是( )A.[0,+∞)B.(0,1]C.(0,1)D.[0,1] 活动:学生独立解题,先思考,然后上黑板板演,教师巡视指导. 函数的值域要根据函数的定义域来求.函数可化为根式形式,偶次方根号的被开方数大于零,转化为等式或不等式来解,可得定义域,这是复合函数求值域问题,利用换元法. 分析:令t =1-x 2,则y =t ,因为函数的定义域是{x|-1≤x≤1},所以0≤t≤1.所以0≤y≤1. 答案:D点评:注意换元法在解题中的应用. 例2 比较下列各组数的大小:(1)1.10.1,1.20.1;(2)0.24-0.2,0.25-0.2;(3)0.20.3,0.30.3,0.30.2. 活动:学生先思考或回忆,然后讨论交流,教师适时提示点拨. 比较数的大小,常借助于函数的单调性. 对(1)(2)可直接利用幂函数的单调性.对(3)只利用幂函数的单调性是不够的,还要利用指数函数的单调性,事实上,这里0.30.3可作为中间量.解:(1)由于要比较的数的指数相同,所以利用幂函数的单调性,考察函数y=x 0.1的单调性,在第一象限内函数单调递增,又因为1.1<1.2,所以1.10.1<1.20.1.(2)由于要比较的数的指数相同,所以利用幂函数的单调性,考察函数y=x -0.2的单调性,在第一象限内函数单调递减,又因为0.24<0.25,所以0.24-0.2>0.25-0.2.(3)首先比较指数相同的两个数的大小,考察函数y=x 0.3的单调性,在第一象限内函数单调递增,又因为0.2<0.3,所以0.20.3<0.30.3.再比较同底数的两个数的大小,考察函数y=0.3x的单调性,它在定义域内函数单调递减,又因为0.2<0.3,所以0.30.3<0.30.2.所以0.20.3<0.30.3<0.30.2.另外,本题还有图象法,计算结果等方法,留作同学们自己完成. 点评:指数相同的幂的大小比较可以利用幂函数的单调性;底数相同的幂的大小比较可以利用指数函数的单调性. 知能训练1.下列函数中,是幂函数的是( )A.y=2xB.y=2x 3C.y=x1 D.y=2x2.下列结论正确的是( )A.幂函数的图象一定过原点B.当α<0时,幂函数y=x α是减函数C.当α>0时,幂函数y=x α是增函数D.函数y=x 2既是二次函数,也是幂函数 3.下列函数中,在(-∞,0)是增函数的是( )A.y=x 3B.y=x 2C.y=x1D.y=x 234.已知某幂函数的图象经过点(2,2),则这个函数的解析式为. 答案:1.C 2.D 3.A 4.y=x 21拓展提升分别在同一坐标系中作出下列函数的图象,通过图象说明它们之间的关系.①y=x -1,y =x -2,y=x -3;②y=x21-,y =x31-;③y=x,y=x 2,y=x 3;④y=x 21,y =x 31.活动:学生思考或交流,探讨作图的方法,教师及时提示,必要时,利用几何画板演示. 解:利用描点法,在同一坐标系中画出上述四组函数的图象如图2-3-2、图2-3-3,图2-3-4、图2-3-5.图2-3-2 图2-3-3图2-3-4 图2-3-5①观察图2-3-2得到:函数y =x -1、y =x -2、y=x -3的图象都过点(1,1),且在第一象限随x 的增大而下降,函数在区间(0,+∞)上是单调减函数,且向右无限接近x 轴,向上无限接近y 轴,指数越小,向右无限接近x 轴的图象在下方,向上离y 轴越远. ②观察图2-3-3得到: 函数y =x21-、y =x31-的图象都过点(1,1),且在第一象限随x 的增大而下降,函数在区间(0,+∞)上是单调减函数,且向右无限接近x 轴,向上无限接近y 轴,指数越小,向右无限接近x 轴的图象在下方,向上离y 轴越远. ③观察图2-3-4得到:函数y=x 、y=x 2、y=x 3的图象过点(1,1)、(0,0),且在第一象限随x 的增大而上升,函数在区间[0,+∞)上是单调增函数,指数越大图象下凸越大,在第一象限来看,图象向上离y 轴近,向下离y 轴近.④观察图2-3-5得到:函数y=x 21、y =x 31的图象过点(1,1)、(0,0),且在第一象限随x 的增大而上升,函数在区间[0,+∞)上是单调增函数,指数越大图象上凸越大,在第一象限来看,图象在点(1,1)的左边离y 轴近,在点(1,1)的右边离x 轴近.根据上述规律可以判断函数图象的分布情况. 课堂小结1.幂函数的概念.2.幂函数的性质.3.幂函数的性质的应用. 作业课本P 87习题2.3 1、2、3.设计感想幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数,课本内容较少,但高考内容不少,应适当引申,所以设计了一些课本上没有的题目类型,以扩展同学们的视野,同时由于作图的内容较多,建议抓住关键点作图,要会熟练地运用计算机或计算器作图,强化对知识的理解.习题详解(课本第79页习题2.3) 1.函数y=21x 是幂函数. 2.解析:设幂函数的解析式为f (x )=x α, 因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v=k·r 4; (2)把r=3,v=400代入v=k·r 4中,得k=43400=81400,即v=81400r 4;(3)把r=5代入v=81400r 4,得v=81400×54≈3 086(cm 3/s ),即r=5 cm 时,该气体的流量速率为3 086 cm 3/s.。

高中数学新人教版A版精品教案《幂函数》

高中数学新人教版A版精品教案《幂函数》

幂函数
一、教材分析:
《幂函数》是普通高中课程标准实验教科书人教A 版数学必修一第二章第三单元的内容从本单元所在教材中的地位来看,它起到了承上启下的作用承上:在本章前两单元学习的指数函数和对数函数为本单元学习铺设了研究方法:例如“数形结合”、“从特殊到一般”、“类比”;同时,初
中学习的正比例函数x y =、反比例函数x
y 1=和二次函数2x y =也为本单元的学习提供了基础启
下:幂函数为学生在选修中学习导数做了铺垫
通过对本单元的学习,学生将建立幂函数这一函数模型,并能用系统的眼光看待已经接触的函数,进一步熟悉研究一个函数的方法因而本单元是对学生研究函数的方法和能力的综合提升
本单元内容安排1课时 二、教学目标:
1通过具体实例,了解幂函数的概念,体会建立一个函数模型的过程
2通过数形结合的研究方法,掌握五个具体幂函数:,,,3
2
x y x y x y ===2
1
x y =,1-=x y 的图象及性质
3经历研究五个具体幂函数的图象及性质的过程,掌握研究一般幂函数的图象及性质的方法,进一步渗透从特殊到一般的思想,培养学生综合归纳、类比的能力 三、教学重点:
1幂函数的概念
2五个幂函数的图象及性质 四、教学难点:
归纳五个幂函数的图象的共同特征,并由此得到对一般幂函数的图象及性质的研究方法 五、教学手段和方式:
本节课主要采用“思考、探究”,问题教学的方式,老师设置问题进行引导,学生自主学习、思考进行概念学习,合作交流、综合归纳进行思想方法的掌握意在充分体现的学生主体地位,教师的主导地位,让学生充分享受学习的兴趣
六、教学过程:
七、板书设计。

2.3幂函数教案(人教A版必修1)

2.3幂函数教案(人教A版必修1)

2.3幂函数●三维目标1.知识与技能(1)理解幂函数的概念,会画幂函数的图象;(2)结合几个幂函数的图象,了解幂函数图象的变化情况和简单性质.2.过程与方法(1)类比研究一般函数、指数函数、对数函数的过程与方法,研究幂函数的图象和性质.引导学生通过观察、归纳、抽象、概括幂函数的性质,培养学生概括抽象和识图能力.能运用幂函数概念解决简单的问题;(2)使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.3.情感、态度与价值观(1)通过生活实例引出幂函数的概念,使学生体会到数学在实际生活中的应用,激发学生的学习兴趣;(2)进一步渗透数形结合与类比的思想方法;(3)体会幂函数的变化规律及蕴含其中的对称性.●重点难点重点:从五个具体的幂函数中认识概念和性质.难点:从幂函数的图象中概括其性质.重难点的突破:以学生熟知的函数y =x ,y =x 2,y =1x ,y =x 3,y =x 12为切入点,类比指数函数及对数函数的概念得出幂函数的概念.通过学生自主作图,并观察五个具体的幂函数的图象,经小组讨论并结合多媒体的直观演示,师生共同总结出函数y =x α的图象特征.【问题导思】 1.函数y =2x 与y =x 2有何不同?【提示】 在函数y =2x 中,常数2为底数,自变量x 为指数,故为指数函数;而在函数y =x 2中,自变量x 为底数,常数2为指数,故为幂函数.2.函数y =x ,y =x 2,y =x 3,y =x -1及y =x 12解析式有何共同特征?【提示】 指数为常数;底数是自变量,自变量的系数为1;幂xα的系数为1;只有1项.一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数.在同一平面直角坐标系中,幂函数y =x ,y =x 2,y =x 3,y =x \f(1,2),y =x -1的图象如图.1.它们的图象都过同一定点吗? 【提示】 是的,都过定点(1,1).2.上述五个函数,在(0,+∞)内是增函数的是哪几个?是减函数的呢? 【提示】 在(0,+∞)内是增函数的有:y =x ,y =x 2,y =x 3,y =x 12.在(0,+∞)内是减函数的有:y =x -1.3.上述5个函数的图象关于原点对称,是奇函数的有哪几个?图象关于y 轴对称,是偶函数的呢?【提示】 图象关于原点对称是奇函数的有:y =x ,y =x 3,y =x -1;图象关于y 轴对称,为偶函数的是y =x 2.幂函数的性质已知函数y =(m 2+2m -2)x m +2+2n -3是幂函数,求m ,n 的值.【思路探究】 已知函数――→对照y =x α――→列方程(组)求m ,n 【自主解答】 ∵函数y =(m 2+2m -2)x m +2+2n -3是幂函数,由幂函数的定义得⎩⎨⎧m 2+2m -2=12n -3=0,解得m =-3或1,n =32.1.判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式.反之,若一个函数具有这种形式,则该函数必为幂函数.2.判断函数解析式以根式形式给出的函数是否为幂函数,要注意把根式化为分数指数幂的形式进行化简整理,再对照幂函数的定义进行判断.已知幂函数f (x )=x α的图象经过点(9,3),则f (100)=________. 【解析】 由题意可知f (9)=3,即9α=3,∴α=12,∴f (x )=x 12,∴f (100)=10012=10. 【答案】 10已知函数y =x ,y =x ,y =x 的图象如图2-3-1所示,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b图2-3-1 【思路探究】 利用幂函数在第一象限内的图象特征和性质结合所给图象分析判断a ,b ,c的大小关系【自主解答】 由幂函数的图象特征知,c <0,a >0,b >0.由幂函数的性质知,当x >1时,幂指数大的幂函数的函数值就大,则a >b . 综上所述,可知c <b <a . 【答案】 A1.本题也可采用特殊值法,如取x =2,结合图象可知2a >2b >2c ,又函数y =2x在R 上是增函数,于是a >b >c .2.对于函数y =x α⎝ ⎛⎭⎪⎫α=±1,12,2,3而言,其图象有以下特点: (1)恒过点(1,1),且不过第四象限.(2)当α>0时,幂函数的图象在(0,+∞)上都是增函数;当α<0时,幂函数的图象在(0,+∞)上都是减函数.(3)在第一象限内,直线x =1的右侧,图象由上到下,相应的指数由大变小.幂函数y =x -1及直线y =x ,y =1,x =1将平面直角坐标系的第一象限分成八个“卦限”:①、②、③、④、⑤、⑥、⑦、⑧(如图所示),那么幂函数y =x 12的图象经过的“卦限”是( )A .④⑦B .④⑧C .③⑧D .①⑤【解析】 ∵x -x =x (x -1),当0<x <1时,x -x <0, 即x <x <1,∴幂函数y =x 12的图象经过“卦限①”;当x >1时,x -x >0,即x >x >1,∴幂函数y =x 12的图象经过“卦限⑤”.【答案】 D比较下列各组数的大小:(1)3-52和3.1-52;(2)-8-78和-⎝ ⎛⎭⎪⎫1978;(3)⎝ ⎛⎭⎪⎫-23-23和⎝ ⎛⎭⎪⎫-π6-23; (4)4.125,3.8-23和(-1.9)-35. 【思路探究】 幂的结构―――――――――――――――→借助幂函数的单调性或中间量幂的大小.【自主解答】 (1)函数y =x -52在(0,+∞)上为减函数, 又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝ ⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,则⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978,从而-8-78<-⎝ ⎛⎭⎪⎫1978. (3)⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23,⎝ ⎛⎭⎪⎫-π6-23=⎝ ⎛⎭⎪⎫π6-23.函数y =x -23在(0,+∞)上为减函数,又23>π6,所以⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23<⎝ ⎛⎭⎪⎫π6-23=⎝ ⎛⎭⎪⎫-π6-23.(4)4.125>125=1;0<3.8-23<1-23=1;(-1.9)-35<0, 所以(-1.9)-35<3.8-23<4.125.1.比较幂的大小的三种常用方法2.利用幂函数单调性比较大小时要注意的问题比较大小的两个实数必须在同一函数的同一单调区间内,否则无法比较大小.已知幂函数f (x )=x m -3(m ∈N *)为偶函数,且在区间(0,+∞)上是减函数,求函数f (x )的解析式.【解】 ∵f (x )=x m -3在(0,+∞)上是减函数,∴m -3<0,∴m <3. 又∵m ∈N *,∴m =1,2.又∵f (x )=x m -3是偶函数,∴m -3是偶数. ∴m =1.∴f (x )=x -2.巧用幂函数的性质求参数的范围(12分)已知幂函数y =x 3m -9(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的取值范围.【思路点拨】据题中条件→列出不等式组→求出m →利用幂函数的单调性→对底数分类讨论→得a【规范解答】 ∵函数在(0,+∞)上递减,∴3m -9<0,解得m <3. 4分 又m ∈N *,∴m =1,2.又函数图象关于y 轴对称,∴3m -9为偶数,故m =1. 8分 ∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减,∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a , 10分 解得23<a <32或a <-1.12分1.本题涉及到幂函数的单调性、奇偶性、图象等问题,解题的关键是准确把握幂函数的图象,实质上,抓住了幂函数的图象也就抓住了性质.2.分类讨论思想.本题中依“a +1,3-2a ”是否在同一区间为分类标准,从而做到不重不漏,学习中应注意分类意识的培养.1.幂函数的概念是区别指数函数及处理幂函数相关问题的依据.判断一个函数是否为幂函数,其关键是判断其是否符合y =x α(α为常数)的形式.2.幂函数的图象是幂函数性质的直观反映,会用类比的思想分析函数y =x α(α为常数)同五个函数(y =x ,y =x 2,y =x 3,y =x -1,y =x 12)图象与性质的关系.3.幂函数的单调性是比较幂值大小关系的重要依据,要学会用幂函数的图象及性质处理幂值大小的比较问题.1.下列函数是幂函数的是( ) A .y =5x B .y =x 5 C .y =5xD .y =(x +1)3【解析】 函数y =5x 是指数函数,不是幂函数;函数y =5x 是正比例函数,不是幂函数;函数y =(x +1)3的底数不是自变量x ,不是幂函数;函数y =x 5是幂函数.【答案】 B2.下列幂函数在(-∞,0)上为减函数的是( ) A .y =x B .y =x 2 C .y =x 3D .y =x 12【解析】 结合幂函数y =x ,y =x 2,y =x 3及y =x 12的图象可知,幂函数y =x 2在(-∞,0)上为减函数.【答案】 B3.若幂函数f (x )的图象经过点⎝ ⎛⎭⎪⎫2,14,则f ⎝ ⎛⎭⎪⎫12=________. 【解析】 设幂函数f (x )=x α,则由题意可知f (2)=2α=14,∴α=-2,∴f (x )=x -2,∴f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12-2=4.【答案】 44.比较下列各组中两个值的大小:(1)1.535与1.635;(2)0.61.3与0.71.3; (2)3.5-23与5.3-23;(4)0.18-0.3与0.15-0.3.【解】 (1)∵幂函数y =x 35在(0,+∞)上单调递增,且1.5<1.6,∴1.535<1.635. (2)∵幂函数y =x 1.3在(0,+∞)上单调递增,且0.6<0.7,∴0.61.3<0.71.3. (3)∵幂函数y =x -23在(0,+∞)上单调递减,且3.5<5.3,∴3.5-23>5.3-23. (4)∵幂函数y =x -0.3在(0,+∞)上单调递减,且0.18>0.15,∴0.18-0.3<0.15-0.3.一、选择题1.下列函数中,定义域为R 的是( ) A .y =x -2 B .y =x 12 C .y =x 2D .y =x -1【解析】 对A ,由y =x -2=1x 2,知x ≠0; 对B ,由y =x 12=x ,知x ≥0; 对D ,由y =x -1=1x ,知x ≠0.故A ,B ,D 中函数的定义域均不为R ,从而选C. 【答案】 C2.函数y =x 53的图象大致是( )【解析】 ∵函数y =x 53在(0,0)处有定义,且该函数为奇函数,故排除选项A 、D ,又53>1,故排除选项C.【答案】 B3.下列命题中正确的是( )A .当α=0时,函数y =x α的图象是一条直线B .幂函数的图象都经过(0,0),(1,1)两点C .若幂函数y =x α的图象关于原点对称,则y =x α在定义域上是增函数D .幂函数的图象不可能在第四象限【解析】 当α=0时,函数y =x α的定义域为{x |x ≠0,x ∈R},其图象为两条射线,故A 选项不正确;当α<0时,函数y =x α的图象不过(0,0)点,故选项B 不正确;幂函数y =x -1的图象关于原点对称,但其在定义域内不是增函数,故选项C 不正确;当x >0,α∈R 时,y =x α>0,则幂函数的图象都不在第四象限,故选项D 正确.【答案】 D4.设a =⎝ ⎛⎭⎪⎫2535,b =⎝ ⎛⎭⎪⎫2525,c =⎝ ⎛⎭⎪⎫3525,则a ,b ,c 的大小关系是( ) A .a >b >cB .c >a >bC .a <b <cD .b >c >a 【解析】 ∵函数y =⎝ ⎛⎭⎪⎫25x 在R 上是减函数,又35>25,∴⎝ ⎛⎭⎪⎫2535<⎝ ⎛⎭⎪⎫2525,即a <b .又∵函数y =x 25在R 上是增函数,且35>25,∴⎝ ⎛⎭⎪⎫3525>⎝ ⎛⎭⎪⎫2525,即c >b ,∴a <b <c . 【答案】 C图2-3-35.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是递减的,且f (-2)=0,如图2-3-3所示,则使得f (x )<0的x 的取值范围是( )A .(-∞,2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2)【解析】 由图可得在(-∞,0)上,f (x )<0的解集为(-2,0].因为f (x )为偶函数,所以x 的取值范围为(-2,2).【答案】 D二、填空题6.函数y =x -2在区间⎣⎢⎡⎦⎥⎤12,2上的最大值为________. 【解析】 ∵函数y =x -2在⎣⎢⎡⎦⎥⎤12,2上是减函数, 故该函数在⎣⎢⎡⎦⎥⎤12,2上的最大值为⎝ ⎛⎭⎪⎫12-2=4. 【答案】 47.设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使y =x α的定义域为R 且为奇函数的所有α的值组成的集合为________.【解析】 当α=-1或α=12时,所得幂函数的定义域不是R ;当α=1或α=3时,所得幂函数的定义域为R 且为奇函数.【答案】 {1,3}8.幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫2,18,则满足f (x )=-27的x 值等于________. 【解析】 设f (x )=x α,由题意可知2α=18,α=-3,即f (x )=x -3. 由x -3=-27可知x =-13.【答案】 -13三、解答题9.(2014·济南高一检测)已知函数y =(m 2-3m +3)x m 23-1为幂函数,求其解析式,并讨论函数的单调性和奇偶性.【解】 由题意得m 2-3m +3=1,即m 2-3m +2=0.∴m =1或m =2.当m =2时,y =x 13,定义域为R ,y =x 13在(-∞,+∞)上是增函数且是奇函数.当m =1时,y =x -23,定义域为(-∞,0)∪(0,+∞).由于y =x -23=1x 23=13x 2,∴函数y =x -23为偶函数.又-23<0,∴y =x -23在(0,+∞)上是减函数,在(-∞,0)上是增函数.10.点(2,2)与点⎝ ⎛⎭⎪⎫-2,-12分别在幂函数f (x ),g (x )图象上,当x 为何值时,有 (1)f (x )>g (x );(2)f (x )=g (x );(3)f (x )<g (x )?【解】设f (x )=x α,g (x )=x β,则(2)α=2,(-2)β=-12,∴α=2,β=-1.∴f (x )=x 2,g (x )=x -1.分别作出它们的图象如图所示,由图象可知,①当x ∈(-∞,0)∪(1,+∞)时,f (x )>g (x );②当x =1时,f (x )=g (x );③当x ∈(0,1)时,f (x )<g (x ).11.设f (x )=a x +a -x 2,g (x )=a x -a -x 2(其中a >0且a ≠1).(1)由5=2+3,请你探究g (5)能否用f (2),g (2),f (3),g (3)来表示;(2)如果你在(1)中获得了一个结论,请探究能否将其推广.【解】 (1)∵g (5)=a 5-a -52,而f (2)g (3)+g (2)f (3)=a 2+a -22·a 3-a -32+a 2-a -22·a 3+a -32 =14(a 5+a -a -1-a -5+a 5-a +a -1-a -5)=12(a 5-a -5), ∴g (5)=f (3)g (2)+g (3)f (2).(2)由(1)可得g (x +y )=f (x )g (y )+g (x )f (y ).证明:f (x )g (y )+g (x )f (y )=a x +a -x 2·a y -a -y 2+a x -a -x 2·a y +a -y 2 =14(a x +y +a y -x -a x -y -a -y -x +a x +y -a y -x +a x -y -a -x -y ) =12(a x +y -a -x -y )=g (x +y ).。

2.3.幂函数-人教A版必修一教案

2.3.幂函数-人教A版必修一教案

2.3 幂函数-人教A版必修一教案1. 教学目标1.了解幂函数的定义和特点;2.掌握幂函数的图像、增减性和奇偶性;3.能够绘制幂函数的图像;4.应用幂函数解决实际问题。

2. 教学重点1.幂函数的定义和特点;2.幂函数的图像、增减性和奇偶性;3.幂函数的绘制。

3. 教学难点1.幂函数的图像、增减性和奇偶性的理解;2.幂函数的绘制方法。

4. 教学内容和方法(1)教学内容1.幂函数的定义和特点;2.幂函数的图像、增减性和奇偶性;3.幂函数的绘制;4.幂函数在实际中的应用。

(2)教学方法1.讲授法:通过讲解幂函数的定义和特点,引导学生理解幂函数的性质;2.演示法:通过展示幂函数的图像,演示幂函数的绘制方法;3.练习法:通过练习各种类型的幂函数,加强学生对幂函数的掌握;4.实践法:通过引导学生应用幂函数解决实际问题,促进学生的思考和创新能力。

5. 教学过程(1)引入通过引导学生参考已学知识,引出幂函数的概念。

(2)讲授1.幂函数的定义和特点;2.幂函数的图像、增减性和奇偶性;3.幂函数的绘制;4.幂函数在实际中的应用。

(3)演示1.通过展示幂函数的图像,演示幂函数的绘制方法;2.解释幂函数图像的特点和变化规律。

(4)练习1.练习不同类型的幂函数,加强学生对幂函数的掌握;2.引导学生自己尝试绘制幂函数图像。

(5)实践通过引导学生应用幂函数解决实际问题,促进学生的思考和创新能力。

6. 总结归纳通过对幂函数的讲解及演示,学生应该掌握幂函数的概念及其性质,能够绘制幂函数的图像,并能够应用幂函数解决实际问题。

7. 课后作业1.练习教材中的习题;2.研究幂函数在实际问题中的应用,并撰写小论文。

8. 教学反思在教学过程中,学生对幂函数的绘制方法较为困难,需要以更加生动形象的方式来演示幂函数的图像和规律,从而加深学生对幂函数的理解和掌握。

同时,教师也需要引导学生在练习中不断地加深对幂函数的理解和掌握,才能真正地掌握幂函数的概念及应用。

人教A版数学必修一教案:§2.3幂函数

人教A版数学必修一教案:§2.3幂函数

§2.3 幂函数一.教学目标: 1.知识技能(1)理解幂函数的概念;(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用. 2.过程与方法类比研究一般函数,指数函数、对数函数的过程与方法,后研幂函数的图象和性质.3.情感、态度、价值观(1)进一步渗透数形结合与类比的思想方法; (2)体会幂函数的变化规律及蕴含其中的对称性. 二.重点、难点重点:从五个具体的幂函数中认识的概念和性质 难点:从幂函数的图象中概括其性质 5.学法与教具(1)学法:通过类比、思考、交流、讨论,理解幂函数的定义和性质 ; (2)教学用具:多媒体 三.教学过程: 引入新知阅读教材P 77的具体实例(1)~(5),思考下列问题. (1)它们的对应法则分别是什么?(2)以上问题中的函数有什么共同特征?让学生独立思考后交流,引导学生概括出结论 答:1、(1)乘以1 (2)求平方 (3)求立方(4)求算术平方根 (5)求-1次方2、上述的问题涉及到的函数,都是形如:y x α=,其中x 是自变量,α是常数.探究新知1.幂函数的定义一般地,形如y x α=(x ∈R )的函数称为幂孙函数,其中x 是自变量,α是常数. 如11234,,y x y x y x -===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.2.研究函数的图像(1)y x = (2)12y x = (3)2y x =(4)1y x -= (5)3y x =一.提问:如何画出以上五个函数图像引导学生用列表描点法,应用函数的性质,如奇偶性,定义域等,画出函数图像,最后,教师利用电脑软件画出以上五个数数的图像.2y x =3.幂函数性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:11x=);(2)x >0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(从左往右看,函数图象逐渐上升).特别地,当x >1,x >1时,x ∈(0,1),2y x =的图象都在y x =图象的下方,形状向下凸越大,下凸的程度越大(你能找出原因吗?)当∠α<1时,x ∈(0,1),2y x =的图象都在y x =的图象上方,形状向上凸,α越小,上凸的程度越大(你能说出原因吗?)(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一家限内,当x 向原点靠近时,图象在y 轴的右方无限逼近y 轴正半轴,当x 慢慢地变大时,图象在x 轴上方并无限逼近x 轴的正半轴. 例题:1.证明幂函数()[0,]f x =+∞上是增函数证:任取121,[0,),x x x ∈+∞且<2x 则 12()()f x f x -=因12x x -<0所以12()()f x f x <,即()[0,]f x =+∞上是增函数.思考:我们知道,若12()()0,1()f x y f x f x =><若得12()()f x f x <,你能否用这种作比的方法来证明()[0,]f x =+∞上是增函数,利用这种方法需要注意些什么?2.利用函数的性质 ,判断下列两个值的大小 (1)11662,3 (2)3322(1),(0)x x x +> (3)22244(4),4a --+分析:利用幂函数的单调性来比较大小.5.课堂练习画出23y x =的大致图象,并求出其定义域、奇偶性,并判断和证明其单调性. 6.归纳小结:提问方式(1)我们今天学习了哪一类基本函数,它们定义是怎样描述的? (2)你能根据函数图象说出有关幂函数的性质吗? 作业:P 79 习题 2.3 第2、3 题小课堂:如何培养学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。

人教A版必修1 幂函数 教案

人教A版必修1 幂函数 教案

课题:§2.3幂函数
教学目标:
知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用.
过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.
情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.
教学重点:
重点从五个具体幂函数中认识幂函数的一些性质.
难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律.
教学程序与环节设计:
问题引入.
教学过程与操作设计:。

2.3 幂函数教案 新人教A版必修优秀教学设计1

2.3 幂函数教案 新人教A版必修优秀教学设计1

2.3 幂函数教案一、教材分析本节是新课标教材新增的内容,位于新人教A版必修1的第二章2.3 ,幂函数作为一类重要的函数模型,是在学生系统地学习了指数函数,对数函数之后研究的又一类基本初等函数,,相比旧教材幂函数的地位和难度都有所下降。

二、三维目标1.知识与技能(1)理解幂函数的概念,通过具体实例了解幂函数的图象和性质(2)能从幂函数的图象得到性质,并能进行初步的应用.2.过程与方法类比研究一般函数的过程与方法,来研究幂函数概念图象和性质.3.情感、态度与价值观(1)给学生进一步渗透数形结合与类比的思想方法;(2)让学生体会幂函数变化规律及蕴含其中的对称性.三、教学重点教学重点:从五个具体的幂函数中认识的概念和性质四、教学难点教学难点:从幂函数的图象中概括其性质.五、教学策略1.学法:通过类比、观察、思考、归纳、总结、交流、理解幂函数的概念和性质 ;2.教学用具:多媒体六、教学过程式子名称常数xy指数函数: y=a x (a >0且a ≠1)幂函数: y= x αa 为底数指数α为指数底数幂值幂值判断一个函数是幂函数还是指数函数切入点看未知数x 是指数还是底数幂函数指数指数函数幂函数与指数函数的对比:小试牛刀:快速反应x y 2.0= =y 21x y = x y 5=x y -=3 6x y =22x y = (答案:(1)不是(2)是(3)是(4)不是(5幂函数性质归纳.观察图象,总结填写下表: x y = 2x y =1-=x y 3x y =21x y =定义域 值域 奇偶性 单调性应用函数的性质画图象,如:定义域、奇偶性. 师生共同分析,强调画图象易犯的错误. 师:引导学生观察图象,归纳概括幂函数的的性质及图象变化规律.环节教学内容设计师生双边互动组 织 探 究六、总结幂函数的共同性质: (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)在第一象限内,α》0,在(0,+∞)上是增函数,α<0,是减函数。

高中数学 2.3 幂函数公开课教案 新人教A版必修1

高中数学 2.3 幂函数公开课教案 新人教A版必修1

课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

2、了解我国书法发展的历史。

3、掌握基本笔画的书写特点。

重点:基本笔画的书写。

难点:运笔的技法。

教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。

2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。

二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。

换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。

三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。

2、教师边书写边讲解。

3、学生练习,教师指导。

(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。

在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。

5、学生练习,教师指导。

(发现问题及时指正)四、作业:完成一张基本笔画的练习。

板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。

这是书写的起步,让学生了解书写工具及保养的基本常识。

基本笔画书写是整个字书写的基础,必须认真书写。

课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。

课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。

2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。

重点:正确书写6个字。

难点:注意字的结构和笔画的书写。

教学过程:一、小结课堂内容,评价上次作业。

二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。

2、书写方法是:写一个字看一眼黑板。

(老师读,学生读,加深理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:§2.3幂函数
教学目标:
知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用.
过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.
情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.
教学重点:
重点从五个具体幂函数中认识幂函数的一些性质.
难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律.
教学程序与环节设计:
问题引入.
教学过程与操作设计:。

相关文档
最新文档