Kinetic Study for Low-temperature SCR of NO with
温度自控袜作文

温度自控袜作文英文回答:Title: Essay on Temperature Controlled SocksIntroduction:Temperature controlled socks, also known as smart socks, are a revolutionary innovation in the field of clothing technology. These socks are designed to regulate the temperature of the feet, providing comfort and protection in various weather conditions. In this essay, we will discuss the features, benefits, and potential applications of temperature controlled socks.Features:Temperature controlled socks are equipped with advanced technology that allows them to adjust the temperature according to the wearer's preference. They are often made of special fabrics that have moisture-wicking properties, ensuring dryness and preventing odor. Some socks even have built-in sensors that monitor the foot temperature and adjust the heating or cooling accordingly.Benefits:The primary benefit of temperature controlled socks is the enhanced comfort they provide. During cold weather, they can keep the feet warm and prevent frostbite, while in hot weather, they can cool down the feet and prevent excessive sweating. These socks are particularly useful for individuals who engage in outdoor activities or have poor circulation.Moreover, temperature controlled socks can also have therapeutic benefits. They can help individuals with conditions such as Raynaud's disease, diabetes, or arthritis, as they regulate blood flow and provide targeted warmth to the affected areas.Applications:Temperature controlled socks have a wide range of applications. They are popular among athletes who need to maintain optimal foot temperature during intense physical activities. They are also useful for individuals who work in extreme environments, such as construction workers or soldiers stationed in cold regions.Furthermore, temperature controlled socks can be beneficial for individuals who suffer from cold feet due to medical conditions or poor circulation. They can also be used by travelers to adapt todifferent climates and weather conditions.Conclusion:Temperature controlled socks are a breakthrough in clothing technology, providing comfort, protection, and therapeutic benefits. With their advanced features and wide range of applications, these socks have the potential to revolutionize the way we think about foot comfort. Whether it's for outdoor activities, medical purposes, or everyday wear, temperature controlled socks are a valuable addition to anyone's wardrobe.中文回答:标题:温度自控袜作文引言:温度自控袜,也被称为智能袜子,是服装科技领域的一项革命性创新。
专业英语

Definition of polymers A simple understanding of polymers can be gained by imaging them to be like a chain or, perhaps, a string of pearls, where the individual pearl represent small molecules that are chemically bonded together. Therefore, a polymer is a molecule made up of smaller molecules that are joined together by chemical bonds. The word polymer means „many parts or units.‟ The parts or units are the small molecules that combine. The result of the combination is, of course, a chainlike molecule (polymer). Usually the polymer chains are long, often consisting of hundreds of units, but polymers consisting of only a few units linked together are also known and can be commercially valuable.
Figure 1.1 Diagram illustrating the definition of plastics.
As Figure 1.1 shows, all materials can be classified as gases, simple liquids, or solids, with the understanding that most materials can be converted from one state to another through heating or cooling. If only materials that are structural solids at normal temperatures are examined, three major types of materials are encountered: metals, polymers, and ceramics. The polymer materials can be further divided into synthetic polymers and natural polymers. Most synthetic polymers are those that do not occur naturally and are represented by materials such as nylon, polyethylene, and polyester. Some synthetic polymers could be manufactured copies of naturally occurring materials (such as
TGIC_体系低温固化消光粉末涂料的消光性能改善研究

合成材料老化与应用2023年第52卷第2期9TGIC 体系低温固化消光粉末涂料的消光性能改善研究刘 亮1,2,李小强1,2,马志平1,2,顾宇昕1,2,许奇俊1,2,曾 历1,2,孙军芳1,2,王曦旋1,2(1中国电器科学研究院股份有限公司,广东广州510300;2 擎天材料科技有限公司,广东东莞523988)摘要:研究了固化温度、固化促进剂、聚酯树脂表面张力及流平剂对低温固化消光粉末涂料消光性能的影响,并对低温固化消光粉末涂料的固化程度进行了表征。
结果表明:提高固化温度、加大聚酯树脂表面张力差及使用适量的流平剂均有利于改善异氰尿酸三缩水甘油酯(TGIC )体系低温固化消光粉末涂料的消光性能,过量添加固化促进剂则会起到负面作用;要提高低温固化消光粉末涂层的固化程度,有赖于研发适用于低温固化的消光剂。
关键词:TGIC ;粉末涂料;低温固化;消光性能中图分类号:TQ 637.6Study on Improvement of Extinction Property of Low Temperature Curing MattingPowder Coatings Based on TGICLIU Liang 1,2, LI Xiao-qiang 1,2, MA Zhi-ping 1,2, GU Yu-xin 1,2, XU Qi-jun 1,2, ZENG Li 1,2, SUN Jun-fang 1,2, WANG Xi-xuan 1,2(1 China National Electric Apparatus Research Institute Co., Ltd., Guangzhou 510300, Guangdong, China; 2 Kinte MaterialTechnology Co., Ltd., Dongguan 523988, Guangdong, China )Abstract: The effects of curing temperature, curing accelerator, surface tension of polyester resin and flatting agent on the extinction property of low temperature curing matting powder coatings were studied, and the curing degree of low temperature curing matting powder coatings was characterized. The results show that increasing the curing temperature, increasing the surface tension difference of polyester resin and using a proper amount of flatting agent can improve the extinction property of low-temperature curing matting powder coatings based on TGIC, while excessive addition of curing accelerator will have a negative effect. To improve the curing degree of low temperature curing matting powder coatings, it is necessary to develop a matting agent suitable for low temperature curing.Key words: TGIC; powder coatings; low temperature curing; extinction property 作者简介:刘亮,高级工程师,主要从事粉末涂料用聚酯树脂的研究工作。
低温、紫外胁迫对植物的影响的英语

低温、紫外胁迫对植物的影响的英语1. The effects of low temperature and UV stress on plants have been extensively studied.2. Researchers have investigated the impact of low temperature and UV stress on different plant species.3. This study aims to analyze the responses of plants to low temperature and UV stress.4. The effects of low temperature and UV stress can be detrimental to plant growth and development.5. Understanding the mechanisms underlying the response of plants to low temperature and UV stress is important for crop breeding.6. Low temperature and UV stress can induce significant changes in physiological and biochemical processes in plants.7. Recent studies have shown that low temperature and UV stress can alter the expression of genes involved in plant defense mechanisms.8. The effects of low temperature and UV stress on plants are mediated by various signaling pathways.9. Plant tolerance to low temperature and UV stress can be enhanced through genetic modification.10. The effects of low temperature and UV stress on plants can vary depending on the duration and intensity of exposure.11. Low temperature and UV stress can lead to the accumulation of reactive oxygen species in plants.12. The production of antioxidants is increased in response to low temperature and UV stress in plants.13. Certain plant species have developed specific mechanisms to cope with low temperature and UV stress.14. The effects of low temperature and UV stress on photosynthesis in plants have been extensively studied.15. Plant growth and development can be hindered by low temperature and UV stress.16. The effects of low temperature and UV stress on plant metabolism have been well-documented.17. Low temperature and UV stress can affect the nutritional composition of plants.18. Plants exposed to low temperature and UV stress may exhibit changes in leaf morphology.19. The effects of low temperature and UV stress on plant reproductive processes have been investigated.20. Stress-responsive genes are upregulated in plants subjected to low temperature and UV stress.21. Low temperature and UV stress can lead to alterations in plant hormone signaling pathways.22. Plant defense mechanisms are activated in response to low temperature and UV stress.23. The effects of low temperature and UV stress on plant water relations have been studied.24. Low temperature and UV stress can induce cell membrane damage in plants.25. The impact of low temperature and UV stress on plant yield and quality has been evaluated.26. Strategies for mitigating the effects of low temperature and UV stress on plants are being explored.。
纳米管制作皮肤感应器 翻译 中英

最后译文:纳米管弹性制作出皮肤般的感应器美国斯坦福大学的研究者发现了一种富有弹性且透明的导电性能非常好的薄膜,这种薄膜由极易感触的碳纳米管组成,可被作为电极材料用在轻微触压和拉伸方面的传感器上。
“这种装置也许有一天可以被用在被截肢者、受伤的士兵、烧伤方面接触和压迫的敏感性的恢复上,也可以被应用于机器人和触屏电脑方面”,这个小组如是说。
鲍哲南和他的同事们在他们的弹透薄膜的顶部和底部喷上一种碳纳米管的溶液形成平坦的硅板,覆盖之后,研究人员拉伸这个胶片,当胶片被放松后,纳米管很自然地形成波浪般的结构,这种结构作为电极可以精准的检测出作用在这个材料上的力量总数。
事实上,这种装配行为上很像一个电容器,用硅树脂层来存储电荷,像一个电池一样,当压力被作用到这个感应器上的时候,硅树脂层就收紧,并且不会改变它所储存的电荷总量。
这个电荷是被位于顶部和底部的硅树脂上的纳米碳管测量到的。
当这个复合膜被再次拉伸的时候,纳米管会自动理顺被拉伸的方向。
薄膜的导电性不会改变只要材料没有超出最初的拉伸量。
事实上,这种薄膜可以被拉伸到它原始长度的2.5倍,并且无论哪种方向不会使它受到损害的拉伸它都会重新回到原始的尺寸,甚至在多次被拉伸之后。
当被充分的拉伸后,它的导电性喂2200S/cm,能检测50KPA的压力,类似于一个“坚定的手指捏”的力度,研究者说。
“我们所制作的这个纳米管很可能是首次可被拉伸的,透明的,肤质般感应的,有或者没有碳的纳米管”小组成员之一Darren Lipomi.说。
这种薄膜也可在很多领域得到应用,包括移动设备的屏幕可以感应到一定范围的压力而不仅限于触摸;可拉伸和折叠的几乎不会毁坏的触屏感应器;太阳能电池的透明电极;可包裹而不会起皱的车辆或建筑物的曲面;机器人感应装置和人工智能系统。
其他应用程序“其他系统也可以从中受益—例如那种需要生物反馈的—举个例子,智能方向盘可以感应到,如果司机睡着了,”Lipomi补充说。
柴油机SCR系统尿素的热分解过程研究

燃烧科学与技术Journal of Combustion Science and Technology 2021,27(1):16-22DOI 10.11715/rskxjs.R201907016收稿日期:2019-10-12.基金项目:国家自然科学基金资助项目(51766001);广西自然科学基金资助项目(2016GXNSFAA380318). 作者简介:莫春兰(1975— ),女,博士,副教授,****************.cn . 通信作者:陈俊红,男,硕士,工程师,*********************.柴油机SCR 系统尿素的热分解过程研究莫春兰1,莫益涛1,陈俊红2,龙华林1,邱崇桓1,江明儒1(1. 广西大学机械工程学院,南宁 530004;2. 玉柴机器股份有限公司,玉林 537005)摘 要:建立尿素热分解化学反应动力学模型,对尿素选择性催化还原(urea-selective catalytic reduction ,Urea-SCR )系统中尿素受热分解反应的温度特性进行化学反应分析和模拟.结果表明,排气温度对沉积物结晶成分影响很大,当温度较低时,结晶以尿素为主,随着温度的升高,缩二脲、三聚氰酸等副产物开始逐渐形成,结晶中存在尿素、缩二脲、三聚氰酸以及三聚氰酸一酰胺的温度区间分别为300~540K 、430~540K 、480~660K 和500~720K .同时开展热重分析(th ermogravimetric analysis ,TGA )试验研究,结果表明,结晶的主要成分在300~500K 时为尿素,500~510K 时为缩二脲,510~620K 时为三聚氰酸,620~720K 时为三聚氰酸一酰胺.模拟计算结果中的结晶率曲线与试验结果的热重分析(TGA )曲线吻合,说明该数值模型可以预测尿素在不同温度下的热分解反应路径和分解副产物.关键词:尿素;沉积物;动力学模型;温度;热重分析中图分类号:TK421.5 文献标志码:A 文章编号:1006-8740(2021)01-0016-07Thermal Decomposition Process of Urea inSCR System for Diesel EngineMo Chunlan 1,Mo Yitao 1,Chen Junhong 2,Long Hualin 1,Qiu Chonghuan 1,Jiang Mingru 1(1. School of Mechanical Engineering ,Guangxi University ,Nanning 530004,China ;2. Guangxi Yuchai Machinery Co.,Ltd ,Yulin 537005,China )Abstract :Based on the kinetics model proposed by Chemkin Software ,the temperature characteristics of urea thermal decomposition reaction in the urea selective catalytic reduction (urea-SCR ) system are analyzed and simu-lated. The simulation results show that exhaust temperature has a great influence on the composition of deposits. When the temperature is l ow ,the deposit is mainl y composed of urea. With the increase of temperature ,by-products such as biuret and cyanuric acid are gradual y produced. The temperature ranges of urea ,biuret ,cyanuric acid and ammelide present in the deposit are 300—540K ,430—540K ,480—660K and 500—720K ,respectivel y. At the same time ,thermogravimetric anal ysis (TGA ) experiments were carried out. The resul ts showed that the main components of the deposit were urea at 300—500K ,biuret at 500—510K ,cyanuric acid at 510—620K and ammel ide at 620—720K ,respectivel y. The deposits yiel d curve obtained by the simul ation is basically consistent with the TGA curve of the experimental results ,which shows that this model can predict the thermal decomposition reaction path and the by-products of urea decomposition at different temperatures.Keywords :urea ;deposits ;kinetics model ;temperature ;thermogravimetric analysis莫春兰等:柴油机SCR 系统尿素的热分解过程研究— 17 —随着国Ⅴ、国Ⅵ标准排放法规的相继颁布,如何降低重型柴油机NO x 排放的控制技术成为了内燃机研究领域的热点.尿素选择性催化还原技术(Urea-SCR )通过将尿素水溶液(32.5%尿素和67.5%水)喷射入排气管中为SCR 系统提供还原剂氨气,以其良好的经济性和高NO x 转化率成为当前最为行之有效的重型柴油机NO x 后处理技术.然而,在尿素转化成氨气的过程中,由于雾化不均匀、发动机功率过低等因素的影响,尿素还会生成如异氰酸、缩二脲、三聚氰酸等副产物,最终会在排气管内壁形成沉积物结晶.排气管中的结晶现象会导致尿素转氨效率下降,排气背压增大,严重时甚至会导致排气管堵塞,影响发动机性能.因此,通过模拟仿真与试验相结合的方法研究各尿素热分解副产物的生成条件和反应机理,从而提出减少沉积物生成的控制措施对提高SCR 系统的NO x 转化效率具有重大意义.高俊华等[1]、白凤月等[2]使用热重分析仪、气相色谱质谱联用仪、傅里叶红外光谱仪、核磁共振机等设备发现尿素沉积物结晶主要由尿素、三聚氰酸组成.Weeks 等[3]采用液相色谱仪、热重分析仪以及红外光谱仪发现沉积物中除了尿素、缩二脲、三聚氰酸外,还有少量的三聚氰胺和缩三脲存在.在沉积物结晶生成机理研究方面,Ebrahimian 等[4]提出了一个含有12步基元反应的化学动力模型,并且将其与TGA (热重分析)实验数据对比验证机理的准确性. 针对固态尿素与尿素水溶液在分解过程时所需活化能不同这一问题,Brack 等[5]在Ebrahimian 的基础上提出了包含了固态、熔融态和气态组分的15步基元反应的化学模型,从而解决了Ebrahimian 模型在高温段(670~900K )准确度不高的缺点.上述研究主要侧重于尿素分解过程中沉积物结晶的总质量变化,而忽略了尿素、缩二脲、三聚氰酸和三聚氰酸一酰胺等物质各自的质量变化.因此本文从化学反应动力学的角度出发,构建了包含尿素、缩二脲、三聚氰酸和三聚氰酸一酰胺的化学机理模型,并使用Chemkin 软件包模拟尿素及其副产物的生成和热解反应路径,将模拟结果与热重分析试验结果进行对比分析,最终确定尿素、缩二脲、三聚氰酸和三聚氰酸一酰胺的生成和分解条件,以及在不同温度下的受热分解产物,提出减少沉积物形成的方法.1 数值模拟模型建立1.1 尿素热解模型尿素的热分解过程包含了复杂的物理变化和化学反应过程,其数值模拟结果受到诸如排气温度、排气流速以及所采用的反应机理等因素影响,从尽可能预测沉积物的主要组分生成和分解条件以及减少计算时间两方面考虑,需要对模拟过程中采用的计算模型进行简化.干旭波[6]对SCR 一维排气管内结晶过程进行仿真计算,分析了排气温度、UWS 喷射速率和排气流动状态等相关参数对排气管内尿素的分解和结晶的影响,并将单因素变化对结晶率的影响幅度做敏感性分析,结果发现结晶率对排气温度变化的敏感性最强,其他因素的影响较小.同时还发现结晶成分与排气温度也密切相关,随着温度的上升,沉积物结晶内的尿素逐渐减少,而缩二脲、三聚氰酸等副产物逐渐增多.本文着重分析SCR 系统尿素热分解过程中各关键沉积物结晶量及结晶成分的变化,以构建尿素及其副产物在不同温度下的生成与分解机理,所以本文在构建模型时忽略了排气流速以及尿素喷雾特性的影响,仅考虑排气温度对模拟结果的影响.Schaber 等[7]在实验中发现,尿素在受热分解过程中,固体残余物如尿素(urea )、缩二脲(biuret )、三聚氰酸(CYA )和三聚氰酸一酰胺(ammelide )的质量所占沉积物总质量的90%以上,而三聚氰酸二酰胺和三聚氰胺等其他产物的质量分数小于沉积物总质量的5%.在此基础上,本文尿素热分解化学反应动力学模型的反应机理选取了沉积物中的主要物质缩二脲、三聚氰酸和三聚氰酸一酰胺,忽略其他产物.尿素在热解过程中,由于尿素、缩二脲、三聚氰酸和三聚氰酸一酰胺的分解温度低于其熔点,导致这4种物质的熔融相只会出现在很小的温度区间内,因此Ebrahimian 等[4]在他的尿素分解反应动力学模型中,忽略了熔融相产物的存在,假设所有分解反应都只发生在固相与气相之间,并通过TGA 实验验证了这个假设可以在温度低于670K 时成立.由于尿素的分解反应大部分发生在400~700K 之间,因此本文忽略了熔融相产物对反应的影响.在Ebrahimian 的12步反应机理中,前9步为纯尿素的分解反应机理,后3步为尿素水溶液(urea-water solution ,UWS )中尿素的分解反应机理.然而,在国内外的研究中[8-9],当UWS 喷射入高温排气中时,由于尿素的蒸发速率相对于水的蒸发速率非常小,水首先蒸发,随着液滴中尿素的浓度上升,可能会发生以下两种情况.一是当液滴直径较小或者水的蒸发速率较低时,液滴内的尿素浓度均匀增加,最后形成固体小颗粒;二是当液滴直径过大或者水的蒸发速率过高时,液滴表面的尿素浓度会急剧增大,最第27卷 第1期— 18— 终在表面形成一层固体尿素壳,剩余的水会在壳内蒸发.不管哪一种情况发生水都先于尿素被完全蒸发,因此本研究中假设纯尿素与UWS 中的尿素的分解反应路径一致[10].基于以上假设,本文提出一个9步尿素分解的化学反应动力模型,如表1所示.表中任意组分k 的反应速率k r 表示为11exp ==⎛⎞′=−⎜⎟⎝⎠∑∏ijn N vi k ki i sj i j E r v A C RT(1)式中:ki v 为第i 步反应中第k 种组分的化学计量数;′i A 和i E 分别表示为第i 步反应的指前因子和活化能;sj C 表示组分j 的浓度;N 为反应数目;n 为组分数.′i A 与表1中的i A 的关系可以用式(2)表示.1/Γ′=in i i A A - (2)式中:i n 表示化学反应级数;Γ表示活性位密度.尿素热解反应过程中的组分质量变化可以通过有效面积S 计算,假设在整个计算过程中S 保持不变[8],有效表面S 可以通过式(3)得到.initial1σΓ==∑Nk kk k m S W (3)式中:initialk m 表示组分k 反应开始时质量;k σ表示组分k 所占活性位数量;k W 表示组分k 的分子质量. sj C 可以由式(4)求得.//()==⋅sj j j j C n S m S W(4)式中:j n 表示组分j 物质的量.表1 尿素热解化学反应及动力学参数Tab.1 Kinetic scheme for urea thermolysis反应编号反应式A i /s -1E i /(k J·mol -1)R1 urea→NH 4++NCO - 8.50×106 84 R2 NH 4+→NH 3(g )+H + 1.50×102 40 R3 NCO -+H +→HNCO (g ) 6.57×102 10 R4 urea +NCO -+H +→biuret 7.87×1014 115 R5 biuret→urea +NCO -+H + 1.50×1024 250 R6 biuret +NCO -+H +→CYA +NH 3(g ) 2.81×1018 150 R7 CYA→3NCO -+3H + 1.50×1019 260 R8 CYA +NCO -+H +→ammelide +CO 2 3.48×105 35 R9 amme l ide→2NCO -+2H ++HCN (g )+NH (g ) 6.00×1014 2201.2 Chemkin 模型设置为了从数值模拟角度研究尿素在不同温度下的热解产物,本文采用Chemkin 17.0软件包中的完全搅拌反应器模型(perfectly stirred reactor ,PSR )建立尿素热解模型以模拟尿素的受热分解过程,根据Joback 基团贡献法[11]计算的尿素及其副产物的热物性参数如表2所示.参与反应的物质的比热、焓、熵等热力学参数以表2 尿素及其副产物的热物性参数Tab.2 Thermodynamic data of urea and its by -products组分 NASA 热力学多项式[300,600,1500] 尿素 [2.34544,2.34063×10-2,-1.18715×10-5,1.64301×10-9,-4.76456×10-22,-2.94212×104,-1.78279,2.34544,2.34063×10-2,-1.17717×10-5,1.64301×10-9,2.11758×10-22,-2.94221×104,-1.78722] 缩二脲 [2.34544,4.06303×10-2,-2.20111×10-5,3.24994×10-9,4.23516×10-22,-5.40352×104,-6.94858,2.34544,4.06303×10-2,-2.20111×10-5,3.24994×10-9,-2.11758×10-22,-5.40352×104,-6.94858] 三聚氰酸 [2.34544,7.39933×10-2,-7.78807×10-5,3.24272×10-8,1.16467×10-21,-5.76793×104,-15.1605,2.34544,7.39933×10-2,-7.78807×10-5,3.24272×10-8,1.90582×10-21,-5.76793×104,-15.1605] 三聚氰酸一酰胺[2.43544,1.93842×10-2,2.36348×10-5,-1.91484×10-8,2.11758×10-22,-3.83100×104,2.915255963,2.34544,1.93842×10-2,2.36348×10-5,-1.91484×10-8,-2.96462×10-21,-3.82832×104,3.427994377]表2中的NASA 热力学多项式的形式输入.这个多项式包括2个拟合温度区间,每个拟合温度区间包括7个多项式拟合系数.表2中尿素及其副产物的拟合温度区间为300~600K 和600~1500K ,前7个系数为300~600K 时的多项式拟合系数,后7个系数为600~1500K 时的多项式拟合系数.尿素及其副产物的比热、焓、熵的计算公式如式(5)~(7)[11].23412345=++++p c a a T a T a T a T R(5) 2343562412345a a a a a Ha T T T T RT T=+++++(6)234354127ln 234a a a Sa T a T T T T a R =+++++(7)式中:p c 、H 、S 表示物质的恒压比热容、摩尔焓和摩莫春兰等:柴油机SCR 系统尿素的热分解过程研究— 19 —尔熵;a 1~a 7表示多项式拟合系数;R 表示理想气体常数,取8.314J/(mol ·K );T 为温度,K .2 沉积物各组分的TG/DTG 试验研究为了能够与Chemkin 数值模拟结果进行对比分析从而验证尿素分解化学反应动力模型,本文设计了尿素、缩二脲、三聚氰酸以及三聚氰酸一酰胺的热重分析试验.热重分析试验使用的一台德国耐驰公司生产的Q50热分析仪.采用的固体标样包括纯尿素(天津大茂化学试剂厂,纯度≥99.0%)、缩二脲(天津远航化学品有限公司,纯度≥99.5%)、三聚氰酸(MACKLIN 公司,纯度≥98.0%)和三聚氰酸一酰胺(上海源叶生物科技有限公司,纯度≥98.0%).分别取样品10mg ,将其置入以空气为载气的热重分析仪中,以10K/min 的升温速率由300K 升温至900K .热重分析试验在流动空气中进行,空气流速为50mL/min ,使用的反应容器坩埚材料为氧化铝.试验完成后分别得到尿素、缩二脲、三聚氰酸、三聚氰酸一酰胺的质量变化(TG )和质量变化率(DTG )曲线.DTG 是TG 的一次微分曲线.3 模拟与试验结果的比较与分析由尿素分解及副产物形成网络(见图1)可知,尿素受热分解过程中的各副产物的转化关系可以总结为尿素→缩二脲→三聚氰酸→三聚氰酸一酰胺.尿素的三级产物三聚氰酸一酰胺作为反应链的最后一步,它所涉及的生成和分解反应只有表1中的反应式(R8)和(R9).因此,从三聚氰酸一酰胺的生成和分解入手,逐步研究三聚氰酸、缩二脲的形成和反应条件,最后结图1 尿素-缩二脲-三聚氰酸-三聚氰酸一酰胺反应模型网络 Fig.1 Network of urea -biuret -CYA -ammelide model合数值模拟和试验结果综合得到不同温度下尿素分解的详细反应机理.为了研究尿素的结晶特性,本文定义剩余固体质量与初始样品质量之比为结晶率,0和100%的结晶率分别表示物质完全分解和没有分解.因此,样品的结晶率曲线可视为其模拟TG 曲线,通过对结晶率曲线求一次微分的方式也可以得到其模拟DTG 曲线. 3.1 三聚氰酸一酰胺的分解由图2可见,三聚氰酸一酰胺在600K 时开始通过反应式(R9)分解,640K 时开始大量分解,并在720K 时基本分解完全,由于反应(R9)中只包含三聚氰酸一酰胺这一个固体反应物且没有固体生成物,因此根据结晶率的定义,图2中TG 模拟曲线与结晶率模拟曲线重叠.图2 三聚氰酸一酰胺分解模拟曲线Fig.2 Modeling results of ammelide decomposition根据三聚氰酸一酰胺的DTG 试验曲线(图3)中观测到的两个质量损失波峰(1′,2′)形成的位置,将图3中三聚氰酸一酰胺的TG 试验曲线分成590~720K 和720~850K 两个质量损失阶段,如图3中的a ′和b ′,它们的质量损失分别为82%和18%.与三聚氰酸一酰胺DTG 试验曲线不同,DTG 模拟曲线中只出现了一个质量损失波峰(如图3中1),因此三聚氰酸一酰胺的TG 模拟曲线只有一个质量损失阶段a (600~720K ).这种差异是由于在试验中的590~720K 温度区间内,绝大部分三聚氰酸一酰胺发生反应(R9)分解成异氰酸、氰化氢和氨气,但是仍有少部分三聚氰酸一酰胺通过式(8)、(9)中的反应生成三聚氰酸二酰胺(ammeline )和三聚氰胺(melamine )以及生成三均三嗪类(heptazines )物质如蜜白胺(melam )和蜜勒胺(melem )等高分子产物,如式(10)、(11)[12].ammelide +NH 3→ammeline +H 2O (8)ammeline +NH 3→melamine +H 2O (9)melamine +ammeline →melam +H 2O (10)melam →melem +NH 3 (11)第27卷 第1期— 20— 这类产物的耐高温性要高于三聚氰酸一酰胺,需要温度达到850K 才能完全分解,因此三聚氰酸一酰胺TG 试验曲线在720~850K 时的质量损失速率远低于590~720K ,在DTG 试验曲线中即表现为有两个质量损失波峰.图3 三聚氰酸一酰胺分解模拟与试验曲线对比Fig.3 Comparison between modeling results of ammelidedecomposition and testing curves3.2 三聚氰酸的分解模拟计算结果图4中540K 时三聚氰酸开始分解,并且通过反应式(R7)分解成异氰酸,由于异氰酸在高温时呈气态,沉积物结晶率开始急速下降.几乎在同样的温度下反应(R8)发生,三聚氰酸与自身分解产生的异氰酸反应生成三聚氰酸一酰胺;由上述内容可知600K 时三聚氰酸一酰胺开始分解;620K 时由于三聚氰酸一酰胺的分解速率等于生成速率,其剩余质量达到最高.沉积物中的三聚氰酸在660K 时基本完全分解,720K 时三聚氰酸一酰胺完全分解.根据图5中的DTG 模拟曲线中的两个质量损失波峰1和2的形成位置,将图中的三聚氰酸TG-模拟曲线分为a 、b 两个质量损失阶段.阶段a (540~660K )为三聚氰酸的分解和三聚氰酸一酰胺的形成和分解;阶段b (660~720K )为三聚氰酸一酰胺的分解,此阶段三聚氰酸已经完全分解.根据图5三聚氰酸DTG 试验曲线中质量损失波峰的形成位置(1′,2′)也可以将图5中的三聚氰酸热重TG 试验曲线区分为a ′和b ′两个阶段.对比图5的TG 模拟曲线与TG 试验曲线可以看出,TG 试验曲线中阶段a ′内沉积物损失的质量为98%,而TG 模拟曲线中经过阶段a 后沉积物只损失了87%的质量,这是由于在试验中,三聚氰酸除了与异氰酸生成三聚氰酸一酰胺外,还与空气中的水生成氨气和二氧化碳[13],如式(12)所示;三聚氰酸一酰胺也会在这个温度区间与氨气反应生成三聚氰酸二酰胺和水,如式(8),然而这两步反应并没有包括在表1使用的反应机理中,导致在三聚氰酸分解过程中,热重试验中阶段a ′内的质量损失大于模拟中阶段a 中的质量损失.CYA +3H 2O →3NH 3+3CO 2 (12)图4 三聚氰酸分解模拟曲线Fig.4Modeling results of CYA decomposition图5 三聚氰酸分解模拟与试验曲线对比Fig.5Comparison between modeling results of CYAdecomposition and testing curves3.3 缩二脲的分解图6表明,470K 缩二脲开始融化并且通过反应式(R5)分解成尿素和异氰酸,尿素在温度大于420K 时变得极其不稳定,并通过反应式(R1)~(R3)分解成异氰酸和氨气,所以在模拟曲线中几乎看不到尿素剩余质量的变化;同时,未分解完的缩二脲和异氰酸在480K 时通过反应式(R6)生成三聚氰酸和氨气;当温度处于520~580K 之间,三聚氰酸的剩余质量呈较为稳定的趋势,三聚氰酸的分解温度是540K ,并于660K 时分解完全.500K 时,三聚氰酸一酰胺开始通过反应式(R8)生成,并于720K 时完全分解.根据图7中DTG 模拟曲线中的三个质量损失波峰1、2和3的形成位置将TG 模拟曲线分成3个阶段,阶段a (470~540K )为缩二脲的快速分解、三聚氰酸和三聚氰酸一酰胺的形成;阶段b (540~660K )为三聚氰酸和三聚氰酸一酰胺的分解;阶段c (660~720K )为三聚氰酸一酰胺的分解,此阶段三聚氰酸已完全分解.图7中缩二脲DTG 试验曲线中有4个波峰形成位置,因此可以将缩二脲TG 试验曲线中所对应的质量损失阶段a ′可以分为1′a (440~510K )和2′a (510~550K )两个阶段,这是由于温度在510~莫春兰等:柴油机SCR 系统尿素的热分解过程研究— 21 —550K 时,试验中的缩二脲由熔融态转变成黏性固态基团,固态基团内扩散阻力大于熔融态基团,因此缩二脲分解速率减慢[14].图6 缩二脲分解模拟曲线Fig.6Modeling results of biuret decomposition图7 缩二脲分解模拟与试验曲线对比Fig.7 Comparison between modeling results of biuretdecomposition and testing curves3.4 尿素的分解图8中尿素在420K 时经由反应(R1)~(R3)分解成氨气和异氰酸;当温度高于430K 时,未分解的尿素与异氰酸经由反应(R4)生成缩二脲,缩二脲在470K 时开始分解,并在490K 时生成速率等于分解速率,其剩余质量达到最大值,尿素和缩二脲在540K 时基本分解完全;当温度达到480K 时,反应(R6)开始发生并开始生成三聚氰酸,三聚氰酸在550K 时剩余质量达到最大值,660K 时完全分解;三聚氰酸一酰胺在温度达到500K 时由三聚氰酸通过反应(R8)生成,并在720K 时完全分解.图9中的TG 模拟曲线可以分为3个阶段,阶段a (420~540K )尿素分解与缩二脲的形成和分解,以及三聚氰酸和三聚氰酸一酰胺的形成;阶段b (540~660K )三聚氰酸与三聚氰酸一酰胺的分解;阶段c (660~720K )三聚氰酸一酰胺分解,此阶段三聚氰酸已完全分解.在510K 时,TG 模拟曲线出现拐点,温度在510~540K 时,结晶率反而随着温度的升高而升高.这是由于结晶率与固相产物和气相产物之比有关,当温度较低时(低于510K ),反应(R7)、(R8)和(R9)均没有达到反应温度,固态产物由(R4)和(R6)反应生成,气态产物如异氰酸和氨气由(R2)、(R3)和(R6)生成.温度低于510K 时,由于总体反应速率较慢,因此固态产物和气态产物反应速率之比(R4+R6)/(R2+R3+R6)也较低,即结晶速率较低.当温度高于510K 时,总体反应速率加快,导致固态产物和气态产物反应速率之比也随之变高,因此结晶速率也升高[15].图8 尿素分解模拟曲线Fig.8Modeling results of urea decomposition图9 尿素分解模拟与试验曲线对比Fig.9Comparison between modeling results of urea de -composition and testing curves3.5 结果与讨论总体上,随着温度的升高,尿素分解过程中结晶率呈下降趋势,720K 以后大部分结晶已经分解.由于尿素和缩二脲分解温度较低,三聚氰酸一酰胺的生成量较少,而三聚氰酸的生成量高且完全分解温度在660K 左右,故在柴油机运行中应该尽量避免生成三聚氰酸,即排气温度避免在510~620K 之间.可以通过对排气管采取隔热保温处理来减少热损失,提高管壁温度,从而减少沉积物的生成.异氰酸在缩二脲、三聚氰酸、三聚氰酸一酰胺的形成过程中扮演着重要角色,为减少沉积物结晶的生成,可通过增加催化剂促进水解反应HNCO +H 2O →NH 3+CO 2的进行,减少排气管中气体异氰酸的量,从而抑制尿素沉积物进一步生成.4 结 论(1) 尿素分解温度为420K ,540K 时完全分解;第27卷 第1期— 22— 缩二脲在430K 时由尿素和异氰酸反应生成,470K时开始分解,于540K 完全分解;三聚氰酸生成温度是480K ,由缩二脲和异氰酸经反应(R6)生成,三聚氰酸在540K 时开始分解,660K 时完全分解;500K 时三聚氰酸与异氰酸生成三聚氰酸一酰胺,600K 时三聚氰酸一酰胺开始分解,720K 时完全分解.(2) 在尿素的分解过程中,300~500K 时沉积物主要成分为尿素,500~510K 时主要为缩二脲,510~620K 时主要为三聚氰酸,620~720K 时为三聚氰酸一酰胺.(3) 为减少尿素沉积物形成,应从避免三聚氰酸的生成及减少排气管中气体异氰酸两方面参虑.参考文献:[1] 高俊华,邝 坚,宋崇林,等. 国Ⅳ柴油机SCR 后处理系统结晶体成分分析[J ]. 燃烧科学与技术,2010,16(6):547-552.Gao Junhua ,Kuang Jian ,Song Chonglin ,et al. Com-ponents of crystal from SCR system of a diesel engine compliant with China stage Ⅳemission standard [J ]. Journal of Combustion Science and Technology ,2010,16(6):547-552(in Chinese ).[2] 白凤月,温邦耀,白书战. Urea-SCR 系统尿素结晶现象分析及解决方案[J ]. 山东大学学报:工学版,2017,47(4):70-76.Bai Fengyue ,Wen Bangyao ,Bai Shuzhan. Analysis and optimization of urea deposits formation in urea-SC R systems [J ]. Journal of Shandong University :Engineer-ing Science ,2017,47(4):70-76(in Chinese ).[3] Weeks C L ,Ibeling D R ,Han S ,et al. Analytical in-vestigation of urea deposits in SCR system [J ]. SAE In-ternational Jou rnal of Engines ,2015,8(3):1219-1239.[4] Ebrahimian V ,Nicolle A ,Habchi C. Detailed modelingof the evaporation and thermal decomposition of urea-water solution in SCR systems [J ]. AIChE Jou rnal ,2012,58(7):1998-2009.[5] Brack W ,Heine B ,Birkhold F ,et al. Kinetic model-ing of urea decomposition based on systematic thermo-gravimetric analyses of urea and its most important by-products [J ]. Chemical Engineering Science ,2014,106:1-8.[6] 干旭波. 柴油机Urea -SCR 系统还原剂添加过程的基础研究[D ]. 杭州:浙江大学能源工程学院,2016. Gan Xubo. Foundmental R esearch on Agent Adding Process of Urea -Scr Systems for Diesel Engines [D ]. Hangzhou :College of Energy Engineering ,ZhejiangUniversity ,2016(in Chinese ).[7] Schaber P M ,Colson J ,Higgins S ,et al. Thermaldecomposition (pyrolysis )of urea in an open reaction ves-sel [J ]. Thermochimica Acta ,2004,424(1/2):131-142.[8] Birkhold F ,Meingast U ,Wassermann P ,et al. Model-ing and simulation of the injection of urea-water-solution for automotive SCR DeNO x -systems [J ]. Applied Ca-talysis B :Environmental ,2007,70(1/2/3/4):119-127.[9] Xiao Y ,Tian X ,Zhou P ,et al. Study on evaporationand decomposition process of urea water solution in se-lective catalytic reduction system [J ]. Materials Research Innovations ,2014,18(S2):908- 913.[10] Qi G ,Yang R T. Performance and kinetics study forlow-temperature SCR of NO with NH 3 over MnO x -CeO 2 catalyst [J ]. Journal of Catalysis ,2003,217(2):434-441.[11] Kee R J ,Rupley F M ,Miller J A ,et al. The ChemkinThermodynamic Data Base [R ]. USA ,Livermore :Sandia National Labs ,1990-03-01.[12] Campbell J A ,Wunschel D S ,Petersen C E. Analysisof melamine ,cyanuric acid ,ammelide ,and ammeline using matrix ‐assisted laser desorption ionization/time of flight mass spectrometry (MALDI/TOFMS ) [J ]. Analytical Letters ,2007,40(16):3107-3118.[13] 余俊波. 柴油机SCR 系统尿素转氨及沉积物形成详细反应机理研究[D ]. 南宁:广西大学机械工程学院,2018.Yu Junbo. Detailed Reaction Mechanism of Urea to Am-monia and Sediment Formation in Diesel Engine SCR System [D ]. Nanning :School of Mechanical Engineer-ing ,Guangxi University ,2018(in Chinese ).[14] Bernhard A M ,Peitz D ,Elsener M ,et al. Hydrolysisand thermolysis of urea and its decomposition byproducts biuret ,cyanuric acid and melamine over anatase TiO 2 [J ]. Applied Catalysis B :Environmental ,2012,115-116:129-137.[15] 祝 能. 柴油机SCR 系统排气管中沉积物的生成机理研究[D ]. 武汉:武汉理工大学能源与动力工程学院,2017.Zhu Neng. Investigation on the Formation Mechanism of Deposit in the Exhaust Pipe of SCR System for Diesel Engine [D ]. Wuhan :School of Energy and Power Engi-neering ,Wuhan University of Technology ,2017(in Chinese ).。
柴油机选择性催化还原化学反应动力学模型参数化

柴油机设计与制造Design and Manufacture of Diesel Engine2020年第4期第26卷(总第173期) doi :10. 3969/j. issn. 1671 - 0614. 2020. 04. 007柴油机选择性催化还原化学反应动力学模型参数化凌建群,纪晓静(上海柴油机股份有限公司,上海200438)摘要随着柴油机国六排放法规的实施,选择性催化还原(selective catalytic reduction,SCR)后处理系统转化效率要求达到90%〜95%,或更高因此,实际工程应用中,越来越多 的采用基于SC R化学反应动力学模型的闭环控制策略该策略最关键的要点是将SC R化学反应 动力学模型准确地参数化,计算SC R催化剂中的氨存储量文中通过Simuliiik软件搭建SC R化 学反应动力学模型,利用SC R催化剂小样测试数据进行模型标定,然后利用发动机台架测试数 据进行模型校验和优化,得到满足工程应用的SC R化学反应动力学模型参数标定结果 关键词:选择性催化还原化学反应动力学模型参数化Parameterization of Chemical Reaction Kinetic Model ofSelectrive Catalyst Reduction for Diesel EnginesLING Jianqun,Jl Xiaojing(Shanghai D iesel Engine Co.,Ltd.,Shanghai 200438, China)Abstract:W ith the implementation of China VI emissions regulations for diesel engines,it is required that the conversion efficiency of selective catalytic reduction (SCR)after-treatment system should be90% -95%or higher.Therefore,in engineering application,the closed-loop control strategy based on SCR chemical reaction kinetic m odel is getting m ore com m on recently.The key of the strategy is to parameterize the SCR chemical reaction kinetic model and calculate the ammonia storage in the catalyst.In this paper,the chemical reaction kinetic*m odel of SCR was l)iiilt by the Simulink software,and the m odel was parameterized w ith catalyst synthetic*gas test data,and verified and optimized with engine bench test data,obtaining the calibrated parameters of tin'SCR chemical reaction kinetic model,which are applicable to engineering application.Key words:selective catalytic reduction,chemical reaction kinetic,model,parameterization〇引言随着柴油机排放法规的日趋严格,对选择性催 化还原(selective catalytic reduction,SCR)后处理 系统的转化效率也提出了更高的要求在国I V和国V阶段,SCR转化效率大概为60%〜80%,SCR 的主流控制策略为基于MAP的开环控制策略,,对 于重型国六应用,SC R转化效率要求达到90% ~ 95%,或以上。
不同提取方法对井冈蜜柚皮精油组成与性质的影响

李欣,华建新,罗杰洪,等. 不同提取方法对井冈蜜柚皮精油组成与性质的影响[J]. 食品工业科技,2024,45(3):83−97. doi:10.13386/j.issn1002-0306.2023030289LI Xin, HUA Jianxin, LUO Jiehong, et al. Effects of Different Extraction Methods on the Composition and Properties of Jinggang Pomelo Peel Essential Oil[J]. Science and Technology of Food Industry, 2024, 45(3): 83−97. (in Chinese with English abstract). doi:10.13386/j.issn1002-0306.2023030289· 研究与探讨 ·不同提取方法对井冈蜜柚皮精油组成与性质的影响李 欣1,华建新1,罗杰洪1,王国庆2,陈 赣2,周爱梅1,*(1.华南农业大学食品学院,广东省功能食品活性重点实验室,广东广州 510642;2.吉安井冈农业生物科技有限公司,江西吉安 343016)摘 要:以井冈蜜柚皮精油(Jinggang pomelo peel essential oil ,JPPEO )为研究对象,采用水蒸气蒸馏法、低温连续相变法两种方法进行提取,以精油得率为主要指标,研究了萃取温度、压力、时间等因素对井冈蜜柚皮精油得率的影响,并通过正交法进行低温连续相变法提取工艺优化,同时对精油的理化性质及化学组成进行分析。
研究表明,低温连续相变提取井冈蜜柚皮精油(Low-temperature continuous phase transition extraction essential oil ,L-JPPEO )的最佳工艺为:颗粒度30目,萃取温度55 ℃,萃取压力0.6 MPa ,萃取时间60 min ,解析温度70 ℃,此时精油得率为10.99‰,比水蒸气蒸馏法提取的精油(Hydro distillation essential oil ,H-JPPEO )得率高出了2.88倍;理化性质实验结果表明,低温连续相变萃取的井冈蜜柚皮精油的不饱和脂肪酸含量较高,游离脂肪酸含量较低,酯类成分含量较低;傅里叶衰减全反射中红外光谱法(Fourier transform infrared spectroscopy ,FTIR )鉴定出L-JPPEO 和H-JPPEO 含萜烯类化合物、醇类、酚类、醛类以及含羰基化合物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Yang L· " 1U , L' lao Welpmg
1 1*
' 12 , ang F el '
l. Nanjing Normal University, Nanjing, China, 210042 2. Beijing Lucency enviro-tech co.,LTD. Nanjing Branch, Nanjing, China, 210019 * E-mail: liaowp2005@
B.
Catalytic Activity Measurement
The SCR activity measurement was carried out in a fixed bed quartz tube reactor under atmospheric pressure at 333K�433K. The quartz tube reactor was placed 7ml of catalyst. The typical reactant gas composition was: NO of 200�1000 ppm, NH3 of 200�1000 ppm, O2 of 0�18%, and balanced N2. The total flow rate was 400�1400ml/min and the tube of the reactor system was heated to prevent formation and deposition of ammonium nitrate. The reaction temperature was controlled by a programmable temperature controller. NO, N02, and O2 concentrations were monitored by a flue gas analyzer
Abstract-In this paper, the Mn-Ce/Ti02 catalyst prepared by co
precipitation, study the low temperature performance of selective catalytic reduction (SCR) NO of catalyst within the temperature range 333�433K with NH3 in presence of excess O2, Under ideal conditions, the study shows that when ratio of molar of catalyst Mn/(Mn+Ce) reach to 0.7, low temperature selective catalytic activity of catalyst will be the best. NO will be removal in more than 90% at 393K. Through steady-state kinetic experiments, the reaction of low temperature SCR of Mn-Ce/Ti02 catalyst is found to NO, NH3, O2 reaction order were 1, 0,0.5. By calculating, the activation energy of reaction of Mn-Ce/Ti02 catalyst is 40kJ/mol, which is lower than most of the reported activation energy of the catalyst reaction.
thesis, it was highlighted that the active components and support of the catalyst were precipitated in the mixture solution at the same time. Yang[9] investigated that the catalyst that was prepared by co-precipitation MnOX-Ce02' The co-precipitation method was a better way to obtain SCR catalysts with good amorphous oxides in the structure. Thus, in this paper, the catalyst was prepared by co-precipitation method to achieve higher NO conversion and an experimental of SCR reaction was carried out by using these catalysts. The catalyst great performance on the low-temperature SCR was experimentally studied, though the operating parameters contain catalyst composition, reaction temperature, oxygen concentration and ammonia concentration. Furthermore, apparent activation energy is an important parameter to evaluate the catalytic activity. Also we carried out experiments 0, to calculate the apparent activation energy [1 Ill, which could be used to compare the performance of Mn-Ce/Ti02 with that of other catalysts in low-temperature window. II. A. Catalyst Preparation
Research Projects of GuoDian Science and Technology Research Institute (NO.DlOT02)
978-1-61284-752-8/11/$26.00 ©2011 IEEE
The catalyst was prepared by co-precipitation method. All chemicals used were of analytical grade. The solutions of titanium nitrate were prepared by titanium sulfate, which had been precipitated, filtered, cleaned and dissolved. Then the solutions of manganese nitrate and cerium nitrate were mixed into the solutions. And excess solution of ammonium carbonate was added slowly to the mixture solution with stirring. The mixtures were aged for I h and filtered. The obtained solid sample was first dried at 393K for 12h and then calcined at 773K for 6h in a tubular furnace. Finally, the sample was crushed and sieved to 60�80 mesh. The catalyst is denoted as Mn-Ce/Ti02 (Z). Z represents the molar ratio of Mn/(Mn+Ce). e.g. Mn-Ce/TiOiO.7).
EXPERIMENT
Keywords-low-temperature; co-precipitation; Mn-Ceni02; NO; selective catalytic reduction
I.
INTRODUCTION
Selective catalytic reduction (SCR) of NOx with ammonia is effectively control of the emission of NOx' A large number of materials have been tested as the SCR catalysts. It is a well established commercial technology, which employs V20S/ I, 2 Ti02 or V20s-W03/Ti02 [ ] as catalyst. Recently there is a strong interest in developing the highly active for low temperature (373�523K) SCR catalyst. Such catalyst would be placed downstream of the desulfurizer or particulate control device, which most of sulfur dioxide and dust are removed, but the temperature is relatively lower. If such a catalyst is successful developes, it will significantly improve the economics of SCR. Manganese oxides are well known for their activity in low temperature SCR, since they contain various types of labile oxygen, which are important to complete the catalytic cycle. 3 Kapteijn[ ] believed that the catalytic activity of pure manganese oxides was determined by the oxidation state of the manganese and the crystallinity. Furthermore, to improve catalytic activity of catalyst, manganese oxides were based on titanium dioxide (Ti02) or other carriers. And Pefie[4] found that the catalytic performance of metal oxides supporting on Ti02 decreased in the following order: Mn>Cu2':Cr2':Co>Fe2':V» > Ni. The activity of the catalyst with the introduction of Ceria investigated by Wu[S], is based on MnO/Ti02[6], and the addition of Ceria could improve the catalyst oxygen storage capacity and facilitate the oxygen mobility over catalysts. In previous literatures, almost all of the catalrsts studied ,8 were prepared by solution impregnation method [7 . But in this