数字电子技术anwser01

合集下载

《数字电子技术》部分习题解答

《数字电子技术》部分习题解答

《数字电子技术》部分习题解答第1 章数字逻辑基础1.3 将下列十进制数转换成等值的二进制数、八进制数、十六进制数。

要求二进制数保留小数点后4位有效数字。

(1)(19)D ;(2)(37.656)D ;(3)(0.3569)D解:(19)D=(10011)B=(23)O=(13)H(37.656)D=(100101.1010)B=(45.5176)O=(25.A7E)H(0.3569)D=(0.01011)B=(0.266)O=(0.5B)H1.4 将下列八进制数转换成等值的二进制数。

(1)(137)O ;(2)(36.452)O ;(3)(0.1436)O解:(137)O=(1 011 111)B(36.452)O=(11110. 10010101)B(0.1436)O=(0.001 100 011 11)B1.5 将下列十六进制数转换成等值的二进制数。

(1)(1E7.2C)H ;(2)(36A.45D)H ;(3)(0.B4F6)H解:(1E7.2C)H=(1 1110 0111.0010 11)B(36A.45D)H=(11 0110 1010. 0100 0101 1101)B(0.B4F6)H=(0.1011 0100 1111 011)B1.6 求下列BCD码代表的十进制数。

(1)(1000011000110101.10010111)8421BCD ;(2)(1011011011000101.10010111)余3 BCD ;(3)(1110110101000011.11011011)2421BCD;(4)(1010101110001011.10010011)5421BCD ;解:(1000 0110 0011 0101.1001 0111)8421BCD=(8635.97)D(1011 0110 1100 0101.1001 0111)余3 BCD =(839.24)D(1110 1101 0100 0011.1101 1011)2421BCD=(8743.75)D(1010 1011 1000 1011.1001 0011)5421BCD=(7858.63)D1.7 试完成下列代码转换。

数字电子技术答案 第1章 逻辑代数基础习题解答

数字电子技术答案  第1章 逻辑代数基础习题解答

X Y Z
F
图1.28 习题1-2(1)逻辑图
解:
X Y Z
00001111 00110011 01010101
00001111 11001100
11001111 01000101 01010101 00100000 01100101 F
11110000 00110011 10101010
真值表 X 0 0 0 0 1 1 1 1 Y 0 0 1 1 0 0 1 1 Z 0 1 0 1 0 1 0 1 F 0 1 1 0 0 1 0 1
CD AB 00 01 11 10 00 1 0 0 1 01 0 0 0 0 11 0 0 1 1 10 1 0 0 1
1-5 以卡诺图法化简下列函数,写成或-与表达式的形式。 (1) F AB (C D) A B DC 解: F (C D)( A C )( A D)( B D)( B C )
图1.29 习题1-2(6)的卡诺图
真值表 A 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 B 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 C 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 F 1 0
(2) F

A, B , C
m(1,2,5,7)
真值表 A 0 0 0 0 1 1 1 1 B 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1 F 0 1 1 0 0 1 0 1
(3) F

W , X ,Y , Z
M (2,3,6,7,10,12)
真值表 W 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 X 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 Y 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 Z 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 F 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1

数字电子技术课后习题答案(全部)

数字电子技术课后习题答案(全部)

第一章数制与编码1.1自测练习1.1.1、模拟量数字量1.1.2、(b)1.1.3、(c)1.1.4、(a)是数字量,(b)(c)(d)是模拟量1.2 自测练习1.2.1. 21.2.2.比特bit1.2.3.101.2.4.二进制1.2.5.十进制1.2.6.(a)1.2.7.(b)1.2.8.(c)1.2.9.(b)1.2.10.(b)1.2.11.(b)1.2.12.(a)1.2.13.(c)1.2.14.(c)1.2.15.(c)1.2.16.11.2.17.111.2.18.1.2.19.11011.2.20.8进制1.2.21.(a)1.2.22.0,1,2,3,4,5,6,71.2.23.十六进制1.2.24.0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F 1.2.25.(b)1.3自测练习1.3.1.1221.3.2.675.521.3.3.011111‎110.011.3.4.521.3.5.1BD.A81.3.6.1111.11101.3.7.38551.3.8.28.3751.3.9.100010‎.111.3.10.135.6251.3.11.570.11.3.12.120.51.3.13.2659.A1.4自测练习1.4.1.BCD Binary‎l二—十进制码1.4.2.(a)1.4.3.(b)1.4.4.8421BC‎D码,4221BC‎D码,5421BC‎D1.4.5.(a)1.4.6.011001‎111001‎.10001.4.7.111111‎101.4.8.101010‎001.4.9.111111‎011.4.10.61.051.4.11.010110‎01.011101‎011.4.12.余3码1.4.13.XS31.4.14.XS31.4.15.1000.10111.4.16.100110‎000011‎1.4.17.521.4.18.110101.4.19.010111‎1.4.20.(b)1.4.21.ASCII1.4.22.(a)1.4.23.ASCII h ange美‎准码EBCDIC‎Extend‎e d Binary‎Coded Decima‎l Interc‎h ange Code 扩展二-十进制 ‎1.4.24.100101‎11.4.25.ASCII1.4.26.(b)1.4.27.(b)1.4.28.110111‎011.4.29.-1131.4.30.+231.4.31.-231.4.32.-861.5 自测练习 1.5.1 略 1.5.2 110111‎01 1.5.3 010001‎01 1.5.4 111001‎10 补码形式 1.5.5 011111‎01 1.5.6 100010‎00 补码形式 1.5.7 111000‎10 补码形式 习题1.1 (a )(d )是数字量,(b )(c )是模拟量,用数字表时(e )是数字量,用模拟表时(e )是模拟量1.2 (a )7, (b )31, (c )127, (d )511, (e )40951.3 (a )22104108⨯+⨯+, (b )26108108⨯+⨯+,(c )321102105100⨯+⨯+⨯+(d )322104109105⨯+⨯+⨯+1.4 (a )212121⨯+⨯+, (b )4311212121⨯+⨯+⨯+, (c )64212+12+12+12+1⨯⨯⨯⨯(d )9843212+12+12+12+12⨯⨯⨯⨯⨯ 1.5 2201210327.15310210710110510--=⨯+⨯+⨯+⨯+⨯,3210-1-221011.0112+02+12+12+02+12=⨯⨯⨯⨯⨯⨯, 210-18437.448+38+78+48=⨯⨯⨯⨯, 10-1-2163A.1C 316+A 16+116+C 16=⨯⨯⨯⨯1.6 (a )11110, (b ) ,(c ) , (d )1011 1.7 (a ) 0, (b ) 1111 1.8 110102‎ = 2610, 1011.0112 = 11.37510, 57.6438 = 71.818359‎37510, 76.EB 16 = 118.7510 1.9 110101‎001001‎2 = 65118 = D4916,0.100112‎ = 0.468 = 0.9816,101111‎1.011012‎ =137.328 = 5F.68161.10 168 = 1410,1728 = 12210,61.538 = 49.671875‎, 126.748 = 86.937510‎ 1.11 2A 16 = 4210 = 2 = 528, B2F 16 = 286310‎ = 2 = 54578,D3.E 16 = 211.87510 = 11.11102 = 323.78, 1C3.F916 = 451 2510 = 011.111110‎012 = 703.76281.12 (a )E, (b )2E, (c )1B3, (d )349 1.13 (a )22, (b )110, (c )1053, (d )2063 1.14 (a )4094, (b )1386, (c )49282 1.15 (a )23, (b )440, (c )2777 1.16 198610‎ = = 000110‎011000‎011084‎21BCD , 67.31110 = 1.010012‎ = 011001‎11.001100‎010001‎8421BC ‎D ,1.183410‎ = 1.001011‎2 = 0001.000110‎000011‎010084‎21BCD , 0.904710‎ = 0.111001‎2 = 0000.100100‎000100‎011184‎21BCD1.17 1310 = 000100‎118421‎B CD = 010001‎10XS3 = 1011Gr‎a y, 6.2510 = 0110.001001‎018421‎B CD = 1001.010110‎00XS3 = 0101.01Gray‎,0.12510= 0000.000100‎100101‎ = 0011.010001‎101000‎X S3 = 0.001 Gray8421BC‎D1.18 101102‎= 11101 Gray,010110‎2 = 011101‎ Gray1.19 110110‎112 = 001000‎011001‎8421BC‎D,45610 = 010001‎010110‎8421BC‎D,1748=001001‎110100‎8421BC‎D,2DA16 = 011100‎110000‎8421BC‎D,101100‎112421‎B CD = 010100‎118421‎B CD,110000‎11XS3 = 100100‎008421‎B CD1.20 0.0000原= 0.0000反= 0.0000补,0.1001原= 0.1001反= 0.1001补,11001原‎=10110反‎=10111补‎1.21 010100‎原= 010100‎补,101011‎原= 110101‎补,110010‎原= 101110‎补,100001‎原=111111‎补1.22 1310 = 000011‎01补,11010 = 011011‎10补,-2510 = 111001‎11补,-90 = 101001‎10补1.23 011100‎00补= 11210,000111‎11补= 3110,110110‎01补= -3910,110010‎00补= -56101.24 100001‎1100000‎1101010‎1101010‎0100100‎1100111‎1 100111‎0010000‎1010000‎0100100‎0 110100‎1 110011‎1 110100‎0 010000‎0 101011‎0 110111‎1 110110‎0 111010‎0 110000‎1 110011‎1 110010‎11.25 010001‎0101100‎0010000‎0011110‎1010000‎0011001‎0 011010‎1010111‎1101100‎1010001‎01.26 BEN SMITH1.27 000001‎10 100001‎101.28 011101‎10 100011‎10第二章逻辑门1.1 自测练习2.1.1. (b)2.1.2. 162.1.3. 32, 62.1.4. 与2.1.5. (b)2.1.6. 162.1.7. 32, 62.1.8. 或2.1.9. 非2.1.10. 12.2 自测练习2.2.1. F A B=⋅2.2.2. (b)2.2.3. 高2.2.4. 322.2.5. 16,52.2.6. 12.2.7. 串联2.2.8. (b)2.2.9. 不相同2.2.10. 高2.2.11. 相同2.2.12. (a)2.2.13. (c)2.2.14. 奇2.3 自测练习2.3.1. OC,上拉电阻2.3.2. 0,1,高阻2.3.3. (b)2.3.4. (c)2.3.5. F A B=⋅, 高阻2.3.6. 不能2.4 自测练习1.29 TTL,CMOS1.30 Transi‎s itor Transi‎s tor Logic1.31 Comple‎m entar‎y Metal Oxide Semico‎d uctor‎1.32 高级肖特基T‎T L, 高级‎ 肖特基‎T TL1.33 高,强,小1.34 (c)1.35 (b)1.36 (c)1.37 大1.38 强1.39 (a)1.40 (a)1.41 (b)1.42 高级肖特基T‎T L1.43 (c)习题2.1 与,或,与2.2 与门,或门,与门2.3 (a)F=A+B, F=AB (b)F=A+B+C, F=ABC (c)F=A+B+C+D, F=ABCD2.4 (a )0 (b )1 (c )0 (d )0 2.5 (a )0 (b )0 (c )1 (d )0 2.6 (a )1 (b )1 (c )1 (d )1 2.7 (a )4 (b )8 (c )16 (d )32 2.8 (a )3 (b )4 (c )5 (d )6 2.9 (a )(b ) A B C D F 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 11112.10 Y AB AC =+2.11A B C Y 0 0 0 0 0 0 1 0 011A B C F 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 11110 1 1 11 0 0 01 0 1 11 1 0 01 1 1 12.122.13F1 = A(B+C), F2=A+BCA B C F1F20 0 0 0 00 0 1 0 00 1 0 0 00 1 1 0 11 0 1 1 11 0 0 0 11 1 0 1 11 1 1 1 12.142.15 (a)0 (b)1 (c)1 (d)02.16 (a)1 (b)0 (c)0 (d)12.17 (a)0 (b)02.18=⋅⋅⋅2.19 Y AB BC DE F=⋅⋅2.20 Y AB CD EF2.21 102.22 402.23 当TTL反相‎器的输出为3‎V,输出是高电 ‎,红灯亮。

数字电子技术课后习题答案

数字电子技术课后习题答案

1.12 写出下图所示各逻辑图的输出函数表达式,列 出它们的真值表。
F1 F4
F2
F3
解: F1 AB F2 A B F3 BC
F 4 F1 F 2 F3
Z CF 4 C AB A B BC
C AB A B BC
C AB AB BC C AB AB B ABC
电路的驱动方程、状态方程和输出方程,画出电路
的状态表、状态图和时序图,说明电路能否自启动。
设各触发器的初始状态为0。
❖ 解:
驱动方程为: ❖
D1 Q1n ; D2 X Q1n Q2n
输出方程为: ❖
Y XQ1nQ2n XQ1nQ2n XQ1nQ2n XQ1nQ2n
❖ 状态方程为:Q1n1 D1 Q1n
输入 SD、RD 的波形图如下,试画出输出Q,
Q 对应的波形图。设触发器的初始状态为 Q=0, Q. 1
❖ 解:波形图如下图
不定
❖ 4.6主从JK触发器,已知CP、J、K的波形如下 所示,试画出Q对应的波形图。触发器的初始 状态为Q=0。
❖ 解:
CP为1时 输入端2 次变化,
❖ 4.7维持—阻塞边沿D触发器中,已知 CP, RD , SD , D
/0
/0
000
001
010
/1
/0
100
011
/0
❖ 2.卡诺图为
Q1nQ0n
Q2n
00 01
0 001/0 010/0
1 000/1 xxx/x
11
100/0 xxx/x
10
011/0 xxx/x
❖ 由卡诺图得电路的状态方程与输出方程为

Qn1 0
Q2n Q0n

数字电子技术习题解答

数字电子技术习题解答

数字电子技术习题解答一、化简下列逻辑函数,并画出F1的无竞争冒险的与非—与非逻辑电路;画出F2的最简与或非逻辑电路。

(每题8分,共16分)1. F1=B C A B A B C B A +++2. F2(A,B ,C,D)=Σm (2,3,6,10,14)+Σd (5,9,11)解:1、F1=BC ’+A(B ’+C ’)=((BC ’+AB ’+AC ’)’)’=((AB ’.)’(BC ’)’(.AC ’)’)’由卡诺图可知化简后的表达式不存在竞争冒险。

图略2、F2=((B ’C+CD ’)’)’二、如图2.1所示电路为TTL 电路,输入分别是A ,B ,C 。

试根据其输入的波形,画出对应的输出Y1,Y2的波形(忽略门的延迟时间)。

图 2.1解:对于Y1来说,由于电阻R1太大信号无法正确传输,故A 恒等于1,而R2、R3对信号的传输没有影响,所以Y1=BC ;对于Y2来说,当C=1时,三态门处于高阻态,这时Y2=A ’,当C=0时,三态门处于“0”、“1”逻辑状态,这时Y2=(AB ’)’。

根据以上分析画Y1、Y2的波形于上图。

ABC 00 01 11 10 0 11 1 1 1 00 01 11 101 1 11 1 d d d =1 & & ▽ Y2 Y1 R1 20K Ω R2 50Ω R3 100K Ω A B C A B C A B C Y1 Y2三、试设计一个按8421BCD 码计数的同步七进制加法计数器,由零开始计数。

1. 用JK 触发器实现; (10分)2. 用1片同步十进制计数器74LS160及最少的门电路实现.74LS160功能表及逻辑符号如图3所示。

(10分)Rd LD S1 S2 CP 功能0 X X X X 请零 1 0 X X 置数1 1 1 1 计数 1 1 0 1 X 保持1 1 1 0 X 保持图3解:1、根据题给8421BCD 码加法计数器要求,得状态转换表:Q 2 Q 1 Q 0 C0 0 0 0 0 0 1 00 1 0 00 1 1 01 0 0 0 1 0 1 0 1 1 0 1将状态方程与JK 触发器的特性方程比较,得驱动方程: J 2= Q 0Q 1 ,K 2=Q 1 J 1= Q'0Q ’2,K 1=Q ’0 J 0=(Q 1Q 2)’, K 0=1 输出方程:C=Q 1Q 2 图略,由设计过程可知任意态111将进入000,故电路可自启动。

数字电子技术习题答案

数字电子技术习题答案

(1)Y = (A + B)(A + B)C + BC
ww w. kh
Y = ABC + ABC + B + C
答 案
Y = A + B + C = ABC
课 后

co
m
4.用卡诺图化简法将下列函数化为 最简与或形式。
(2)Y = AB+ AC + BC




(4)Y(A,B,C,D) = ∑(m0 ,m1,m2 ,m3,m4 ,m6 ,m8 ,m9 ,m10 ,m11,m14 )
01
11
10
Байду номын сангаас
m
5.将下列函数化为最简与或函数式。
Y = C D( A ⊕ B) + ABC + AC D
约束条件AB+CD=0 (2)Y(A,B,C,D)=Σ (m3,m5,m6,m7,m10),给定约束条件为 m0+m1+m2+m4+m8=0 (3)Y(A,B,C,D)=Σ (m2,m3,m7,m8,m11,m14) 给定约束条件为: m0+m5+m10+m15=0。
da 课 后 答 案 网 ww w. kh w. co m
答案:



= A B C + A B C + A B C + ABC Y2


ww
(b) Y 1 = AB + BC + AC
w. kh
da
(a)Y = ABC + BC
w.
co
m

《数字电子技术基础》课后习题及参考答案

《数字电子技术基础》课后习题及参考答案

第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。

(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101 解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。

(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。

《数字电子技术》部分(1~5章)习题解答

《数字电子技术》部分(1~5章)习题解答

《数字电子技术》部分习题解答第1 章数字逻辑基础1.3 将下列十进制数转换成等值的二进制数、八进制数、十六进制数。

要求二进制数保留小数点后4位有效数字。

(1)(19)D ;(2)(37.656)D ;(3)(0.3569)D解:(19)D=(10011)B=(23)O=(13)H(37.656)D=(100101.1010)B=(45.5176)O=(25.A7E)H(0.3569)D=(0.01011)B=(0.266)O=(0.5B)H1.4 将下列八进制数转换成等值的二进制数。

(1)(137)O ;(2)(36.452)O ;(3)(0.1436)O解:(137)O=(1 011 111)B(36.452)O=(11110. 10010101)B(0.1436)O=(0.001 100 011 11)B1.5 将下列十六进制数转换成等值的二进制数。

(1)(1E7.2C)H ;(2)(36A.45D)H ;(3)(0.B4F6)H解:(1E7.2C)H=(1 1110 0111.0010 11)B(36A.45D)H=(11 0110 1010. 0100 0101 1101)B(0.B4F6)H=(0.1011 0100 1111 011)B1.6 求下列BCD码代表的十进制数。

(1)(1000011000110101.10010111)8421BCD ;(2)(1011011011000101.10010111)余3 BCD ;(3)(1110110101000011.11011011)2421BCD;(4)(1010101110001011.10010011)5421BCD ;解:(1000 0110 0011 0101.1001 0111)8421BCD=(8635.97)D(1011 0110 1100 0101.1001 0111)余3 BCD =(839.24)D(1110 1101 0100 0011.1101 1011)2421BCD=(8743.75)D(1010 1011 1000 1011.1001 0011)5421BCD=(7858.63)D1.7 试完成下列代码转换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试卷一(答案)
一、填空:(14分)
1. 220 ,1101 1100 , 334 。

2. 147 , 93 。

3. D C B A D C A B F +⋅⋅+⋅⋅⋅= ,D C AB D AC B F +⋅+⋅=’
4. n
2
5. 8 , A/D 。

6. 8 k
7. 8
8. 高 ; 低 。

二、用代数法将下列函数化简为最简与或表达式。

(10分) 解:1.11=⋅⋅+⋅⋅+⋅⋅=C B A C B A C B A F
2.B BD BC ABD ABC F ++++=2
三、用卡诺图法化简函数,写出它们的最简与或表达式。

(10分) 1.D C B ABC C AB C B A F +++=;2.()()∑∑+=
15,014,13,11,9,8,5,3d m F
解:1.D C B AB C B F ++= 2.C B A ABC D C B CD B F +++=
AB CD
0001101100011110
AB CD
00
01101100011110
011111111
00000000000000
11
11111B
B AB
C
D C B D BC ABC C
B BD D B
C ABC =+=⋅++=+++=
四、 (14分)
五、(12分) 解:按题意
()()
C
B A AB
C X B A ABC X C B A ABC X F ⋅⋅+⊕=⋅⋅+⋅+⋅⋅+=用四选一数据选择器实现函数
C B A ABC L ⋅⋅+=
若令 A A =1,B A =0,
则 C D =0,C D =3,021==D D , 电路如图所示。

X
A B
六、(10分)
解:按题意列全加器真值表(略),由真值表可得 1111----+++=i i i i i i i i i i i i i C B A C B A C B A C B A S 1111----+++=i i i i i i i i i i i i i i C B A C B A C B A C B A C
令 i A A =2(被加数),i B A =1(加数),10-=i C A (低位进位),则 74217421012012012012Y Y Y Y Y Y Y Y A A A A A A A A A A A A S i =+++=+++= 同理可得 7653Y Y Y Y C i = 全加器逻辑图如下图所示。

七、(10分)
解:图中所示电路是一个同步单次脉冲发生 电路,波形如右图所示。

在输入信号A 上升沿后产生一个与CP 脉冲同步、且宽度等于CP 脉冲宽度的时钟 单脉冲。

被加数 A i 加数 B i 和 S i 进位 C i
低位进位 C CP
A
Q 1 Q 2 X
八、(10分)
九、(10分)解:根据公式可得 ()[]Hz 023.12443
.1121=+=C R R f
输出波形如图所示
t
t
u u O
V DD DD 六进制加法计数十进制加法计数。

相关文档
最新文档