比例的基本性质平行线分线段成比例
比例及平行线分线段成比例定理

一、比例1、比例的基本性质:1),a c ad bc b d =⇔=这一性质称为比例的基本性质,由它可推出许多比例形式; 2)a c b db d ac =⇔=(反比定理); 3)a c a b b d c d =⇔=(或d cb a =)(更比定理);4)a c a b c d b d b d ++=⇔=(合比定理);5)a c a b c d b d b d --=⇔=(分比定理);6)a c a b c d b d a b c d ++=⇔=--(合分比定理);7)(0)a c m a c m a b d n bdn b d n b ++⋅⋅⋅+==⋅⋅⋅=++⋅⋅⋅+≠⇔=++⋅⋅⋅+(等比定理).2、比例中项:若::a b b c =,则b 叫做,a c 的比例中项. 3、如图,设三条平行线123l l l ∥∥,则AB DEBC EF=.此定理 称为平行线分线段成比例定理,它的逆定理仍然成立.l 3l 2l 1FE D CB A二、平行线分线段成比例定理及其推论1. 平行线分线段成比例定理 如下图,如果1l ∥2l ∥3l ,则BC EF AC DF =,AB DE AC DF =,AB ACDE DF=. l 3l 2l 1FE D CB A2. 平行线分线段成比例定理的推论:如图,在三角形中,如果DE BC ∥,则AD AE DEAB AC BC==ABCDEEDC B A3. 平行的判定定理:如上图,如果有BCDEAC AE AB AD ==,那么DE ∥ BC 。
重点:掌握比例的基本性质,同时掌握比例的几种变形;掌握平行线分线段成比例定理的内容 难点:掌握定理的内容和推论及其初步运用 关键:掌握好与相似的过渡板块一、比例的基本性质【例1】 已知:a c b d=,求证:ab cd +是2222a cb d ++和的比例中项。
【例2】 已知:234x y z==。
求33x y z x y-+-. 【例3】 设14a c e b d f ===,则a c e b d f+-=+-_______板块二、平行线分线段成比例定理及其推论基本应用【例4】如图,DE BC ∥,且DB AE =,若510AB AC ==,,求AE 的长。
平行线分线段成比例定理证明方法

平行线分线段成比例定理证明方法平行线分线段成比例定理是数学中的一条重要定理,它描述了当两条平行线与一条横切线相交时,所形成的线段之间的比例关系。
本文将通过证明该定理,来展示其严谨的数学推导过程。
我们先来描述一下该定理的内容:设有两条平行线l和m,它们被一条横切线n相交于A、B、C三点。
如果在l上任取一点D,并且连接BD和AC,那么我们有以下结论:\(\frac{AD}{DB} = \frac{AC}{BC}\)接下来,我们将通过严格的证明来验证这一结论。
证明过程如下:假设在平行线l上任取一点D,并连接BD和AC。
根据平行线的性质,我们可以得到以下两个对应角相等的等角关系:∠ACB = ∠DBC (对应角相等)∠ADC = ∠BCD (对应角相等)由于三角形ABC和三角形DBC中有两个角相等,根据三角形的基本性质,我们可以得到这两个三角形是相似的。
根据相似三角形的性质,我们可以得到下面的比例关系:\(\frac{AD}{DB} = \frac{AC}{BC}\)从上述推导过程可以看出,平行线分线段成比例定理是由两个等角关系推导得到的,而等角关系是由平行线的性质所决定的。
因此,该定理的证明是严谨而准确的。
值得注意的是,平行线分线段成比例定理的证明过程中没有使用到具体的数值,而仅仅是通过等角关系和相似三角形的性质进行了推导。
因此,该定理具有普适性,适用于任意情况下的平行线。
通过平行线分线段成比例定理,我们可以解决很多实际问题。
例如,在建筑工程中,我们可以利用该定理来计算建筑物的高度。
通过测量建筑物的影子长度和测量仪的高度,我们可以利用平行线分线段成比例定理来计算建筑物的实际高度。
在几何学的研究中,平行线分线段成比例定理也是解决一些复杂问题的重要工具。
通过应用该定理,我们可以得到一些关于平行线和三角形的性质,进而推导出更多的几何定理。
总结起来,平行线分线段成比例定理是数学中的一条重要定理,它描述了当两条平行线与一条横切线相交时,所形成的线段之间的比例关系。
第11讲 成比例线段与平行线分线段成比例

第11讲 成比例线段与平行线分线段成比例课程标准1.认识形状相同的图形,结合实例能识别生活中形状相同的图形;2.了解线段的比和成比例线段的概念,掌握两条线段的比的求法;3.理解并掌握比例的性质,能利用比例式变形解决一些简单的实际问题;4.掌握平行线分线段成比例的基本事实及其推论;5.能熟练运用平行线分线段成比例的基本事实及其推论解决相关问题。
知识点01 形状相同的图形形状 ,大小、位置 的图形叫做形状相同的图形。
一般而言,形状相同的图形就是相似图形。
全等图形是一种特殊的形状相同的图形。
注意:(1)形状相同的图形不受图形的位置与大小的约束。
(2)大小不一定相同是指图形的周长、面积等可以不同。
(3)成旋转对称或成轴对称的两个图形一定是形状相同的图形。
知识点02 两条线段的比1.两条线段的比如果选用同一个长度单位量得两条线段AB ,CD 的长度分别是m ,n ,那么这两条线段的比就是它们长度的比,即n m CD AB ::=,或者写成n m CD AB =。
其中,线段AB ,CD 分别叫做这个线段比的和。
如果把nm表示为比值k ,那么k CDAB=或者CD k AB ⋅=。
2.比例尺在地图或工程图纸上, 与它所表示的 通常称为比例尺。
比例尺是两条线段的比的一种。
知识点03 成比例线段四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即dcb a =,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段。
类似地,还可以得到c d a b =,bda c =分别对应b ,a ,d ,c 成比例,c ,a ,d ,b 成比例。
知识精讲目标导航注意: (1)如果cbb a =,那么b 叫做a 和c 的比例中项; (2)在比例式a :b =c :d 中,b ,c 称为内项,a ,d 称为外项,d 叫做a ,b ,c 的第四比例项。
(3)在通常情况下,四条线段a ,b ,c ,d 的长度单位应该一致,但有时为了方便,也可以a 与b 的长度单位一致,c 与d 的长度单位一致。
初中数学 导学案:平行线分线段成比例

平行线分线段成比例学习目标1.理解平行线分线段成比例定理.2.灵活运用定理解答题目.学习重点:平行线等分线段成比例定理及其应用.学习难点:平行线等分线段成比例的推导.学习过程:一、问题引入1.比例的基本性质是什么?还有其它什么性质?2.什么叫成比例线段?二、问题探究探究一:如图是一架梯子的示意图,由生活常识可以知道:AA1,BB1,CC1,DD1,互相平行,且若AB=BC,则A1B1=B1C1,由此可以猜测:若两条直线被一组平行线所截,如果在其中一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等吗?交流展示:探究点拨:设直线a∥b∥c,直线l1,l2被直线a,b,c截得的线段分别为AB,BC和A1B1,B1C1,且AB=BC.过点B作直线l3∥l2,分别交直线a,c于点A2,C2,由于a∥b∥c,l3∥l2,因此由“夹在两平行线之间的平行线段相等”可知A2B=A1B1,BC2=B1C1,再证明△BAA2≌△BCC2,从而得到A1B1=B1C1.归纳总结:平行线等分线段定理:两条直线被一组平行线所截,如果在其中一条直线上截得的线段相还等,那么在另一条直线上截得的线段也相等.探究二:任意画两条直线l1,l2,再画三条与l1,l2相交的平行直线a,b,c,分别度量l1,l2被直线a,b,c截得的线段AB,BC,A1B1,B1C1的长度,相等吗?任意平移直线 c ,再度量AB,BC,A1B1,B1C1的长度,与还相等吗?交流展示:探究点拨:平行线分线段成比例定理:两条直线被一组平行线所截,所得对应线段成比例.探究三:如图,在△ABC中,已知DE∥BC,则和成立吗?为什么?交流展示:探究点拨:过点A作直线MN,使MN∥DE,利用平行线截线段成比例可得出结论.结论:平行于三角形一边的直线截其它两边,所得的对应线段成比例.三、实践交流例1.如图,已知AA1∥BB1∥CC1,AB=2,BC=3,A1B1=,求B1C1的长.学生解答:交流汇报:教师点拨规范解答:思路点拨:由平行线分线段成比例可知:=,再将已知线段的值代入就可求出B1C1的长.例2.如图,AD平分∠BAC交BC于点D,求证:学生解答:交流汇报:教师点拨规范解答:思路点拨:过C点作CE∥AD,交BA的延长线于点E,易得,再证明AE=AC.四、课堂小结1.本节课你有什么收获?2.平行线等分线段定理的内容是什么?3.平行线分线段成比例定理的内容是什么?4.平行于三角形一边的直线截其它两边,所得的对应线段有什么关系?五、达标检测必做题1.在ABCD中,AE交BC的延长线于点E,交DC于点F,若BC:CE=3:2,则CF:FD= .2.如图,已知DE∥BC,DF∥AC,下列比例式正确的是()3.如图,EF∥BC,AB∥DC,AE=9,BE=12,FD=10,则BF= .4.如图,在△ABC中,DE∥AC,DF∥AE,BD:DA=3:2,BF=6cm,则EF= ,EC= .5.在ABCD中,E是AB延长线上一点,且13BEAE,若BC=6,求BF的长度.选做题如图,在△ABC中,D为BC边的中点,延长AD至E,延长AB交CE的延长线于点P,若AD=2DE,求证:AP=3AB.。
数学素材:教材梳理第一讲二平行线分线段成比例定理

庖丁巧解牛知识·巧学一、平行线分线段成比例定理1.定理:三条平行线截两条直线,所得的对应线段成比例.2.用符号语言表示:如图1-2—1所示,a∥b∥c,则EF DE BC AB =.图1—2—13。
定理的证明:若BCAB 是有理数,则将AB 、BC 分成相等的线段,把问题转化为平行线等分线段,达到证明的目的,再推广到整个实数范围,其完整的推广过程等学到高等数学时才会实现。
4。
定理的条件:与平行线等分线段定理相同,它需要a 、b 、c 互相平行,构成一组平行线,m 与n 可以平行,也可以相交,但它们必须与已知的平行线a 、b 、c 相交,即被平行线a 、b 、c 所截。
平行线的条数还可以更多.知识拓展对于3条平行线截两条直线的图形,要注意以下变化(如图121):如果已知是a∥b∥c,那么根据定理就可以得到所有的对应线段都成比例,如FDFE CA CB DF DE AC AB ==,等. 记忆要诀 对于平行线分线段成比例定理,可以归纳为右左右左全上全上下上下上===1,,等,便于记忆. 二、平行线分线段成比例定理的推论1.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.2.符号语言表示:如图1-2-2所示,a∥b∥c,则BC DE AC AE AB AD ==(1) (2)图1—2—23.推论的证明:直接利用平行线分线段成比例定理,应当注意的是一定要将线段对应好。
误区警示实际应用时,通常图形中不会出现三条平行线,此时要注意正确识别图形,如图123.图1—2—3问题·探究问题1 平行线分线段成比例定理与平行线等分线段定理有何区别与联系?怎样正确使用平行线分线段成比例定理?思路:从两个定理的条件和结论两方面进行对比,可以找到它们的共同点和区别点。
探究:我们学习的平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等(如图1-2-4,若l 1∥l 2∥l 3,AB =BC ,则DE=EF ).图1-2-4 图1-2—5平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
比例线段和平行线分线段成比例定理

二、比例线段的例题和练习:
例2. 已知线段a=12cm,b=1dm,c=8cm,d=15cm. (1) 线段a、b、c、d是否是成比例的线段? a、b、c、d不是成比例的线段. (2) 经过重新排列后,以上四条线段能否是成比例的线段? 解:∵12×10=120, 15×8=120, ∴ ab=cd. ∴a、c、d、b或a、d、c、b是成比例的线段.
bd
bd
b
d
(3)黄金分割:A
CB
二、比例线段的例题和练习:
例1. 在1 : 500000的地图上,若A、B两市的距离是64cm, 则两个城市间的实际距离是多少千米? 解:设A、B两市距离为xcm,则
64 = 1 . x 500000
∴x=64×500000=32000000(cm)=320(km). 答:两城市实际距离为320千米.
且 DE = CF = 2 . AB=20, CD=10. EA FB 3
求:EF.
D
C
E
F
N
A
M
B
五、练习题:
5. 已知,如图,在△OCE中,BD∥CE, AD∥BE.
O
求证:OB2=OA·OC.
A
B
D
C
E
在四条线段中如果其中两条线段的比等于另外两条线段的比那么这四条线段叫作成比例线段
比例线段和 平行线分线段成比例定理
小店乡一初中
一、比例线段的主要知识点
1 两条线段的比:
(1) 定义: 同一单位度量的两条线段a、b,长度分别为m、n,
那么就写成 a : b = m : n 或 a = m .
bn
(2)前项、后项: a叫比的前项,b叫比的后项. 前后项交换,比值要交换. 如 a = 3,则 b = 2 .
平行线分线段成比例定理证明过程

平行线分线段成比例定理是初中数学中的重要概念之一,也是几何学中的基础知识。
在我们探讨这个定理的证明过程之前,首先让我们了解一下平行线分线段成比例定理的概念。
一、平行线分线段成比例定理的概念平行线分线段成比例定理是指:如果一条直线被两条平行线截断,那么它们所截取的线段成比例。
形式化表示就是:设直线l被两条平行线m和n截断,截线段分别为AB和CD,那么有AD/DB=AC/CB。
二、证明过程接下来,我们来探讨平行线分线段成比例定理的证明过程。
1. 利用证明过程所需的前提条件我们需要利用欧几里得几何学的基本公设和定理来证明这个定理。
其中,我们需要用到的包括平行线的性质、相似三角形的性质等。
2. 构造辅助线在证明过程中,我们通常会构造一些辅助线来帮助我们证明定理。
我们可以根据已知条件,构造出一些三角形或平行四边形来辅助证明。
3. 利用相似三角形性质在证明中,我们需要利用到相似三角形的性质。
我们可以利用相似三角形的对应边成比例的性质来帮助我们证明线段的成比例关系。
4. 利用平行线的性质平行线具有许多特殊的性质,其中之一就是平行线与被它们截取的直线所成的各对应角相等。
我们可以利用这一性质来帮助我们证明定理。
5. 运用数学归纳法在证明过程中,我们可能需要通过数学归纳法来确保定理对于所有情况都成立。
6. 总结通过以上的证明过程,我们可以得出平行线分线段成比例定理的证明结果。
三、个人观点和理解从证明过程中,我们可以看到,数学证明不仅需要逻辑思维,还需要创造性地构造辅助线、利用相似三角形等方法来解决问题。
平行线分线段成比例定理的证明过程,让我深刻体会到数学的美妙之处,也让我更加深入地理解了相关概念和定理。
总结通过本文对平行线分线段成比例定理的证明过程的探讨,我们不仅了解了这一定理的基本概念,还深入探讨了其证明的具体步骤和相关思想。
通过这样的学习和探讨,我们不仅可以掌握知识,还能够培养良好的逻辑思维能力和解决问题的能力。
相似三角形知识点归纳

初三数学《相似三角形》知识提纲一:比例的性质及平行线分线段成比例定理(一)相关概念:1.两条线段的比:两条线段的比就是两条线段长度的比 在同一长度单位下两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段 的比是,或写成a :b=m :n ; 其中 a 叫做比的前项,b 叫做比的后项 2:比例尺= 图上距离/实际距离3:成比例线段:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,记作:cda b =(或a :b=c :d ) ① 线段a ,d 叫做比例外项,线段b ,c 叫做比例内项, ② 线段a 叫首项,d 叫a ,b ,c 的第四比例项。
③ 比例中项:若c a b c a b cbb a ,,2是则即⋅==的比例中项. (二)比例式的性质 1.比例的基本性质:bc ad dcb a =⇔= 更比性质(交换比例的内项或外项):()()()a bc d a c d cb d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 2. 合比:若,则或a b c d a b b c d d a b a c d c =±=±±=±3.等比:若……(若……)a b c d e f mn k b d f n =====++++≠0则…………a c e m b d f n a b mn k++++++++===4、黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即512AC BC AB AC -== 简记为:512-长短==全长(三)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图:当AD∥BE∥CF 时,都可得到=.=,= ,语言描述如下:=,=, =.nm b a =(4)上述结论也适合下列情况的图形:二:相似三角形: (一):定义:1:对应角相等,对应边成比例的三角形,叫做相似三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学辅导11: 比例的基本性质
一、知识点:
1. 成比例线段:线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即d
c b a =,那么这四条线段a ,b ,c ,
d 叫做成比例线段,简称比例线段.
2. 比例的性质:
(1如果d c b a =,那么bc ad =;如果bc ad =(a ,b ,c ,d 都不为0),那么d c b a =.
(2如果
d c b
a
=,那么c d a b =.
(3如果d c b
a =,那么d
b
c a =.
(4如果d c b a =,那么d d c b b a +=+,d d c b b a -=-,d c d c b a b a +-=+-.
(5如果)0(≠+++===n d b n m d c b
a ΛΛ,那么
b a n d b m
c a =++++++ΛΛ. 二、典型例题: (1)已知71=-a b a ,则b
a 的值为___________________.已知38=+y y x ,则y x =_______________. 已知32=
b
a
,则=+b b a _________,b b a -=______________. (2)已知)0(53≠+==d b d c b
a ,则d
b
c a ++的值为____________. 已知572
c b a ==,则a c b a -+=______________. 已知75==
d c b a ,那么d
b c a 3232--=_____________. (3)在△ABC 与△DEF 中,若4
3===FD CA EF BC DE AB ,且△ABC 的周长为36cm ,则△DEF 的周长为______. (4)已知5
43c b a ==,且6=-+c b a ,则a =__________. (5)如果d c b a =(0≠+b a ,0≠+d c ),那么c
d c a b a +=+成立吗请说明理由. (6)已知a ,b ,c ,d 是成比例线段,其中cm a 3=,cm b 2=,cm c 6=,则线段d =___________.
(7)已知2:4:3::=c b a ,且182=-+c b a ,求c b a 23+-的值. 练习 1.下列各组中的四条线段成比例的是( )
A.a =2,b =3,c =2,d =3
B.a =4,b =6,c =5,d =10
C.a =2,b =5,c =23,d =15
D.a =2,b =3,c =4,d =1
2. 已知线段a 、b 、c 、d 满足ab =cd ,把它改写成比例式,错误的是( )
A.a ∶d =c ∶b
B.a ∶b =c ∶d
C.d ∶a =b ∶c
D.a ∶c =d ∶b
3. 若ac =bd ,则下列各式一定成立的是( )
A.d c b a =
B.c c b d d a +=+
C.c d b a =22
D.
d a cd ab = 4.如果bc ad =,那么下列比例中错误的是( )
A 、d b c a =
B 、b a d c =
C 、b d c a =
D 、
c d a b = 5.若5:6:=y x ,则下列等式中,不正确的是( )
A 、511=+y y x
B 、51=-y y x
C 、6=-y x x
D 、5=-x y y
6.若2:1:::===d c c b b a ,则=d a :( )
A 、1:2
B 、1:4
C 、1:6
D 、1:8
7.若3:2:1::=c b a ,则c b a c
b a +---的值为( )
A 、-2
B 、2
C 、3
D 、-3
8.已知875c b a =
=,且20=++c b a ,则=-+c b a 2( )
A 、11
B 、12
C 、314
D 、9
9.若4:3:2::=c b a ,且5=-+c b a ,则b a -的值是( )
A 、5
B 、-5
C 、20
D 、-20
10.在比例尺为1∶500000的地图上,A 、B 两地的距离是64 cm ,则这两地间的实际距离是______
11.若a =2,b =3,c =33,则a 、b 、c 的第四比例项d 为________
12.在一张地图上,甲、乙两地的图上距离是3 cm,而两地的实际距离为1500 m ,那么这张地图的比例尺为________.
13.已知5:4:2::=c b a ,且632=+-a b a ,求c b a 23-+的值。
14.已知35=
y x ,则=-+)(:)(y x y x
15.如果32=b a ,且3,2≠≠b a ,那么=-++-51b a b a
16.已知a b a 3)(7=-,则=b a
17.(1)已知b a a b b a x +=+=+=
222,求x 的值
(2)已知52423
2x z z y y x -=-=-,求y x z y x -++2的值 18. 如果线段a ,b ,c 的长度之和是32cm ,且
4
57a c c b b a +=+=+,那么这三条线段能否围成一个三角形 数学辅导12: 平行线分线段成比例
如图1,∵L 1∥L 2∥L 3,∴EF BC =; 如图2,∵L 1∥L 2∥L 3,∴EF
DE BC AB =.
5. 如图,在△ABC 中,D ,E 分别是AB 和BC 上的点,且DE ∥AC ,EC BE =,35=AC ,求BD AB .
6. 如图,在在△ABC 中,D ,E ,F 分别是AB ,ACBC 上的点,且DE BC=20cm ,求BF 的长.。