八年级数学上册第十三章整章水平测试(A)_4

合集下载

最新人教版八年级数学上册第13章同步测试题及答案

最新人教版八年级数学上册第13章同步测试题及答案

最新人教版八年级数学上册第13章同步测试题及答案13.1 轴对称1.在以下四个标志中,是轴对称图形的是( ).2.下列说法中错误的是( ).A.成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴B.关于某条直线对称的两个图形全等C.全等的三角形一定关于某条直线对称D.若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称3.如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为( ).(第3题图)A.48°B.54°C.74°D.78°4.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB(第4题图)5.如图所示,已知AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC的度数为()A.40°B.70°C.30°D.50°(第5题图)6.如图,在△ABC中,AB的中垂线交AB于点E,交BC于点D,若△ADC的周长为16cm,AC=4cm,则BC的长为()A.22cm B.12cm C.10cm D.7cm(第6题图)7.我国的文字非常讲究对称美,分析如图四个图案,图案________有别于其余三个图案( ).8.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后的图是( ).(第8题图)9.(创新应用题)如图,把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量的存在这种图形变换(如图甲).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图乙)的对应点所具有的性质是( ).(第9题图)A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行10.从商场试衣镜中看到某件名牌服装标签上的后5位编码是,则该编码实际上是__________.11.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为__________.(第11题图)12.如图所示,在△ABC中,∠BAC=106°,EF,MN分别是AB,AC的垂直平分线,点E,N在BC上,则∠EAN= .(第12题图)13.如图,点P为∠AOB内一点,分别作出点P关于OA,OB的对称点F,E,连接EF交OA于点N,交OB于点M,EF=15,求△PMN的周长.(第13题图)14.如图,将一张正六边形纸沿虚线对折3次,得到一个多层的60°角的三角形纸.用剪刀在折叠好的纸上随意剪出一条线.(第14题图)(1)猜一猜,将纸打开后,你会得到怎样的图形?(2)这个图形有几条对称轴?(3)如果想得到一个含有五条对称轴的图形,你应该取什么形状的纸?应该如何折叠?15.如图,在△ABC中,BC=7,AB的垂直平分线分别交AB,BC于点D,E,AC的垂直平分线分别交AC,BC于点F,G.求△AEG的周长.(第15题图)16.如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE.(1)求证:DF是线段AB的垂直平分线.(2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数.(第16题图)参考答案1.A 分析:只有A图沿中间竖直的一条直线折叠,左右两边能够重合,故选A.2.C 分析:虽然关于某条直线对称的两三角形全等,但全等的两三角形不一定关于某条直线对称,因而选C.3.B 分析:因为关于某直线对称的两图形全等,所以∠A=∠A′=78°,∠C′=∠C=48°,所以∠B =54°,故选B.4.C5.C 分析:∵AB=AC,∠A=40°,∴∠ABC=∠C=70.∵MN是AB的垂直平分线,∴DA=DB.∴∠DBA=∠A=40°,∴∠DBC=30°.故选C.6.B 分析:∵DE是AB的垂直平分线,∴DA=DB.∵△ADC的周长为16cm,∴AD+AC+CD=BD+CD+AC=BC+AC=16cm.∵AC=4cm,∴BC=12cm.故选B.7.D 分析:都是轴对称图形,但图案D有两条对称轴,其余三个图案都只有一条对称轴.8.D 分析:解决此类问题的基本方法是,根据“折叠后的图形再展开,则所得的整个图形应该是轴对称图形”,从所给的最后图形作轴对称,题目折叠几次,就作几次轴对称,沿两条对角线所在直线画对称轴,只有D适合,故选D.9.B 分析:因为对称且平移,所以原有的性质已有变化,A、C、D都已不成立,只有B选项正确,故选B.10.BA629 分析:假定最左侧或右侧有一条直线为对称轴,沿此直线折叠都会得到BA629,或将此图案从反面观察,也可得到BA629.11.6 分析:由△ABC与四边形AEDC的周长之差为12,可知BE+BD-DE=12①.由△EDC的周长为24可知CE+CD+DE=24.由DE是BC边上的垂直平分线可知BE=CE,BD=CD,所以BE+BD+DE=24②. ②-①,得2DE=12,所以DE=6.12.32°13.解:∵点P与点E关于OB轴对称,∴CE=CP,MC⊥PE.∴∠MCE=∠MCP=90°.在△MCE和△MCP中,∵,,,CE CPMCE MCP CM CM=⎧⎪∠=∠⎨⎪=⎩∴△MCE≌△MCP.∴MP=ME,同理NP=NF.∴MP+MN+NP=ME+MN+NF=EF=15,即△PMN的周长是15.14.解:(1)轴对称图形.(2)至少有3条对称轴.(3)取一张正十边形的纸,沿它的通过中心的五条对角线折叠5次,得到一个多层的36°角的图形,用剪刀在叠好的纸上任意剪出一条线,打开就可以得到一个至少含五条对称轴的图形.15.解:∵DE、GF分别是AB、AC的垂直平分线,∴BE=AE,CG=AG.∴△AEG的周长为AE+EG+AG=BE+EG+CG=BC=7.16.(1)证明:∵∠A=∠ABE,∴EA=EB.∵AD=DB,∴DF是线段AB的垂直平分线.(2)解:∵∠A=46°,∴∠ABE=∠A=46°.∵AB=AC,∴∠ABC=∠ACB=67°,∴∠EBC=∠ABC-∠ABE=21°,∠F=90°-∠ABC=23°.13.2 画轴对称图形基础巩固1.下列说法正确的是( ).A.全等的两个图形可以由其中一个经过轴对称变换得到B.轴对称变换得到的图形与原图形全等C.轴对称变换得到的图形可以由原图形经过一次平移得到D.轴对称变换中的两个图形,每一对对应点所连线段都被这两个图形之间的直线垂直平分2.下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中是轴对称图形的有( ).(第2题图)A.1个B.2个C.3个D.4个3.点M(1,2)关于x轴对称的点的坐标为( ).A.(-1,-2) B.(-1,2)C.(1,-2) D.(2,-1)4.如图,将正方形纸片对折两次,并剪出一个菱形小洞后铺平,得到的图形是( ).(第4题图)5.已知点P(a+1,3)、Q(-2,2a+b)关于y轴对称,则a=__________,b=__________;若关于x对称,则a=__________,b=__________.6.如图,四边形ABCD的顶点坐标为A(-5,1),B(-1,1),C(-1,6),D(-5,4),请作出四边形ABCD关于x轴及y轴的对称图形,并写出各对称图形的顶点坐标.(第6题图)能力提升7.李芳同学球衣上的号码是253,当她把镜子放在号码的正左边时,镜子中的号码是( ).(第7题图)8.若|3a-2|+|b-3|=0,则P(-a,b)关于y轴的对称点P′的坐标是__________.9.点A(-2a,a-1)在x轴上,则A点的坐标是__________,A点关于y轴的对称点的坐标是__________.10.小明上午在理发店理发时,从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是________.(第10题图)11.作图题:在方格纸中,画出△ABC关于直线MN对称的△A1B1C1.(第11题图)参考答案1.B 分析:由轴对称的概念及性质进行判断,知B 正确,D 错误,这两个图形之间的直线不一定是对称轴,又因为成轴对称的两个图形不仅全等还与位置有关故A 、C 错误.2.B 分析:由图形的特征,结合轴对称的概念,可以判断只有第一个和第三个中的图形都是轴对称图形,故有2个,应选B.3.C 分析:关于x 轴对称的点的坐标变化特点是:横坐标不变,纵坐标互为相反数,故选C.4.C 分析:本题是将正方形两次翻折后剪裁,且剪裁位置在折叠后图形的正中间,因而将所给最后图形作两次轴对称展开,得到图形C.5.1 1 -3 3 分析:若点P(a +1,3)、Q(-2,2a +b)关于y 轴对称,则a +1=2,2a +b =3,解得a =1,b =1;同样若点P(a +1,3)、Q(-2,2a +b)关于x 轴对称,则a +1=-2,2a +b =-3,解得a =-3,b =3.6.解:(1)如图所示,四边形A ′B ′C ′D ′和四边形A ″B ″C ″D ″即为所求.(第6题答图)(2) 四边形ABCD 关于y 轴对称的四边形A ′B ′C ′D ′各顶点的坐标分别是A ′(5,1),B ′(1,1),C ′(1,6),D ′(5,4);四边形ABCD 关于x 轴对称的四边形A ″B ″C ″D ″各顶点的坐标分别是A ″(-5,-1),B ″(-1,-1),C ″(-1,-6),D ″(-5,-4).7.A 分析:把球衣上253的号码向左翻折180°,得到的图案即是镜子中的号码. 8.2(,3)39.(-2,0) (2,0) 分析:因为点A 在x 轴上,所以a -1=0,所以a =1,A 点的坐标就是(-2,0),关于y 轴的对称点的坐标是(2,0). 10.10时45分11.解:分别作出点A ,B ,C 关于直线MN 的对称点A ′,B ′,C ′,再依次连接即得到图形。

人教版数学八年级上册第十三章检测题

人教版数学八年级上册第十三章检测题

人教版八年级上册数学第十三章检测题学号:名字:成绩:一、选择题1.下图中的交通标志图案是轴对称图形的是()A B C D2.点P(3,-5)关于y轴对称的点的坐标为()A.(-3,-5)B.(5,3)C.(-3,5)D.(3,5)3.已知线段AB和点C,D,且CA=CB,DA=DB,那么直线CD是线段AB的()A.垂线B.平行线C.垂直平分线D.过中点的直线4.如图13-16所示,在△ABC中,AB=AC,∠ABC=70°,顶点B在直线DE上,且DE∥AC,则∠CBE等于()图13-16A.40°B.50°C.70°D.80°5.下列命题中,不正确的是()A.关于某条直线对称的两个三角形全等B.若两个图形关于直线对称,则对称轴是对应点连线的垂直平分线C.等腰三角形一边上的高、中线及这边所对角的平分线重合D.两个全等的三角形不一定是轴对称图形6.若M(0,2)关于x轴对称的点为N,则线段MN的中点坐标是()A.(0,-2)B.(0,0)C.(-2,0)D.(0,4)7.在△ABC中,AB=AC,D为BC的中点,则下列结论:①∠B=∠C;②AD⊥BC;③∠BAC=2∠BAD;④AB,AC边上的中线的长相等.其中正确的结论有()A.1个B.2个C.3个D.4个8.一个等腰三角形的周长为40cm,以一边为边作等边三角形,这个等边三角形周长为45 cm,那么这个等腰三角形的底边长为()A.15cmB.10cmC.30cm或10cmD.15cm或10cm9.如图13-17所示,在Rt△ABC中,∠ACB=90°,∠B=15°,AB边的垂直平分线交AB于点E,交BC于点D,且BD=13cm,则AC的长是()A.13cmB.6.5cmC.30cmD.26cm图13-17图13-1810.如图13-18所示,△ABC中,AB=AC,∠EBD=20°,AD=DE=EB,则∠C的度数为()A.70°B.60°C.80°D.65°二、填空题11.请写出两个具有轴对称性的汉字.12.已知点M(x,y)与点N(-2,-3)关于x轴对称,则x+y=.13.若△ABC的三个顶点的横坐标都乘-1,纵坐标不变,则所得到的图形与原图形的关系是.14.已知一个等腰三角形的一边是6,另一边是8,则这个等腰三角形的周长是.15.如图13-19所示,∠A=30°,∠C'=60°,△ABC与△A'B'C'关于直线l对称,则∠B=.图13-19图13-2016.如图13-20所示,在△ABC中,AB=AC,BC=6,AD⊥BC于点D,则BD=.17.如图13-21所示,点P关于OA,OB的对称点分别为C,D,连接CD,交OA于点M,交OB于点N.若△PMN的周长=8cm,则CD为cm.图13-21图13-2218.如图13-22所示,在直角坐标平面内,线段AB垂直于y轴,垂足为B,且AB=2.如果将线段AB沿y轴翻折,点A落在点C处,那么点C的横坐标是.图13-2319.如图13-23所示,已知△ABC关于直线y=1对称,点C到AB的距离为2,AB长为6,则点A,B的坐标分别为.20.(2013·绍兴)如图13-24所示,钢架中焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.图13-24三、解答题21.如图13-25所示,试作出各图形的对称轴.图13-2522.如图13-26所示,写出图中A,B,C,D,E,F,G的坐标,并比较B与F,C与E,A与G的坐标特征,用文字表述出来.图13-2623.如图13-27所示,在△ABC中,∠C=90°.(1)用圆规和直尺在AC上作点P,使点P到A,B的距离相等(保留作图痕迹,不写作法和证明);图13-27(2)当满足(1)的点P到AB,BC的距离相等时,求∠A的度数.24.如图13-28所示,已知AE∥BC,AE平分∠DAC.求证:AB=AC.图13-2825.如图13-29所示,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE.求证:AD=CE.图13-2926.如图13-30所示,在△EBD中,EB=ED,点C在BD上,CE=CD,BE⊥CE,A是CE延长线上一点,EA=EC.试判断△ABC的形状,并证明你的结论.图13-3027.如图13-31所示,在△ABC中,∠ABC和∠ACB的平分线交于点O,过点O作EF ∥BC,交AB于点E,交AC于点F.图13-31(1)若∠ABC=40°,∠ACB=60°,求∠BOE+∠COF的度数;(2)若△AEF的周长为8cm,且BC=4cm,求△ABC的周长.参考答案1.B解析:A不是轴对称图形,故本选项错误;B是轴对称图形,故本选项正确;C不是轴对称图形,故本选项错误;D不是轴对称图形,故本选项错误.2.A解析:根据轴对称的性质,得点P(3,-5)关于y轴对称的点的坐标为(-3,-5).3.C解析:根据线段垂直平分线的性质的逆定理,因为CA=CB,DA=DB,所以直线CD是线段AB的垂直平分线.4.C解析:∵AB=AC,∴∠ABC=∠C=70°.又∵DE∥AC,∴∠CBE=∠C=70°.5.C解析:根据轴对称图形的性质可知,A,B,D正确,C应改为等腰三角形底边上的高、中线及这边所对角的平分线重合,故错误.6.B解析:根据轴对称的性质,知线段MN的中点就是原点,即线段MN的中点坐标是(0,0).7.D解析:①根据等边对等角可得到该结论,故正确;②根据等腰三角形三线合一的性质可得到,故正确;③根据等腰三角形三线合一的性质可得到,故正确;④根据三角形全等可得到,故正确.8.D解析:∵等边三角形周长为45cm,∴其边长为15cm,即等腰三角形的一边为15cm.①若该边为腰长,则底边为40-2×15=10(cm);②若该边为底边,则腰长为(40-15)÷2=12.5(cm),∴等腰三角形的底边长为15cm或10cm.9.B解析:∵AB边的垂直平分线交AB于点E,交BC于点D(已知),∴AD=BD,∠DAE=∠B=15°,且AD=BD=13 cm,∴∠ADC=30°,∴AC=AD=6.5cm.10.A解析:∵∠EBD=20°,AD=DE=EB.∴∠EBD=∠EDB=20°,∠A=∠AED.∵∠AED=∠EBD+∠EDB=40°,∴∠A=40°.∵AB=AC,∴∠ABC=∠C==70°.11.甲、由、中、田、日等解析:答案不唯一.12.1解析:根据题意,得x=-2,y=3.∴x+y=1.13.关于y轴对称解析:平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴的对称点的坐标是(-x,y),三个顶点坐标的横坐标都乘-1,并保持纵坐标不变,就是横坐标变成相反数,即所得到的点与原来的点关于y轴对称.14.20或22解析:本题所给的两边没有指明是腰还是底边,所以要分情况讨论.(1)当6为腰长、8为底边时,三角形的周长为6+6+8=20;(2)当8为腰长、6为底边时,三角形的周长为8+8+6=22.15.90°解析:∵△ABC与△A'B'C'关于直线l对称,∴△ABC≌△A'B'C'.∴∠C=∠C'=60°.∵∠A=30°,∴∠B=180°-∠A-∠C=180°-30°-60°=90°.16.3解析:∵△ABC中,AB=AC,BC=6,AD⊥BC于点D,∴BD=BC=×6=3.17.8解析:根据题意点P关于OA,OB的对称点分别为C,D,故有MP=MC,NP=ND,则CD=CM+MN+ND=PM+MN+PN=8cm.18.-2解析:根据题意,两点关于y轴对称,则它们的横坐标互为相反数,即点C的横坐标是-2.19.(2,-2),(2,4)解析:由题可知A,B的连线与y=1垂直,且两点到直线y=1的距离相等.∵AB=6,∴A,B两点的纵坐标分别为-2和4.又∵点C到AB的距离为2,∴A,B两点的横坐标都为2,∴A,B两点的坐标分别为(2,-2)和(2,4).20.12°解析:设∠A=x,∵AP1=P1P2=P2P3=…=P13P14=P14A,∴∠A=∠AP2P1=∠AP13P14=x,∴∠P2P1P3=∠P13P14P12=2x,∴∠P2P3P4=∠P13P12P10=3x,……∠P7P6P8=∠P8P9P7=7x,∴∠AP7P8=7x,∠AP8P7=7x,在△AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°,解得x=12°,即∠A=12°.21.解:如图13-10所示.图13-1022.解:A(1,1),B(1,3),C(3,4),D(0,5),E(-3,4),F(-1,3),G(-1,1),它们都关于y轴对称.23.解:(1)如图13-11所示.图13-11图13-12(2)如图13-12,连接BP.∵点P到AB,BC的距离相等,∴BP是∠ABC的平分线.∴∠ABP=∠PBC.又∵点P在线段AB的垂直平分线上,∴PA=PB.∴∠A=∠ABP.∴∠A=∠ABP=∠PBC=×90°=30°.24.证明:∵AE平分∠DAC,∴∠1=∠2.∵AE∥BC,∴∠1=∠B,∠2=∠C.∴∠B=∠C,∴AB=AC.25.证明:在△ABC中,CA=AB,∠CAE=∠ABD,又∵AE=BD,∴在△CAE和△ABD中,,∴△CAE≌△ABD(SAS).∴AD=CE.26.解:△ABC是等边三角形.∵CE=CD,∴∠D=∠DEC.∴∠ECB=∠D+∠DEC=2∠D.∵BE=DE,∴∠EBC=∠D.∴∠ECB=2∠EBC.又∵BE⊥CE,∴∠ECB=60°.∵BE⊥CE,AE=CE,∴AB=BC.∴△ABC是等边三角形.27.解:(1)∵EF∥BC,∴∠OCB=∠COF,∠OBC=∠BOE.又∵BO,CO分别是∠BAC和∠ACB的角平分线,∴∠COF=∠FCO=∠ACB=30°,∠BOE=∠OBE=∠ABC=20°.∴∠BOE+∠COF=50°.(2)∵∠COF=∠FCO,∴OF=CF.∵∠BOE=∠OBE,∴OE=BE.∴△AEF的周长=AF+OF+OE+AE=AF+CF+BE+AE=AB+AC=8cm.∴△ABC的周长=8+4=12(cm).。

八年级上册数学第十三章 基础测试卷(含答案)

八年级上册数学第十三章 基础测试卷(含答案)

八年级上册数学第十三章基础测试卷基础巩固1.如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做 ,这条直线就是它的 。

2.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线 ,这条直线叫做 ,折叠后重合的点是 点,叫做 点。

3.经过线段 这条线段的直线,叫做这条线段的垂直平分线。

4.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的 。

5.线段垂直平分线上的点与这条线段两个端点的距离 。

6.与一条线段两个端点距离相等的点,在这条线段的 上。

7.点(x ,y)关于x 轴对称的点的坐标为 ;点(x ,y)关于y 轴对称的点的坐标为 。

8.等腰三角形的两个底角 。

9.等腰三角形的顶角 ,底边上的 ,底边上的 相互重合10.如果一个三角形有两个角相等,那么这两个角 也相等。

1L.等边三角形的三个内角都相等,并且每一个内角都等于 。

12.三个角都相等的 是等边三角形;有一个角是60°的是等边三角形。

13.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的 。

针对训练★知识点1:轴对称图形1.如图所示,判断下列图形是否为轴对称图形,若是,说出它们有几条对称轴。

★知识点2:轴对称2.如图,△ABC 沿着直线MN 折叠后,与△DEF 完全重合。

(1)△ABC 和△DEF 关于直线 对称,直线MN 是 ; (2)点B 的对称点是点 ,点C 的对称点是点 ;(3)连接AD ,线段AD 被直线MN ; (4)PC= , 。

★知识点3:线段的垂直平分线3.如图,在△ABC 中,AB =6cm ,AC =4cm ,BC 的垂直平分线分别交AB 、BC 于D ,E ,则△ACD 的周长为 cm.4.(1)如图①所示,已知线段AB,直线l为线段AB的垂直平分线,垂足为C,P为上的任一点,求证:PA=PB.(2)如图②所示,已知线段AB,PA=PB,求证:点P在线段AB的垂直平分线上.★知识点4:画轴对称图形或成轴对称的两个图形的对称轴5.如图所示的虚线中,是该图形对称轴的是( )A.直线a与直线b B直线a与直线cC.直线a与直线dD.直线a、b、c、d6.画出如图所示图形的对称轴.★知识点5:画轴对称图形7.如图所示,已知△ABC,直线MN.画△A'B'C',使△A'B'C'与△ABC关于直线MN对称.★知识点6:用坐标表示轴对称8.点P(-2,1)关于x轴对称的点的坐标是( )A.(-2,-1)B.(2,-1)C.(2.1)D.(1,2)9.已知△ABC在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC关于y轴对称,那么点A的对应点A'的坐标为( ).A.(-4,2)B.(-4,-2)C.(4,-2)D.(4,2)★知识点7:等腰三角形的性质10.如图,在△ABC中,AB=AC,∠B=35°,则∠C= ()A.17.5°B.20°C.35°D.70°11.下列叙述正确的是( )A.等腰三角形的两个底角相等B.等腰三角形的高、中线、角平分线互相重合C.顶角相等的两个等腰三角形全等D.等腰三角形是锐角三角形12.已知:如图在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.★知识点8:等腰三角形的判定13.如图所示,已知BD是△ABC的角平分线,DE∥BC交AB于点E,求证:△BED是等腰三角形。

人教版八年级上册数学第13章测试题含答案

人教版八年级上册数学第13章测试题含答案

人教版八年级上册数学第13章测试题含答案一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的)1.下列图形中,是轴对称图形的是( )2.点M (1,-2)关于x 轴对称的点的坐标为( )A .(1,2)B .(-1,-2)C .(-1,2)D .(-2,1)3.一个等腰三角形的两边长分别为6和12,则这个等腰三角形的周长为( )A .18B .24C .30D .24或304.如图,AD 是等腰三角形ABC 的顶角平分线,BD =5,则CD 等于( )A .10B .5C .4D .3(第4题)5.如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( )A .1 B.12 C.13D.146.如图,等腰三角形ABC 的周长为21,底边BC =5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为( ) A .13B .14C .15D .16(第5题) (第6题) (第8题) (第9题) (第10题)7.将两个全等的直角三角形(有一锐角为30°)拼成一个四边形,其中是轴对称图形的四边形有()A.1个B.2个C.3个D.4个8.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以40 n mile/h的速度向正北方向航行,2 h后到达灯塔P的北偏东40°方向的N处,则N处与灯塔P的距离为()A.40 n mile B.60 n mile C.70 n mile D.80 n mile 9.如图,将长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC′一定是全等三角形10.如图,直线AB,CD交于点O,若AB,CD是等边三角形MNP的两条对称轴,且点P在直线CD上(不与点O重合),则点M,N中必有一个在() A.∠AOD的内部B.∠BOD的内部C.∠BOC的内部D.直线AB上二、填空题(本题共6小题,每小题3分,共18分)11.如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=________.(第11题)(第12题)(第13题)12.小明上午在理发店时,从镜子内看到背后的时钟的时针与分针的位置如图所示,此时的时间是________.13.如图,在正方形方格中,阴影部分是涂灰7个小正方形所形成的图案,再将方格内空白的1个小正方形涂灰,使得到的新图案(阴影部分)成为一个轴对称图形的涂法有________种.14.如图,点D,E分别在等边三角形ABC的边AB,BC上,将△BDE沿直线DE翻折,使点B落在B1处.若∠ADB1=70°,则∠CEB1=________.(第14题)(第15题)(第16题)15.如图,在等腰三角形ABC中,AB=AC,P,Q分别是边AC,AB上的点,且AP=PQ=QC=BC,则∠PCQ的度数为________.16.如图,∠ABC是某钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE,EF,F G,….假设添加的钢管的长度都与BD的长度相等.如果∠ABC=10°,那么最多可以添加这样的钢管________根.三、解答题(本题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(8分)如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(1)求△ABC的面积;(2)在图中作出△ABC关于y轴对称的△A1B1C1;(3)写出点A1,B1,C1的坐标.18.(8分)如图,P为∠MON的平分线上的一点,P A⊥OM于A,PB⊥ON于B.求证:OP垂直平分AB.19.(8分)如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.20.(8分)(1)在等腰三角形ABC中,∠A=100°,求∠B的度数.(2)在等腰三角形ABC中,∠A=40°,求∠B的度数.(3)根据(1)(2)发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.21.(10分)如图,△ABC是边长为3 cm的等边三角形,动点P,Q同时从A,B 两点出发,分别沿AB,BC方向匀速移动,它们的速度都是1 cm/s,当点P 到达点B时,P,Q两点停止运动.设点P的运动时间为t s,则当t为何值时,△PBQ是直角三角形?22.(10分)如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 是AB 的中点,点E 是AB 边上一点.(1)若BF ⊥CE 于点F ,交CD 于点G (如图①),求证AE =CG ;(2)若AH ⊥CE ,垂足为H ,AH 的延长线交CD 的延长线于点M (如图②),找出图中与BE 相等的线段,并证明.答案一、1.C 2.A 3.C 4.B 5.D 6.A 7.B 8.D 9.B 10.D 二、11.40° 12.10:45 13.3 14.50° 15.⎝ ⎛⎭⎪⎫3607° 16.8三、17.解:(1)S △ABC =12×5×3=152.(2)△A 1B 1C 1如图所示.(3)A 1(1,5),B 1(1,0),C 1(4,3).18.证明:∵OP 平分∠MON ,P A ⊥OM ,PB ⊥ON ,∴P A =PB . 又∵OP =OP ,∴Rt △POA ≌Rt △POB (HL). ∴OA =OB . ∴OP 垂直平分AB . 19.(1)证明:∵AB =AC ,∴∠B =∠C .在△DBE 和△ECF 中,⎩⎨⎧BE =CF ,∠B =∠C ,BD =CE ,∴△DBE ≌△ECF (SAS). ∴DE =EF .∴△DEF 是等腰三角形.(2)解:由(1)可知△DBE ≌△ECF ,∴∠BDE =∠CEF . ∵∠A +∠B +∠C =180°,∠A =40°,∠B =∠C , ∴∠B =12×(180°-40°)=70°. ∴∠BDE +∠BED =110°. ∴∠CEF +∠BED =110°. ∴∠DEF =70°.20.解:(1)∵∠A =100°>90°,∴∠B =∠C =12×(180°-100°)=40°. (2)若∠A 为顶角,则∠B =(180°-∠A )÷2=70°; 若∠A 为底角,∠B 为顶角, 则∠B =180°-2×40°=100°; 若∠A 为底角,∠B 为底角, 则∠B =40°,故∠B 为70°或100°或40°.(3)分两种情况:①当90≤x<180时,∠A 只能为顶角, ∴∠B 的度数只有一个. ②当0<x<90时,若∠A 为顶角,则∠B =⎝ ⎛⎭⎪⎫180-x 2°;若∠A 为底角,∠B 为顶角,则∠B =(180-2x)°; 若∠A 为底角,∠B 为底角,则∠B =x°. 当180-x 2≠180-2x 且180-2x ≠x 且180-x2≠x ,即x ≠60时,∠B 有三个不同的度数.综上所述,可知当0<x<90且x ≠60时,∠B 有三个不同的度数. 21.解:根据题意,得AP =t cm ,BQ =t cm.在△ABC 中,AB =BC =3 cm ,∠B =60°,∴BP =(3-t )cm. 在△PBQ 中,BP =(3-t )cm ,BQ =t cm ,若△PBQ 是直角三角形, 则∠BQP =90°或∠BPQ =90°. 当∠BQP =90°时,∠BPQ =30°, ∴BQ =12BP ,即t =12(3-t ),解得t =1; 当∠BPQ =90°时,∠BQP =30°, ∴BP =12BQ ,即3-t =12t ,解得t =2.综上,当t =1或t =2时,△PBQ 是直角三角形. 22.(1)证明:∵点D 是AB 的中点,AC =BC ,∠ACB =90°,∴CD ⊥AB ,∠ACD =∠BCD =45°, ∠CAD =∠CBD =45°. ∴∠CAE =∠BCG . ∵BF ⊥CE ,∴∠CBG +∠BCF =90°.又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.又∵AC=CB,∴△AEC≌△CGB(ASA).∴AE=CG.(2)解:BE=CM.证明如下:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°. ∴∠CMA=∠BEC.又∵AC=CB,∠ACM=∠CBE=45°,∴△BCE≌△CAM(AAS).∴BE=CM.。

人教版八年级数学上学期 第十三章测试卷

人教版八年级数学上学期 第十三章测试卷

人教版八年级数学上学期第十三章测试卷一、单选题(共11题;共22分)1.下列四个图案中,不是轴对称图案的是()A. B. C. D.2.下列图形中,不是轴对称图形的是()A. B. C. D.3.下列图形中,不是轴对称图形的是()A. B. C. D.4.如图,在△ABC中,∠B=30°,BC 的垂直平分线交AB于E,垂足为D,如果ED=5,则EC的长为()A. 5B. 8C. 9D. 105.如图,,,,若,则()A. B. C. D.6.从平面镜里看到背后墙上电子钟的示数如图所示,这时的正确时间是( )A. 21:05B. 21:15C. 20:15D. 20:127.已知在△ABC中,AB=AC,AB的垂直平分线交线段AC于D,若△ABC和△DBC的周长分别是60 cm和38 cm,则△ABC的腰长和底边BC的长分别是( )A. 22cm和16cmB. 16cm和22cmC. 20cm和16cmD. 24cm和12cm8.如图,∠AOB=30°,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是()A. β﹣α=60°B. β+α=210°C. β﹣2α=30°D. β+2α=240°9.如图,Rt△ABC中,CD是斜边AB上的高,∠B=30°,AD=2cm,则AB的长度是( )A. 2cmB. 4cmC. 6cmD. 8cm10.如图,P为∠AOB内一定点,M、N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=()A. 40°B. 45°C. 50°D. 55°11.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=()A. B. 2 C. D.二、填空题(共8题;共16分)12.如图,在平面直角坐标系中,O 是原点,已知A(4,3),P 是坐标轴上的一点,若以O,A,P 三点组成的三角形为等腰三角形,则满足条件的点P 共有________ 个.13.如图,△ABC中,AB=AC,AD是BC边上的中线,若∠BAC=70º,则∠BAD=________º.14题15题14.如图,在等腰三角形中,平分,于点D,腰的长比底多,的周长和面积都是,则________.15.如图,已知中,,点是线段上的一动点,过点作交于点,并使得,则长度的取值范围是________.16.如图,∠AOB=40°,M、N分别在OA、OB上,且OM=2,ON=4,点P、Q分别在OB、OA上,则MP+PQ+QN的最小值是________.17题18题17.如图,中,边AB的垂直平分线分别交AB、BC于点D、E,连接若,,则的周长为________.18.如图,在等边△ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是________.19.定义:对于平面直角坐标系xOy中的线段PQ和点M,在△MPQ中,当PQ边上的高为2 时,称点M为PQ的等高点”,称此时MP+MQ的值为PQ的“等高距离”.已知P(1,2),Q(3,4),当PQ的“等高距离”最小时,则点M的坐标为________.三、解答题(共4题;共17分)20.如图,在四边形ABCD中,AB=AD,∠ABC=∠ADC.求证:BC=DC.21.一个等腰三角形的一边长为8cm,周长为20cm,求其他两边的长.22.如图,在△ABC 中,AB=AC,∠BAC=120°,D 为BC 的中点,DE⊥AC 于点E,AE=2,求CE 的长.23.如图,在△ABC中,∠ABC>60°,∠BAC<60°,以AB为边作等边△ABD(点C、D在边AB的同侧),连接CD,(Ⅰ)若∠ABC=90°,∠BAC=30°,求∠BDC的度数;(Ⅱ)当∠BAC=2∠BDC时,请判断△ABC的形状并说明理由;(Ⅲ)当∠BCD等于多少度时,∠BAC=2∠BDC恒成立。

人教版数学八年级上册第13章能力测试题含答案

人教版数学八年级上册第13章能力测试题含答案

D C B A 人教版数学八年级上册第13章能力测试题含答案(时限:100分钟 总分:100分)班级 姓名 总分一、选择题(本大题共12小题,每小题2分,共24分)1.下列几何图形中,是轴对称图形且对称轴的条数大于1的有( )⑴ 长方形; ⑵正方形; ⑶圆; ⑷三角形; ⑸线段; ⑹射线; ⑺直线.A. 3个B. 4个C. 5个D. 6个2.下列说法正确的是( )A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若△ABC 与△DEF 成轴对称,则△ABC ≌△DEFD.点A ,点B 在直线L 两旁,且AB 与直线L 交于点O ,若AO =BO ,则点A 与点B 关于直线L 对称3.如图所示是一只停泊在平静水面的小船,它的“倒影”应是图中的( )4.在平面直角坐标系中,有点A (2,-1),点A 关于y 轴的对称点是( )A.(-2,-1)B.(-2,1)C.(2,1)D.(1,-2)5.已知点A 的坐标为(1,4),则点A 关于x 轴对称的点的纵坐标为( )A. 1B. -1C. 4D. -46.等腰三角形是轴对称图形,它的对称轴是( )A.过顶点的直线B.底边上的高C.底边的中线D.顶角平分线所在的直线.7.已知点A (-2,1)与点B 关于直线x =1成轴对称,则点B 的坐标为( )A.(4,1)B.(4,-1)C.(-4,1)D.(-4,-1)8.已知点P (1,a )与Q (b ,2)关于x 轴成轴对称,又有点Q (b ,2)与点M (m ,n )关于y 轴成轴对称,则m -n 的值为( )A. 3B.-3C. 1D. -19.等腰三角形的一个内角是50°,则另外两个角的度数分别为( )A.65°,65°B.50°,80°C.65°,65°或50°,80°D.50°,50°10.等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角为( )A. 30°B. 150°C. 30°或150°D.12°11.等腰三角形底边长为6cm ,一腰上的中线把它的周长分成两部分的差为2cm ,则腰长为( )A. 4cmB. 8cmC. 4cm 或8cmD. 以上都不对12.已知∠AOB =30°,点P 在∠AOB 的内部,点P 1和点P 关于OA 对称,点P 2和点P第14题第15题第16题O21题⑴L21题⑵B关于OB对称,则P1、O、P2三点构成的三角形是()A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形二、填空题:(本大题共8小题,每小题3分,共24分)13.等边三角形是轴对称图形,它有条对称轴.14.如图,如果△A1B1C1与△ABC关于y轴对称,那么点A的对应点A1的坐标为15.如图是某时刻在镜子中看到准确时钟的情况,则实际时间是.16.已知∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,则PQ=.17.等腰三角形顶角为30°,腰长是4cm,则三角形的面积为.18.点P(1,2)关于直线y=1对称的点的坐标是;关于直线x=1对称的的坐标是.19.三角形三内角度数之比为1∶2∶3,最大边长是8cm,则最小边的长是.20.在△ABC和△ADC中,下列3个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:.三、解答题:(本大题共52分)21.(每小题5分,共10分)作图题:(不写作法,保留作图痕迹)⑴如图,已知线段AB和直线L,作出与线段AB关于直线L对称的图形.⑵已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.22.(5分)如图所示,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).⑴求出△ABC的面积.⑵在图形中作出△ABC关于y轴的对称图形△A1B1C1.⑶写出点A1,B1,C1的坐标.E D C B A P D C B A P E D CB A23.(5分)如图所示,梯形ABCD 关于y 轴对称,点A 的坐标为(-3,3),点B 的坐标为(-2,0). ⑴ 写出点C 和点D 的坐标; ⑵ 求出梯形ABCD 的面积.24.(5分)如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm.求△ABC 的周长.25.(6分)如图,D 是等边三角形ABC 内一点,DB =DA ,BP =AB ,∠DPB =∠DBC.求证:∠BPD =30°.26.(8分)如图,△ABC 为任意三角形,以边AB 、AC 为边分别向外作等边三角形ABD和等边三角形ACE ,连接CD 、BE 并且相交于点P. 求证:⑴CD =BE. ⑵∠BPC =120°27.(6分)下面有三个结论:NM F E CB A ⑴ 等腰三角形两底角的平分线的交点到底边两端的距离相等.⑵ 等腰三角形两腰上中线的交点到底边两端的距离相等.⑶ 等腰三角形两腰上的高的交点到底边两端的距离相等.请你任选一个结论进行证明.28.(7分)如图,在△ABC 中,AB =AC ,∠A =120°,BC =6,AB 的垂直平分线交BC 于M ,交AB 于E ,AC 的垂直平分线交BC 于N ,交AC 于F ,求证:BM =MN =NC.ED CB A一、选择题:1.C;2.C;3.B;4.A;5.D;6.D;7.A;8.B;9.C;10.C;11.C;12.D;二、填空题:13. 3;14.(-1,3);15. 4点40分;16. 2;17. 4cm2;18.(1,0),(1,2);19.4cm;20.等腰三角形的顶角平分线和底边上的中线重合.三、解答题:21.略;22.⑴=×5×3=7.5(平方单位);⑵略;⑶A1(1,5),B1(1,0);C1(4,3).23.⑴C(2,0),D(3,3).⑵=(4+6)×3=15(平方单位).24.∵DE是线段AC的垂直平分线∴AD=CD∵△ABD的周长为13cm∴AB+BC=13cm∵AE=3cm∴AC=2AE=6cm. ∴△ABC的周长为:AB+BC+AC=19cm.25.连接CD,并延度CD交AB于E,证CE垂直平分AB,可得∠DCB=30°再证△BDC≌△BDP即可.26.略;27.略28.连接MA、NA,证明:MA=NA=MN.。

八年级数学上册试题 第13章《三角形中的边角关系、命题与证明》章节测试卷-沪科版(含解析)

八年级数学上册试题 第13章《三角形中的边角关系、命题与证明》章节测试卷-沪科版(含解析)

第13章《三角形中的边角关系、命题与证明》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.下列实际情景运用了三角形稳定性的是()A.人能直立在地面上B.校门口的自动伸缩栅栏门C.古建筑中的三角形屋架D.三轮车能在地面上运动而不会倒2.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则AC长的可能值有()个.A.3B.4C.5D.63.下列命题是假命题的是( )A.如果∠1=∠2,∠2=∠3,那么∠1=∠3B.对顶角相等C.如果一个数能被6整除,那么它肯定也能被3整除D.内错角相等4.如图所示,∠F=90°,CE⊥AB,C是BF的中点,D是BE上的一点,下列说法正确的是( )A.CD是△ABC的中线B.AF是△ABC的高C.CE是△ABF的中位线D.AC是△ABF的角平分线5.如图,在△ABC中,AD是△ABC的角平分线,DE⊥AC,若∠B=40°,∠C=60°,则∠ADE的度数为()A.30°B.40°C.50°D.60°6.如图,在△ABC中,G是边BC上任意一点,D、E、F分别是AG、BD、CE的中点,S△ABC 的值为()=48,则SΔDEFA.2B.4C.6D.87.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值是( )A.7B.8C.9D.108.如图,△ABC中,∠ABC=3∠C,E分别在边BC,AC上,∠EDC=24°,∠ADE=3∠AED,∠ABC的平分线与∠ADE的平分线交于点F,则∠F的度数是( )A.54°B.60°C.66°D.72°9.如图,在△ABC中,AE平分∠BAC,AD⊥BC于点D.∠ABD的角平分线BF所在直线与射线AE 相交于点G,若∠ABC=3∠C,且∠G=20°,则∠DFB的度数为()A.50°B.55°C.60°D.65°10.如图,∠ABC=∠ACB,BD、CD、BE分别平分∠ABC,外角∠ACP,外角∠MBC,以下结论:①AD∥BC,②BD⊥BE,③∠BDC+∠ABC=90°,④∠BAC+2∠BEC=180°,其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.如图,有一张三角形纸片ABC,∠B=32°,∠A=100°,点D是AB边上的固定点(BD<1AB),2在BC上找一点E,将纸片沿DE折叠(DE为折痕),点B落在点F处,当EF与AC边平行时,∠BDE的度数为.12.如图,AD为△ABC的中线,DE,DF分别为△ABD,△ACD的一条高,若AB=6,DE=4,则AC=.,DF=8313.已知△ABC的边长a,b,c满足(a−2)2+|b−4|=0,则a、b的值分别是,若c为偶数,则△ABC的周长为.14.如图,在△ABC中,点D是AC边上一点,CD:AD=1:2,连接BD,点E是线段BD上一点,BE:ED=1:3,连接AE,点F是线段AE的中点,连接CF交线段BD于点G,若△ABC的面积是12,则△EFG的面积是.15.如图△AOB和△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=70°,点D在边OA上,将△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中当CD∥AB时,旋转时间秒.16.如果三角形中任意两个内角∠α与∠β满足2α−β=60°,那么我们称这样的三角形为“斜等边三角形”.在锐角三角形ABC中,BD⊥AC于点D,若△ABC、△ABD、△BCD都是“斜等边三角形”,则∠ABC=.三.解答题(共7小题,满分52分)17.(6分)(1)一个多边形的内角和是外角和的3倍,这个多边形是几边形?(2)小明求得一个多边形的内角和为1280°,小强很快发现小明所得的度数有误,后来小明复查时发现他重复加了一个内角,求出这个多边形的边数以及他重复加的那个角的度数.18.(6分)如图所示,D是△ABC的边AC上任意一点(不含端点),连结BD,请判断AB+BC+AC 与2BD的大小关系,并说明理由.19.(8分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.将△ABC平移,使点C平移至点D,点A、B的对应点分别是点E、F.(1)在图中请画出△ABC平移后得到的△DEF;(2)在图中画出△ABC的AB边上的高CH;(3)若连接CD、AE,则这两条线段之间的关系是 ;(4)△DEF的面积为 .20.(8分)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC=10 cm,∠CAB=90°.(1)求AD的长;(2)求△ACE和△ABE周长的差.21.(8分)在△ABC中,∠B,∠C均为锐角且不相等,线段AD是△ABC中BC边上的高,AE是△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,求∠DAE的度数;(2)若∠B=x°,∠DAE=10°,则∠C=______;(3)F是射线AE上一动点,C、H分别为线段A B,BC上的点(不与端点重合),将△BGH沿着GH 折叠,使点B落到点F处,如图2所示,请直接写出∠1,∠2与∠B的数量关系.22.(8分)已知,在△ABC中,∠BAC=∠ABC,点D在AB上,过点D的一条直线与直线AC、BC分别交于点E、F.(1)如图1,∠BAC=70°,则∠CFE+∠FEC=______°.(2)如图2,猜想∠BAC、∠FEC、∠CFE之间的数量关系,并加以证明;(3)如图3,直接写出∠BAC、∠FEC、∠CFE之间的数量关系______.23.(8分)将含30°角的三角板ABC(∠B=30°)和含45°角的三角板FDE及一把直尺按图方式摆放在起.使两块三角板的直角顶点A,F重合.点A,F,C,E始终落在直尺的PQ边所在直线上.将含45°角的三角板FDE沿直线PQ向右平移.(1)当点F与点C重合,请在备用图中补全图形,并求平移后DC与CB形成的夹角∠DCB的度数;(2)如图,点F在线段AC上移动,M是边AB上的动点,满足∠DFM被FB平分,∠EFM的平分线FN与边BC交于点N,请证明在移动过程中,∠NFB的大小保持不变;(3)仿照(2)的探究,点F在射线CQ上移动,M是边AB上的动点,满足∠DFM被FB平分,∠EFM的平分线F N'所在直线与直线BC交于点N,请写出一个与平移过程有关的合理猜想.(不用证明)答案一.选择题1.C【分析】根据三角形的稳定性进行判断即可求解.【详解】解:古建筑中的三角形屋架是利用了三角形的稳定性,故选C2.B【分析】依据ΔABC的周长为22,ΔABM的周长比ΔACM的周长大2,可得2<BC<11,再根据ΔABC的三边长均为整数,即可得到BC=4,6,8,10.【详解】解:∵ΔABC的周长为22,ΔABM的周长比ΔACM的周长大2,∴2<BC<22−BC,解得2<BC<11,又∵ΔABC的三边长均为整数,ΔABM的周长比ΔACM的周长大2,∴AC=22−BC−22=10−12BC为整数,∴BC边长为偶数,∴BC=4,6,8,10,即AC的长可能值有4个,故选:B.3.D【分析】利用对顶角的性质、实数的性质、平行线的性质分别判断后即可确定正确的选项.【详解】解:A、如果∠1=∠2,∠2=∠3,那么∠1=∠3,正确,是真命题,故本选项不符合题意;B、对顶角相等,正确,是真命题,故本选项不符合题意;C、如果一个数能被6整除,那么它肯定也能被3整除,正确,是真命题,故本选项不符合题意;D、两直线平行,内错角相等,原命题是假命题,故本选项符合题意.故选:D.4.B【分析】根据三角形中位线的定义,三角形角平分线、中线和高的定义作答.【详解】解:A、AC是△ABC的中线,故本选项不符合题意.B 、由∠F =90°知,AF 是△ABC 的高,故本选项符合题意.C 、CE 是△ABC 的高,故本选项不符合题意.D 、AC 是△ABF 的中线,故本选项不符合题意.故选:B .5.C【分析】根据三角形内角和定理求出∠BAC ,再根据角平分线的定义可得∠BAD=∠DAC =40°,最后利用垂线的定义可得∠AED=90°,进而解答即可.【详解】解:∵∠B =40°,∠C =60°,∴∠BAC=180°−40°−60°=80°.∵AD 平分∠BAC ,∴∠BAD=∠DAC =40°.∵DE ⊥AC ,∴∠AED =90°,∴∠ADE =90°−∠DAE =50°.故选C .6.C【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【详解】解:连接CD ,如图所示:∵点D 是AG 的中点,∴S △ABD =12S △ABG ,S △ACD =12S △AGC ,∴S △ABD +S △ACD =12S △ABC =24,∴S △BCD =12S △ABC =24,∵点E 是BD 的中点,∴S△CDE =12S△BCD=12,∵点F是CE的中点,∴S△DEF =12S△CDE=6.故选:C.7.C【分析】若两螺丝的距离最大,则此时这个木框的形状为三角形,根据三角形任意两边之和大于第三边,进行求解即可.【详解】解:①当3、4在一条直线上时,三边长为:5、7、7,此时最大距离为7;②∵4+5<3+7,∴3、7不可能在一条直线上;③当4、5在一条直线上时,三边长为:3、7、9,此时最大距离为9;④∵4+3<5+7,∴5、7不可能在一条直线上;综上所述:最大距离为9.故选:C.8.B【分析】根据题意可知∠FBC=32∠C,设∠C=x,表示出∠ADE,根据角平分线的定义,可得∠EDF的度数,根据∠FDC=∠F+∠FBC列方程,即可求出∠F的度数.【详解】解:∵BF平分∠ABC,∴∠FBC=12∠ABC,∵∠ABC=3∠C,∴∠FBC=32∠C,设∠C=x,则∠FBC=32x,∵∠EDC=24°,∴∠AED=x+24°,∵∠ADE=3∠AED,∴∠ADE=3x+72°,∵DF平分∠ADE,∴∠EDF=32x+36°,∵∠FDC=∠F+∠FBC,∴32x+36°+24°=∠F+32x,∴∠F=60°.故选:B.9.C【分析】由角平分线的定义可以得到∠CAE=∠BAE,∠ABF=∠DBF,设∠CAE=∠BAE=x,假设∠C=y,∠ABC=3y,通过角的等量代换可得到∠DFB=3∠G,代入∠G的值即可.【详解】∵AE平分∠BAC,BF平分∠ABD∴∠CAE=∠BAE,∠ABF=∠DBF设∠CAE=∠BAE=x∵∠ABC=3∠C∴可以假设∠C=y,∠ABC=3y∴∠ABF=∠DBF=∠CBG=12(180°−3y)=90°−32y∵AD⊥CD∴∠D=90°∴∠DFB=90°−∠DBF=32y设∠ABF=∠DBF=∠CBG=z,则{z=x+∠Gz+∠G=x+y∴∠G=12y∴∠DFB=3∠G∵∠G=20°∴∠DFB=60°故答案选:C10.D【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角性质、平行线的判定一一判定即可.【详解】解:①设点A、B在直线MF上,∵BD、CD分别平分△ABC的内角∠ABC,外角∠ACP,∴AD平分△ABC的外角∠FAC,∴∠FAD=∠DAC,∵∠FAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠FAD=∠ABC,∴AD∥BC,故①正确.②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=12∠ABC+12∠MBC=12×180°=90°,∴EB⊥BD,故②正确.③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=12∠BAC,∵∠BAC+2∠ACB=180°,∴12∠BAC+∠ACB=90°,∴∠BDC+∠ACB=90°,故③正确.④∵∠BEC=180°−12(∠MBC+∠NCB)=180°−12(∠BAC+∠ACB+∠BAC+∠ABC)=180°−12(180°+∠BAC)∴∠BEC=90°−12∠BAC,∴∠BAC+2∠BEC=180°,故④正确.故选:D.二.填空题11.124°【分析】根据已知、折叠和平行线,得∠BEF=∠C,再计算∠BED的度数,最后根据三角形内角和为180°计算∠BDE的度数即可.【详解】∵EF∥AC,∠B=32°,∠A=100°,∴∠BEF=∠C=180°−∠A−∠B=180°−100°−32°=48°(两直线平行,同位角相等),∵纸片沿DE折叠(DE为折痕),点B落在点F处,∴∠BED=12∠BEF=12×48°=24°,∴∠BDE=180°−∠B−∠BED=180°−32°−24°=124°(三角形内角和为180°),故答案为:124°.12.9【分析】由AD为△ABC的中线得S△ABD =S△ACD,从而得到12⋅AB⋅DE=12⋅AC⋅DF,代入进行计算即可得到答案.【详解】解:∵AD为△ABC的中线,∴BD=CD,∴S△ABD =S△ACD,∵DE,DF分别为△ABD,△ACD的一条高,∴12⋅AB⋅DE=12⋅AC⋅DF,∵AB=6,DE=4,DF=83,∴AC=9,故答案为:9.13. 2、4 10【分析】由(a −2)2+|b −4|=0,可得a −2=0,b −4=0,解得a =2,b =4,由三角形三边关系可得,b −a <c <a +b ,即2<c <6,由c 为偶数,可得c =4,然后求周长即可.【详解】解:∵(a −2)2+|b −4|=0,∴a −2=0,b −4=0,解得a =2,b =4,由三角形三边关系可得,b −a <c <a +b ,即2<c <6,∵c 为偶数,∴c =4,∴△ABC 的周长为2+4+4=10,故答案为:2、4,10.14.94【分析】连接DF ,CE .由题意中的线段的比和S △ABC =12,可推出S △ABD =23S △ABC =8,S △CBD=13S △ABC =4,从而可求出S △ABE =14S △ABD =2,S △ADE =34S △ABD =6.结合中点的性质即得出S △ADF =S △EDF =12S △ADE =3,从而可求出S △CDF =12S △ADF =32,进而得出S △ECF =S △ACF=S △ADF +S △CDF =92,最后即得出DGEG =S △CDF S △ECF=13,最后即可求出S △EFG =34S △EDF =94.【详解】解:如图,连接DF ,CE .∵CD:AD=1:2,S △ABC =12,∴S △ABD =23S △ABC =8,S △CBD =13S △ABC =4.又∵BE:ED =1:3,∴S△ABE =14S△ABD=2,S△ADE=34S△ABD=6.∵点F是线段AE的中点,∴S△ADF =S△EDF=12S△ADE=3.∵CD:AD=1:2,∴S△CDF =12S△ADF=32,∴S△ACF =S△ADF+S△CDF=92,∴S△ECF =S△ACF=92,∴S△CDFS△ECF =3292=13,即S△DEF+S△DGCS△EFG+S△EGC=13,∴DGEG =13,∴S△EFG =34S△EDF=94.故答案为:94.15.11或29【分析】根据题意,画出图形,进行分类讨论,①当点C在△AOB内时,根据三角形的内角和定理可得∠D=20°,根据平行线的性质得出∠1=∠B=40°,再根据三角形的外角定理求出∠2,进而得出∠AOD=∠AOB+∠2,即可求解;②当点C在△AOB外时,延长BO交CD 于一点,根据平行线的性质得出∠3=∠B=40°,再根据三角形的外角定理求出∠4=20°,即可得出∠AOD,即可求解.【详解】解:①当点C在△AOB内时,如图,在Rt△OCD中,∠C=70°,∴∠D=180°−90°−70°=20°,∵CD∥AB,∠B=40°,∴∠1=∠B=40°,∵∠D+∠2=∠1,∴∠2=40°−20°=20°,∴∠AOD=∠AOB+∠2=90°+20°=110°,∴旋转时间=110÷10=11(秒),②当点C在△AOB外时,延长BO交CD于一点,如图,∵CD∥AB,∠B=40°,∴∠3=∠B=40°,由①可得,∠D=20°,∴∠4=∠3−∠D=40°−20°=20°,∴∠AOD=90°−∠4=70°,∴△COD绕点O沿顺时针方向旋转了360°−70°=290°,∴旋转时间=290÷10=29(秒),故答案为:11或29.16.55°【分析】根据新定义的“斜等边三角形”的特点分情况分析,然后利用三角形内角和定理求解即可.【详解】解:△ABD是“斜等边三角形”,BD⊥AC,∴∠ADB=90°(1)2∠A−∠ABD=60°,∵∠A+∠ABD=90°,∴解得:∠A=50°,∠ABD=40°;(2)2∠A−∠ADB=60°,∴解得:∠A=75°,∠ABD=15°;(3)2∠ABD−∠A=60°,∵∠A+∠ABD=90°,∴解得:∠A=40°,∠ABD=50°;(4)2∠ABD−∠ADB=60°,∴解得:∠ABD=75°,∠A=15°;△BCD是“斜等边三角形”,①2∠C−∠CBD=60°,∵∠C+∠CBD=90°,∴解得:∠C=50°,∠CBD=40°;②2∠C−∠CDB=60°,∴解得:∠C=75°,∠CBD=15°;③2∠CBD−∠C=60°,∵∠C+∠CBD=90°,∴解得:∠C=40°,∠CBD=50°;④2∠CBD−∠CDB=60°,∴解得:∠CBD=75°,∠C=15°;当(1)①成立时,∠A=50°,∠ABD=40°,∠C=50°,∠CBD=40°,∴∠CBA=40°+40°=80°,∴三个角中不满足“斜等边三角形”的定义,不符合题意;当(1)②成立时,∠A=50°,∠ABD=40°,∠C=75°,∠CBD=15°,∴∠CBA=40°+15°=55°,∵2∠CBA−∠A=60°,∴△ABC是“斜等边三角形”,符合题意;同理得:符合题意的只有∠ABC=55°,故答案为:55°三.解答题17.解:(1)设这个多边形的边数是n,由题意得:(n−2)×180=360×3,∴n=8,∴这个多边形是八边形;(2)设这个多边形的边数是m,由题意得:(m−2)×180<1280<(m−2)×180+180,解得:819<m<919,∵m为整数∴m=9,∴重复加的那个角的度数是:1280°−(9−2)×180°=20°答:这个多边形的边数是9,重复加的那个角的度数是20°.18.解:AB+BC+AC>2BD.理由如下:在△ABD中,AB+AD>BD,在△BCD中,BC+CD>BD,∴AB+AD+BC+CD>2BD,即AB+BC+AC>2BD.19.(1)如图所示,△DEF即为所求;(2)如图所示,CH即为所求;(3)如图所示,∵△ABC平移后得到的△DEF∴若连接CD、AE,CD∥AE,CD=AE∴这两条线段之间的关系是平行且相等;(4)如图所示,△DEF的面积=4×6−12×4×3−12×1×3−12×3×6=152.20.(1)解:∵∠BAC=90°,AD是边BC上的高,∴12AB⋅AC=12BC⋅AD,∴AD=AB⋅ACBC =6×810= 4.8(cm),即AD的长度为4.8cm;(2)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长−△ABE的周长=(AC+AE+CE)−(AB+BE+AE)=AC−AB=8−6=2(cm),即△ACE和△ABE的周长的差是2cm.21.(1)解:在△ABC中,∠B=70°,∠C=30°,∴∠BAC=180°−∠B−∠C=180°−70°−30°=80°,∵AE是△ABC的角平分线.∴∠BAE=12∠BAC=12×80°=40°,∵线段AD是△ABC中BC边上的高,∴∠ADB=90°,∴∠BAD=180°−∠B−∠ADB=180°−70°−90°=20°,∴∠DAE=∠BAE−∠BAD=40°−20°=20°,(2)解:∵∠B=x°,线段AD是△ABC中BC边上的高,∴∠BAD=90°−∠B=90°−x°,∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=90°−x°+10°=100°−x°,∵AE是△ABC的角平分线,∴∠BAC=2∠BAE=200°−2x°,∴∠C=180°−∠B−∠BAC=180°−x°−(200°−2x°)=(x−20°),故答案为:(x−20)°;(3)解:连接BF,∵∠1=∠GBF+∠GFB,∠2=∠HBF+∠HFB,∴∠1+∠2=∠GBF+∠GFB+∠HBF+∠HFB=∠B+∠GFH,∵△GFH由△GBH折叠所得,∴∠B=∠GFH,∴∠1+∠2=2∠B.22.(1)解:∵∠ACB+∠ABC+∠BAC=180°,∠BAC=∠ABC,∴∠ACB=180°−2∠BAC,∵∠CFE+∠FEC=180°−∠ACB,∴∠CFE+∠FEC=180°−(180°−2∠BAC)=2∠BAC,∵∠BAC=70°,∴∠CFE+∠FEC=140°;(2)∠FEC+∠CFE=2∠BAC,证明:在△CEF中∵∠C+∠CEF+∠CFE=180°,∴∠CEF+∠CFE=180°−∠C,在△ABC中,∵∠C+∠BAC+∠ABC=180°,∴∠BAC+∠ABC=180°−∠C,∴∠CEF+∠CFE=∠BAC+∠ABC,∵∠BAC=∠ABC,∴∠CEF+∠CFE=2∠BAC;(3)解:∵∠ACB=∠FEC+∠CFE,∠ACB+∠ABC+∠BAC=180°,∠BAC=∠ABC,∴180°−2∠BAC=∠FEC+∠CFE,∴∠FEC+∠CFE=180°−2∠BAC.23.(1)解:如图所示,∵DC∥AB∴∠DCB=∠B=30°,(2)证明:∵AB∥FD∴∠DFB=∠MBF,设∠DFB=∠MBF=α∵∠DFM被FB平分∴∠DFB=∠MFB,则∠DFB=∠MFB=α,∴∠AMF=∠MBF+∠MFB=2α,∵∠BAC=90°∴∠MFA=90°−2α,∵FN平分∠EFM∴∠EFN=∠MFN=12(180°−∠MFA)=12(180°−90°+2α)=45°+α∴∠NFB=∠NFM−∠BFM=45°+α−α=45°,即∠NFB的大小保持不变;(3)解:在移动过程中,∠NFB的大小保持不变;如图所示,证明:∵AB∥FD∴∠DFB=∠MBF,设∠DFB=∠MBF=α∵∠DFM被FB平分∴∠DFB=∠MFB,则∠DFB=∠MFB=α,∴∠AMF=∠MBF+∠MFB=2α,∵∠BAC=90°∴∠MFA=90°−2α,∵F N'平分∠EFM∴∠EF N'=∠MF N'=12(180°−∠MFA)=12(180°−90°+2α)=45°+α∴∠N'FB=∠N'FM−∠BFM=45°+α−α=45°,∴∠NFB=135°,即∠NFB的大小保持不变;。

最新人教版八年级上册数学第十三章水平测试卷

最新人教版八年级上册数学第十三章水平测试卷

AC=AD,AB∥CD,则∠D的度数为
( B)
A. 40°
B. 50°
C. 55°
D. 65°
6. 如图13-4,在△ABC中,AB=AC,以点B为圆心,BC长为 半径画孤,交AC于点D,则下列结论一定正确的是 ( C ) A. AD=DC B. AD=BD C. ∠DBC=∠A D. ∠DBC=∠ABD
八年级·上册·配人教版 测试卷
第十三章水平测试卷
一、选择题(本大题共10小题,每小题3分,共30分)
1. 下列图形是轴对称图形的是
(B
)
A
B
C
D
2. 在平面直角坐标系中,点M(-3,-6)关于y轴对称的点的A坐
标为
(
)
ቤተ መጻሕፍቲ ባይዱ
3. 如图13-1,∠A=30°,∠C′=60°,△ABC与△A′B′C′
关于直线l对称,则∠B的度数为 A. 30°
在△PAM和△PBN中,
∴△PAM≌△PBN(SAS). ∴AM=BN.∴BN=AM=AB+BM.
(3)证明:∵△PAB是等边三角形, ∴AB=PB,∠ABP=60°. ∵BM=AB, ∴PB=BM.∴∠BPM=∠PMB. ∵∠ABP=60°, ∴∠BPM=∠PMB=30°. ∵△PMN是等边三角形, ∴∠PMN=60°.∴∠AMN=90°.∴MN⊥AB.
7. 如图13-5,在△ABC中,AB=AC,AD=AE,∠B=∠DAE=36°
,则图中等腰三角形共有
(D
)
A. 3个
B. 4个
C. 5个
D. 6个
8. 如图13-6,△ABC是等边三角形,点D是AC的中点,DE⊥BBC ,CE=3,则AB等于
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册第十三章整章水平测试(A )
一、耐心填一填(每小题3分,共27分)
1.如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等, 如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等.(填“一定”或“不一定”或“一定不”)
2.如图1,△ABC ≌△ADE ,∠B =100°,∠BAC =30°,那么∠AED =______.
3.△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______.
4.如图2,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”.
5.如图3,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______.
6.如图4,AC ,BD 相交于点O ,AC =BD ,AB =CD ,写出图中两对相等的角______.
7.如图5,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______.
8.地基在同一水平面上,高度相同的两幢楼上分别住着甲、乙两位同学,有一天,甲对乙说:“从我住的这幢楼的底部到
你住的那幢楼的顶部的直线距离,等于从你住的那幢楼的底部到我住的这幢楼的顶部的直线距离.”你认为甲的话正确吗?答:______.
9.如图6,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为______.
二、精心选一选(每小题3分,共24分) 1.如图7,P 是∠BAC 的平分线AD 上一点,PE ⊥AB 于E ,PF ⊥AC 于F ,下列结论中不正确的是( )
A .PE PF =
B .AE AF =
C .△APE ≌△APF
D .AP P
E P
F =+ 2.下列说法中:①如果两个三角形可以依据“AAS ”来判定全等,
那么一定也可以依据“ASA ”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;
③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( )
A .①和②
B .②和③
C .①和③
D .①②③
3.如图8, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( ) A .1个 B .2个 C .3个 D .4个
4.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( ) A .形状相同 B .周长相等 C .面积相等 D .全等
5.如图9,AD AE =,是( )
= = =100 =70BD CE ADB AEC BAE ︒︒,,∠∠∠,下列结论错误的A .△ABE ≌△ACD B .△ABD ≌△ACE C .∠DAE =40° D .∠C =30°
A D C
B 图1 A
D E C B 图2 A
D O C B 图3 A D O C B 图4 A D C B 图5 A D C B 图6 E
A
D C B 图7
E
F A D
C B 图8 E F
D O C B 图9 A
D E C B 图10
F G A E C 图11 B A ′ E ′ D
6.已知:如图10,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,则图中共有全等三角形( )
A .5对
B .4对
C .3对
D .2对
7.将一张长方形纸片按如图11所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( )
A .60°
B .75°
C .90°
D .95°
8.根据下列已知条件,能惟一画出△ABC 的是( )
A .A
B =3,B
C =4,CA =8 B .AB =4,BC =3,∠A =30°
C .∠A =60°,∠B =45°,AB =4
D .∠C =90°,AB =6
三、用心想一想(本大题共69分)
1.(本题8分)请你用三角板、圆规或量角器等工具,画∠POQ =60°,在它的边OP 上截取OA =50mm ,OQ 上截取OB =70mm ,连结AB ,画∠AOB 的平分线与AB 交于点C ,并量出AC 和OC 的长 .(结果精确到1mm ,不要求写画法).
2.(本题10分)已知:如图12,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF =.
求证:(1)AF CE =;(2)AB CD ∥.
3.(本题11分)如图13,工人师傅要检查人字梁的∠B 和∠C 是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:
①分别在BA 和CA 上取BE CG =;
②在BC 上取BD CF =;
③量出DE 的长a 米,FG 的长b 米.
如果a b =,则说明∠B 和∠C 是相等的.他的这种做法合理吗?为什么?
4.(本题12分)填空,完成下列证明过程.
如图14,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC ,AC 上,且BD CE =,=DEF B ∠∠
求证:=ED EF . 证明:∵∠DEC =∠B +∠BDE ( ),
又∵∠DEF =∠B (已知),
∴∠______=∠______(等式性质). 在△EBD 与△FCE 中,
∠______=∠______(已证),
______=______(已知), ∠B =∠C (已知), ∴EBD FCE △≌△( ).
∴ED =EF ( ).
5.(本题13分)如图15,O 为码头,A ,B 两个灯塔与码头的距离相等,OA ,OB 为海岸线,一轮船从码头开出,计划沿∠AOB 的平分线航行,航行途中,测得轮船与灯塔A ,B 的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.
A D E C B
图12 F
A D E C
B 图13 F G A D E
C B 图14
F 图15
6.(本题15分)如图16,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,
(1)写出图中一对全等的三角形,并写出它们的所有对应角;
(2)设AED ∠的度数为x ,∠ADE 的度数为y ,那么∠1,∠2
的度数分别是多少?(用含有x 或y 的代数式表示)
(3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.
八年级数学上册第十三章整章(A )水平测试参考答案
一、1.一定,一定不 2.50° 3.40° 4.HL 5.略(答案不惟一)
6.略(答案不惟一) 7.5 8.正确 9.8
二、1.D 2.C 3.D 4.C 5.C 6.A 7.C 8.C
三、1.略.
2.证明:(1)在ABF △和△CDE 中,AB CD DE BF =⎧⎨=⎩
,, ∴△ABF ≌△CDE (HL).
∴AF CE =.
(2)由(1)知∠ACD =∠CAB ,
∴AB ∥CD .
3.合理.因为他这样做相当于是利用“SSS ”证明了△BED ≌△CGF ,所以可得∠B =∠C .
4.三角形的一个外角等于与它不相邻两个内角的和,BDE ,CEF ,BDE ,CEF ,BD ,CE ,ASA ,全等三角形对应边相等.
5.此时轮船没有偏离航线.画图及说理略.
6.(1)△EAD ≌△EA D ',其中∠EAD =∠EA D ',AED A ED ADE A DE ''=∠=,∠∠∠;
(2)118022180-2x y ∠=︒-=︒,∠;
(3)规律为:∠1+∠2=2∠A .
A D E C
B 图16 A ′
2 1。

相关文档
最新文档