导线应力弧垂计算
导线弧垂计算通俗易懂

导线弧垂计算通俗易懂
导线弧垂是指在一定距离上,导线下垂的高度。
它在电力输电和电缆架设过程中非常重要,因为合理的导线弧垂能够保证导线的安全性和稳定性。
导线弧垂的计算可以通过以下步骤进行:
1. 确定导线的线性密度:导线的线性密度是指单位长度上的导线重量。
可以通过查找或测量导线的规格和质量来确定。
2. 确定支持点的高度差:支持点是指导线安装的起始点和终点。
测量起始点和终点之间的高度差。
3. 计算跨距:跨距是指支持点之间的水平距离。
测量支持点之间的水平距离。
4. 计算导线的自重:导线的自重是指导线自身重量所产生的垂直力。
可以通过导线的线性密度乘以跨距来计算。
5. 计算附加负荷:在考虑其他外力时,如风力和冰覆盖等,导线还需要考虑附加的负荷。
这些负荷可以通过各种标准和规范来确定。
6. 计算总负荷:总负荷是指导线受到的所有力的总和,包括自重和附加负荷。
7. 计算导线弧垂:导线弧垂可以通过将总负荷除以跨距的平方
来计算。
以上是导线弧垂计算的通俗易懂的步骤。
通过这些计算,可以确定导线安装时需要保持的适当弧垂,以确保导线的安全性和稳定性。
导线控制应力判断方法及用微机进行弧垂计算

导线控制应力判断方法及用微机进行弧垂计算导线在输电线路中起着承载电流和重量的作用。
在输电线路中,导线的弧垂和应力是十分重要的参数,其合理的控制对于线路的安全运行和寿命有着重要影响。
本文将介绍导线控制应力的判断方法,并讨论使用微机进行弧垂计算的原理和步骤。
一、导线控制应力的判断方法导线的应力可以通过以下方法进行判断和控制。
1.等效应力法等效应力法是通过计算导线的总应力来判断导线是否超过了允许的应力值。
总应力包括机械应力、热应力和冲击应力等。
计算公式如下:σ=σm+σt+σi其中,σ为总应力,σm为机械应力,σt为热应力,σi为冲击应力。
2.拉线法拉线法是通过拉线仪等仪器直接测量导线的应力。
通过对导线进行拉线实验,可以得到导线的弹性限度,进而判断导线的应力是否超过了允许的范围。
3.挠度法挠度法是通过测量导线的挠度来判断导线的应力是否超限。
通过测量导线的弧垂和支立点的高度差,可以计算出导线的应力。
以上方法都是基于导线的物理特性和力学原理来进行判断的,可以得到较为准确的结果。
但要注意的是,不同类型的导线在应力判断上可能存在差异,需要根据具体情况选择合适的方法。
二、用微机进行弧垂计算的原理和步骤微机弧垂计算方法是基于物理和数学原理,通过计算机算法进行弧垂计算,从而得到导线的弧垂和应力等参数。
其原理和步骤如下:1.建立导线模型首先需要建立导线的模型,包括导线的几何形状、材料性质和线路条件等。
导线的几何形状包括导线的横截面形状、弹性系数和断裂应变等。
2.计算导线的张力通过导线的拉力计算公式,根据导线的长度、重力和线路条件等参数,计算导线的张力。
导线的张力是导线弧垂计算的基础。
3.计算导线的弧垂根据导线的张力和线路条件,使用弧垂计算公式,通过迭代计算,得到导线的弧垂。
常用的弧垂计算方法有杨氏公式、西格尔公式和拉平公式等。
4.判断导线应力是否超限通过计算得到导线的应力,使用上述的导线控制应力的判断方法,判断导线的应力是否超过了允许的范围。
输电线路设计—应力弧垂计算

电线应力弧垂计算
张鸣
2011年07月08日
1
1、基本概念 2、临界档距计算及判定有效临界档距 3、悬链线方程、弧垂、应力及线长 4、斜抛物线、平抛物线相关公式 5、弧垂公式的选用 6、应力状态方程公式
2
1、基本概念
比载:电线单位长度、单位截面上承受的荷载称为比载。 常用符号g或γ,单位用N/m.mm2 ,或MPa/m。 应力:电线单位截面上承受的张力。 常用符号σ,单位用N/mm2 ,或MPa。 水平档距:水平档距就是某杆两侧档距之 和的算术平均值。它表示有多长导线的水平 荷载作用在某杆塔上。水平档距是用来计算 导线传递给杆塔的水平荷载。常用符号Lh。
x cos 0
2、架空线上任意一点轴向应力的垂直分量等 于该点到弧垂最低点间线长Loc与比载γ之积。
x sin Loc
13
将上两式相比,求得电线任一点的切线斜率为: dy tg Loc dx 0 上式说明:当比值γ/σ0一定时,架空线上任一点处的斜率于该点至弧垂最 低点之间的线长成正比。
36
h 0.15 l
6、应力状态方程公式
一、应力状态方程
ቤተ መጻሕፍቲ ባይዱ
37
二、应力状态方程求解
38
39
40
14
式(1-3)是悬链曲线方程的普遍式。式中的sh、ch分别是双曲线正弦、余 弦函数符号,积分常数C1、C2根据所取坐标原点的位置及边界条件而定。当 绘制弧垂曲线模板时,通常取坐标原点位于原低点处,Y轴与荷载方向相平 行,即x=0时 dy 0 ,代入式(1-2)求得C1=0;由x=0、y=0、及C1=0 代入
dx
式(1- 3)求得 。将C1、C2值代入式(1-3),便可推得, 坐标原点位于曲线最低点的架空线悬链方程为
第五章导线和避雷线的弧垂和应力

(1)最低气温;无风;无冰 (2)最大风速;无冰;相应的气温 (3)覆冰、相应风速、一5C; (4)年平均气温、无风、无冰
出现最大应力 年平均运行应力
5. 6. 2临界挡距
以上四种控制条件,并不是在所有的挡距范围内 都是控制条件,各控制条件可能在不同的挡距范围内 起控制作用,而在某一挡距下可能某两个控制条件同 时起控制作用,超过此挡距时是一个条件控制,而小 于此挡距时是另一个条件控制。这样的挡距称为该两 个控制条件的临界挡距。
应力的变化
n状态
气温tn 比载gn 应力σn
m和n两种气象条件下的导线线长表达式
上式为导线在孤立挡距中的状态方程式。当已知 一种气象条件时导线应力为σm,求另一种气象条件 时的应力σn
求解方法一般用试凑法和计算机叠代法求解。
5.5.2 连续挡耐张段的代表挡及状态方程式
一般情况下,耐张段中各挡导线在一种气象条 件下的水平张力(水平应力)总是相等或基本相等的。 这个相等的水平应力称为该耐张段内导线的代表应 力,其值是用耐张段内的所谓“代表挡距”代人状 态方程式求得
5.1.2弧垂和应力的关系
弧垂越大,则导线的应力越小,使安全系数增 加;反之,弧垂越小,应力越大,机械安全性降低。 从导线强度安全角度考虑,应加大导线弧垂,从而 减小应力,以提高安全系数。但是,若片面强调增 大弧垂,则为保证带电导线的对地安全距离,在挡 距相同的条件下,必须增加杆高,或在相同杆高条 件下缩小挡距,使线路投资增加。
5. 6 临界挡距
5. 6.1 控制条件
在线路运行中,导线应力随气象条件和大小而变 化。任何气象条件下的应力都不超过最大使用应力, 必须使架空线在长期运行中可能出现的最大应力等 于最大使用应力。因此,需要找出出现最大应力时 的气象条件,该气象条件叫控制气象条件,与之对 应的导线的最大使用应力叫控制应力。
第二章导线张力(应力)弧垂分析(1)

第二章 导线张力(应力)弧垂计算第一节 导线和地线的机械物理特性与单位荷载一、导线的机械物理特性导线的机械物理特性,一般指破坏张力、弹性系数、热膨胀系数。
(一) 导线的破坏张力对导线作拉伸试验,将测得瞬时拉断力。
利用多次测量结果,可以建立一组经验公式来计算导线的瞬时拉断力。
考虑到施工和运行中导线接头、修补等因素,设计用导线破坏张力取其实测或计算瞬时拉断力T p 的95%,即 T ps =0.95T p (2-1-1) 式中 T p —导线的瞬时拉断力,N ;T ps —导线的破坏张力,N 。
(二)导线的弹性系数物体的弹性系数也称为弹性模量。
导线的弹性系数是指在弹性限度内,导线受拉力作用时,其应力与相对变形的比例系数,通过试验得出的应力-应变曲线确定,可表示为Tl T E A l A σεε===∆ (2-1-2)式中 T —导线拉力,N ;l 、Δl —导线的原长和伸长,m ;σ—导线的应力,即单位截面的张力,σ=T/A ,N/mm ²; ε—导线的相对变形,ε=Δl/l ; A —导线的截面积,mm ²; E —导线的弹性系数,N/mm ²。
钢芯铝绞线的弹性系数按下式近似计算1s Al E mE E m+=+ (2-1-3)式中 E Al 、E s 、E —分别为铝、钢和综合弹性系数,N/mm ²,E s =190000 N/mm ², E Al =55000 N/mm ²;m =A Al /A s —铝对钢的截面比m =A Al /A s 。
(三)导线的热膨胀系数导线温度升高1℃所引起的相对变形,称为导线的热膨胀系数,可表示为 /t αε=∆ (2-1-4) 式中 ε—温度变化引起的导线相对变形,ε=Δl/l ;Δt —温度变化量,℃;α—导线的热膨胀系数,1/℃。
钢芯铝绞线的热膨胀系数的计算式为s s Al Al s Al E m E E mE ααα+=+ (2-1-5)式中 αAl 、αs 、α—分别为铝、钢和综合热膨胀系数,1/℃。
算例-软导线拉力、弧垂、应力计算书

软导线拉力、弧垂、应力计算书工程:算例依据:(1)电力工程设计手册(变电站设计);(2)电力工程设计手册(架空输电线路设计);(3)DL/T 5457 变电站建筑结构设计规程软件:变电电气计算计算时间:2023年6月26日1. 输入条件(1)构架编号:G1;跨距32.50m;高差1.25m;允许弧垂1.00m;引下线2 条,间距L1=9m、L2=11.5m、L3=12m(距左侧构架);电压等级:110 kV;气象条件:气象区7(最大风速30m/s;覆冰10mm;覆冰风速10m/s;安装检修风速10m/s;最低温度-40℃;最大风速时温度-5℃;安装检修时温度-15℃)。
(2)导线:2×LGJ-400/35;最高工作温度70℃;间隔棒安装间距2m;间隔棒重1.2kg。
(3)左侧(A串)跳线:2×LGJ-400/35;长度3.5m;线夹重11.2kg;间隔棒重1.2kg;间隔棒安装间距2m。
(4)右侧(B串)跳线:无;线夹重11.2kg。
(5)左侧绝缘子串(A串):单串;单片绝缘子重5.8kg;绝缘子片数9片;组装金具重2.4kg;串长1.574m。
(6)右侧绝缘子串(B串):单串;单片绝缘子重5.8kg;绝缘子片数9片;组装金具重6.4kg;串长1.834m。
(7)引下线1:2×LGJ-400/35;长度7.8m;线夹重9.6kg;间隔棒重1.2kg;间隔棒安装间距2m。
(8)引下线2:2×LGJ-400/35;长度6.9m;线夹重9.6kg;间隔棒重1.2kg;间隔棒安装间距2m。
2. 导线安装曲线及拉力、弧垂表2.1导线安装曲线2.2导线安装拉力、弧垂表3. 构架提资(构架编号:G1)4. 出线构架(如有),其外侧导地线最大拉力导线:5 kN;地线:3 kN。
架空线路弧垂应力及线长计算

架空线路弧垂、应力及线长计算1、导线的机械特性和荷载 1.1导线的机械特性导线的特性参数是指导线的瞬时破坏应力σp 、弹性系数E 、温度线膨胀系数α以及密度γ等数据。
这些特性参数是对导线进行机械计算的重要依据,一般可从有关资料或手册中得到。
1.1.1导线的瞬时破坏应力σp 。
对导线做拉伸试验时,将测得的瞬时拉断力除以导线的截面积,即得导线的瞬时破坏应力σp ,计算公式为σp =AT p (N/mm 2) (ZY0400201002-1)式中:T p —导线的瞬时拉断力,N ;A —导线的截面积,mm 2。
对于钢芯铝绞线来说,指的是的综合瞬时破坏应力σp ,可以通过下面的经验公式求得σp =sa sps s ap a a A A σA σA η++η(N/mm 2) (ZY0400201002-2)式中:ηa —铝线绞合引起的强度损失系数,37股以下绞线ηa =0.95,37股以上绞线ηa =0.9; ηs —钢绞线绞合引起的强度损失系数,取ηa =0.85; σap —铝单线的抗拉强度,N /mm 2; σsp —钢线的抗拉强度,N /mm 2; A a —铝部的截面积; A s —钢部的截面积。
1.1.2导线弹性系数E 。
是指在弹性限度内,导线受拉力作用时,其应力σ与应变ε的比例系数E 。
钢芯铝绞线的弹性系数是一个综合弹性系数E ,可按下式计算aaE E E ++=1a s (N/mm 2) (ZY0400201002-3)式中:E s —单股钢线的弹性系数,N /mm 2; E a —单股铝线的弹性系数,N /mm 2;a —导线铝和钢的截面比,LGJ 型a =5.3~6.0,LGJQ 型a =8.0,LGJJ 型a =4.3~4.4。
1.1.3导线温度线膨胀系数α。
是指导线温度升高1℃时长度伸长的相对值,用公式表示为α=tΔε(1/℃) (ZY0400201002-4)式中:ε—温度变化引起的导线相对变形量;∆t —温度变化量,℃。
输电线路弧垂计算公式

输电线路弧垂计算公式好的,以下是为您生成的关于“输电线路弧垂计算公式”的文章:在我们的日常生活中,电的存在就像空气一样不可或缺。
当我们轻轻按下开关,灯光瞬间亮起,电器开始运转,这一切的背后都离不开输电线路的默默工作。
而在输电线路的众多知识中,弧垂计算公式可是一个相当重要的部分。
先来说说啥是输电线路的弧垂。
想象一下,输电线路就像是一条长长的琴弦,被架设在电线杆或者铁塔之间。
由于线路自身的重量,它会在中间部分向下弯曲,形成一个类似于弧形的形状,这个弧形的垂直距离就是弧垂。
那为啥要关注弧垂呢?这可太重要啦!如果弧垂过大,线路可能会离地面太近,容易引发安全事故;要是弧垂过小,线路又会承受过大的张力,影响线路的使用寿命。
所以,准确计算弧垂对于保证输电线路的安全稳定运行至关重要。
接下来,咱们就聊聊输电线路弧垂的计算公式。
常见的计算公式有平抛物线法和悬链线法。
平抛物线法的公式相对简单,它假设输电线路的形状是一个平抛物线。
公式是:f = (g * L^2) / (8 * σ) 。
这里的 f 就是弧垂,g 是导线的比载,L 是档距,σ 是导线的水平应力。
举个例子来说吧,有一次我跟着电力工程师们去现场检修输电线路。
那天阳光特别好,我们来到了一片空旷的田野里,远处的输电线路在蓝天白云的映衬下格外醒目。
工程师们拿着仪器,仔细地测量着档距和导线的各种参数。
其中一个年轻的工程师,一边记录数据,一边嘴里念叨着弧垂的计算公式。
他的神情专注而认真,额头上还冒出了细密的汗珠。
我在旁边看着,心里不禁感叹,这看似简单的公式背后,可是他们日复一日的辛勤付出和对工作的严谨态度。
悬链线法的公式相对复杂一些,但它更接近实际情况。
不过在实际工程中,平抛物线法已经能够满足大多数的精度要求。
在实际应用这些公式的时候,还需要考虑很多因素,比如温度、风速、覆冰情况等等。
因为这些因素都会影响导线的张力和弧垂的大小。
总之,输电线路弧垂的计算可不是一件简单的事情,它需要我们综合考虑各种因素,选择合适的计算公式,并且要保证测量数据的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导线应力弧垂计算一、确定相关参数表一Ⅲ气象区条件表二LGJ-300/50型导线参数二、相关比载计算1. 自重比载)/(1006.341036.34880665.912100,0331m Mpa A qg --⨯=⨯⨯==)(γ2. 冰重比载)/(1060.111036.348)26.245(5728.2710)(728.270,53332m Mpa A b d b ---⨯=⨯+⨯⨯=⨯+=)(γ3.垂直总比载)/(1066.45050,00,53213m Mpa -⨯=+=),()()(γγγ 4.无冰风压比载5.626.1106.122===V W V (Pa) 63.3906.1256.122===V W V (Pa)1)外过电压、安装有风: 33241036.3485.6226.241.185.00.110sin 10,0--⨯⨯⨯⨯⨯=⨯=θμαβγA W d v sc f c )( =4.103-10⨯(Mpa/m )2)最大设计风速:计算强度:33241036.34863.39026.241.185.00.110sin 25,0--⨯⨯⨯⨯⨯=⨯=θμαβγA W d v sc f c )(=25.433-10⨯(Mpa/m )低于500kv 的线路c β取1.0,计算强度时f α按表取0.85,当d ≥17mm 时sc μ取1.1. 计算风偏:33241036.34863.39026.241.175.00.110sin 25,0--⨯⨯⨯⨯⨯=⨯=θμαβγA W d v sc f c )( =22.443-10⨯(Mpa/m ) 计算风偏时f α取0.75 3)内过电压:625.1406.1156.122===V W V (Pa) 33241036.348625.14026.241.185.00.110sin 15,0--⨯⨯⨯⨯⨯=⨯=θμαβγA W d v sc f c )( =9.163-10⨯(Mpa/m )5. 覆冰风压比载5.626.1106.122===V W V 32510sin )2(10,5-⨯+=θμαβγAW b d B vsc f c )( 3-1036.3485.621026.241.12.10.10.1⨯⨯+⨯⨯⨯⨯=)()(m Mpa /1011.83-⨯=6. 无冰综合比载 外过电压、安装有风:)/(1031.341010.406.3410,00,025,033-2224216m Mpa -⨯=⨯+=+=)()()(γγγ 最大设计风速(计算强度):)/(1051.421043.2506.3425,00,025,033-2224216m Mpa -⨯=⨯+=+=)()()(γγγ 最大设计风速(计算风偏):)/(1079.401044.2206.3425,00,025,033-2224216m Mpa -⨯=⨯+=+=)()()(γγγ 内过电压:)/(1027.351016.906.345.12,00,010,033-2224216m Mpa -⨯=⨯+=+=)()()(γγγ7. 覆冰综合比载)/(1037.4610,50,510,5325237m Mpa -⨯=+=)()()(γγγ表三 比载三、确定应力值(1)最大使用应力:)(8.1125.20.282Mpa kp===σσ (2)年平均运行应力上线:)(5.70%250.282%25][Mpa p pj =⨯=⨯=σσ四、计算临界档距,判断控制气象条件因为覆冰与最大风情况下的最大使用应力和气温都相同,又覆冰时的比载大于最大风时的比载,故最大风不再作为控制气象图条件考虑。
表四 比值]/[0σγ计算结果及其排序表临界档距计算(无高差)公式:])][()][[(]][][[24202000ii j j i j i j ij E t t E l σγσγασσ--+-=)(])10302.0()10411.0[(76000]1054346.18.1128.112[242323--⨯-⨯⨯+-⨯+-⨯=)(ab l =170.72 ])10302.0()10483.0[(76000]10154346.18.1125.70[242323--⨯-⨯⨯+⨯+-⨯=)(ac l =虚数])10411.0()10483.0[(76000]5154346.18.1125.70[242323--⨯-⨯⨯+⨯+-⨯=)(bc l =虚数 表五 可能控制气象条件因为a,b 档内均存在虚数,所以a,b 不再成为控制气象条件。
所以可以判定不论档距多大,年均温为控制气象条件。
五、状态方程求应力已知年均温为控制气象条件表六已知条件参数状态方程计算式:)(2424-122012210120222202t t E l E l E ---=ασγσσγσ 1. 最高温:)(2424-122012210120222202t t E l E l E ---=ασγσσγσ带入数据得:)15-40(4364.15.70241006.34760005.70241006.3476000-2223-202223-02⨯-⨯⨯⨯⨯-=⨯⨯⨯l l )()(σσ 即:067.364.3400074.022022302=--+l l σσ)(当档距为以下各值时,由状态方程求得应力:50m: 05067.364.345000074.022022302=⨯--⨯+σσ)(=02σ38.86(Mpa)100m:010067.364.3410000074.022022302=⨯--⨯+σσ)(=02σ45.20(Mpa)150m:015067.364.3415000074.022022302=⨯--⨯+σσ)(=02σ50.44(Mpa)200m:020067.364.3420000074.022022302=⨯--⨯+σσ)(=02σ54.49(Mpa)250m:025067.364.3425000074.022022302=⨯--⨯+σσ)(=02σ57.58(Mpa)0202 =02σ59.95(Mpa)350m:035067.364.3435000074.022022302=⨯--⨯+σσ)(=02σ61.78(Mpa)400m:040067.364.3440000074.022022302=⨯--⨯+σσ)(=02σ63.21(Mpa)450m:045067.364.3445000074.022022302=⨯--⨯+σσ)(=02σ64.33(Mpa)500m:050067.364.3450000074.022022302=⨯--⨯+σσ)(=02σ65.24(Mpa) 2. 最低温:)(2424-122012210120222202t t E l E l E ---=ασγσσγσ 带入数据得:)15-10-(4364.15.70241006.34760005.70241006.3476000-2223-202223-02⨯-⨯⨯⨯⨯-=⨯⨯⨯l l )()(σσ 即:067.341.10600074.022022302=--+l l σσ)(当档距为以下各值时,由状态方程求得应力:50m:05067.341.1065000074.022022302=⨯--⨯+σσ)(=02σ105.39(Mpa)100m:010067.341.10610000074.022022302=⨯--⨯+σσ)(=02σ102.50(Mpa)0202 =02σ98.30(Mpa)200m:020067.341.10620000074.022022302=⨯--⨯+σσ)(=02σ93.58(Mpa)250m:025067.341.10625000074.022022302=⨯--⨯+σσ)(=02σ88.82(Mpa)300m:030067.341.10630000074.022022302=⨯--⨯+σσ)(=02σ85.06(Mpa)350m:035067.341.10635000074.022022302=⨯--⨯+σσ)(=02σ82.23(Mpa)400m:040067.341.10640000074.022022302=⨯--⨯+σσ)(=02σ79.80(Mpa)450m:045067.341.10645000074.022022302=⨯--⨯+σσ)(=02σ78.02(Mpa)500m:050067.341.10650000074.022022302=⨯--⨯+σσ)(=02σ76.75(Mpa) 3.最大风:)(2424-122012210120222202t t E l E l E ---=ασγσσγσ 带入数据得:)15-5-(4364.15.70241006.34760005.70241051.4276000-2223-202223-02⨯-⨯⨯⨯⨯-=⨯⨯⨯l l )()(σσ 即:072.520.9900074.022022302=--+l l σσ)(当档距为以下各值时,由状态方程求得应力:50m:05072.520.995000074.022022302=⨯--⨯+σσ)(=02σ98.81(Mpa)100m:010072.520.9910000074.022022302=⨯--⨯+σσ)(=02σ97.78(Mpa)150m:015072.520.9915000074.022022302=⨯--⨯+σσ)(=02σ96.40(Mpa)200m:020072.520.9920000074.022022302=⨯--⨯+σσ)(=02σ94.97(Mpa)250m:025072.520.9925000074.022022302=⨯--⨯+σσ)(=02σ93.68(Mpa)300m:030072.520.9930000074.022022302=⨯--⨯+σσ)(=02σ92.69(Mpa)350m:035072.520.9935000074.022022302=⨯--⨯+σσ)(=02σ91.83(Mpa)400m:040072.520.9940000074.022022302=⨯--⨯+σσ)(=02σ91.09(Mpa)450m:045072.520.9945000074.022022302=⨯--⨯+σσ)(=02σ90.51(Mpa)500m:050072.520.9950000074.022022302=⨯--⨯+σσ)(=02σ90.15(Mpa)4.覆冰无风:)(2424-122012210120222202t t E l E l E ---=ασγσσγσ 带入数据得:)15-5-(4364.15.70241006.34760005.70241037.4676000-2223-202223-02⨯-⨯⨯⨯⨯-=⨯⨯⨯l l )()(σσ 即:081.620.9900074.022022302=--+l l σσ)(当档距为以下各值时,由状态方程求得应力:50m:05081.620.995000074.022022302=⨯--⨯+σσ)(=02σ99.08(Mpa)100m:010081.620.9910000074.022022302=⨯--⨯+σσ)(=02σ98.78(Mpa)150m:015081.620.9915000074.022022302=⨯--⨯+σσ)(=02σ98.38(Mpa)200m:020081.620.9920000074.022022302=⨯--⨯+σσ)(=02σ97.98(Mpa)250m:025081.620.9925000074.022022302=⨯--⨯+σσ)(=02σ97.43(Mpa)300m:030081.620.9930000074.022022302=⨯--⨯+σσ)(=02σ97.32(Mpa)350m:035081.620.9935000074.022022302=⨯--⨯+σσ)(=02σ97.02(Mpa)0202 =02σ96.88(Mpa)450m:045081.620.9945000074.022022302=⨯--⨯+σσ)(=02σ96.73(Mpa)500m:050081.620.9950000074.022022302=⨯--⨯+σσ)(=02σ96.61(Mpa)5. 安装)(2424-122012210120222202t t E l E l E ---=ασγσσγσ 带入数据得:)15-5-(4364.15.70241006.34760005.70241031.3476000-2223-202223-02⨯-⨯⨯⨯⨯-=⨯⨯⨯l l )()(σσ 即:073.320.9900074.022022302=--+l l σσ)(当档距为以下各值时,由状态方程求得应力:50m:05073.320.995000074.022022302=⨯--⨯+σσ)(=02σ98.31(Mpa)100m:010073.320.9910000074.022022302=⨯--⨯+σσ)(=02σ95.86(Mpa)150m:015073.320.9915000074.022022302=⨯--⨯+σσ)(=02σ92.38(Mpa)200m:020073.320.9920000074.022022302=⨯--⨯+σσ)(=02σ88.60(Mpa)0202 =02σ85.12(Mpa)300m:030073.320.9930000074.022022302=⨯--⨯+σσ)(=02σ82.24(Mpa)350m:035073.320.9935000074.022022302=⨯--⨯+σσ)(=02σ79.98(Mpa)400m:040073.320.9940000074.022022302=⨯--⨯+σσ)(=02σ78.26(Mpa)450m:045073.320.9945000074.022022302=⨯--⨯+σσ)(=02σ76.94(Mpa)500m:050073.320.9950000074.022022302=⨯--⨯+σσ)(=02σ75.93(Mpa)6. 外过有风)(2424-122012210120222202t t E l E l E ---=ασγσσγσ 带入数据得:)15-15(4364.15.70241006.34760005.70241051.4276000-2223-202223-02⨯-⨯⨯⨯⨯-=⨯⨯⨯l l )()(σσ 即:072.55.7000074.022022302=--+l l σσ)(当档距为以下各值时,由状态方程求得应力:50m:05072.55.705000074.022022302=⨯--⨯+σσ)(=02σ71.45(Mpa)100m:010072.55.7010000074.022022302=⨯--⨯+σσ)(=02σ73.78(Mpa)150m:015072.55.7015000074.022022302=⨯--⨯+σσ)(=02σ76.08(Mpa)200m:020072.55.7020000074.022022302=⨯--⨯+σσ)(=02σ78.16(Mpa)250m:025072.55.7025000074.022022302=⨯--⨯+σσ)(=02σ80.05(Mpa)300m:030072.55.7030000074.022022302=⨯--⨯+σσ)(=02σ81.23(Mpa)350m:035072.55.7035000074.022022302=⨯--⨯+σσ)(=02σ82.59(Mpa)400m:040072.55.7040000074.022022302=⨯--⨯+σσ)(=02σ83.46(Mpa)450m:045072.55.7045000074.022022302=⨯--⨯+σσ)(=02σ84.17(Mpa)500m:050072.55.7050000074.022022302=⨯--⨯+σσ)(=02σ84.72(Mpa)7. 外过无风)(2424-122012210120222202t t E l E l E ---=ασγσσγσ带入数据得:)15-15(4364.15.70241006.34760005.70241006.3476000-2223-202223-02⨯-⨯⨯⨯⨯-=⨯⨯⨯l l )()(σσ 即:5.7002=σ(Mpa)8. 操作过电压)(2424-122012210120222202t t E l E l E ---=ασγσσγσ 带入数据得:)15-15(4364.15.70241006.34760005.70241065.3476000-2223-202223-02⨯-⨯⨯⨯⨯-=⨯⨯⨯l l )()(σσ 即:080.35.7000074.022022302=--+l l σσ)(当档距为以下各值时,由状态方程求得应力:50m:05080.35.705000074.022022302=⨯--⨯+σσ)(=02σ70.56(Mpa)100m:010080.35.7010000074.022022302=⨯--⨯+σσ)(=02σ70.71(Mpa)150m:015080.35.7015000074.022022302=⨯--⨯+σσ)(=02σ70.87(Mpa)200m:020080.35.7020000074.022022302=⨯--⨯+σσ)(=02σ71.03(Mpa)250m:025080.35.7025000074.022022302=⨯--⨯+σσ)(=02σ71.56(Mpa)300m:030080.35.7030000074.022022302=⨯--⨯+σσ)(=02σ71.26(Mpa)350m:035080.35.7035000074.022022302=⨯--⨯+σσ)(=02σ71.33(Mpa)400m:040080.35.7040000074.022022302=⨯--⨯+σσ)(=02σ71.39(Mpa)450m:045080.35.7045000074.022022302=⨯--⨯+σσ)(=02σ71.44(Mpa)500m:050080.35.7050000074.022022302=⨯--⨯+σσ)(=02σ71.47(Mpa)表七 LGJ-300/50型导线应力计算表续表六、计算弧垂弧垂计算公式:bl f 028σγ=1.最高温:50m:=⨯=86.388f 0.274(m)100m:=⨯⨯⨯=20.4581001006.3423-f 0.912(m)150m:=⨯⨯⨯=44.5081501006.3423-f 1.90(m)200m:=⨯⨯⨯=49.5482001006.3423-f 3.13(m)250m:=⨯⨯⨯=58.5782501006.3423-f 4.62(m)300m:=⨯⨯⨯=95.5983001006.3423-f 6.39(m)350m:=⨯⨯⨯=78.6183501006.3423-f 8.44(m)400m:=⨯⨯⨯=21.6384001006.3423-f 10.78(m)450m:=⨯⨯⨯=33.6484501006.3423-f 13.40(m)500m:=⨯=24.658f 16.31(m) 2.外过无风:50m:=⨯⨯⨯=5.708501006.3423-f 0.14(m)100m:=⨯⨯⨯=5.7081001006.3423-f 0.55(m)150m:=⨯⨯⨯=5.7081501006.3423-f 1.24(m) 200m:=⨯⨯⨯=5.7082001006.3423-f 2.20(m)250m:=⨯⨯⨯=5.7082501006.3423-f 3.44(m)300m:=⨯⨯⨯=5.7083001006.3423-f 4.96(m)350m:=⨯⨯⨯=5.7083501006.3423-f 6.75(m)400m:=⨯⨯⨯=5.7084001006.3423-f 8.82(m)450m:=⨯=5.708f 11.16(m)500m:=⨯⨯⨯=5.7085001006.3423-f 13.78(m) 3.覆冰无风:50m:=⨯⨯⨯=08.998501006.3423-f 0.11(m)100m:=⨯⨯⨯=78.9881001006.3423-f 0.43(m)150m:=⨯⨯⨯=38.9881501006.3423-f 0.97(m)200m:=⨯⨯⨯=98.9782001006.3423-f 1.74(m)250m:=⨯⨯⨯=43.9782501006.3423-f 2.73(m)300m:=⨯⨯⨯=32.9783001006.3423-f 3.94(m)350m:=⨯⨯⨯=02.9783501006.3423-f 5.78(m)400m:=⨯⨯⨯=88.9684001006.3423-f 7.03(m)450m:=⨯⨯⨯=73.9684501006.3423-f 8.91(m)500m:=⨯⨯⨯=61.9685001006.3423-f 11.02(m) 表八 LGJ-300/50型导线弧垂计算表七、应力弧垂曲线绘制。