直线交点,距离,对称

合集下载

与直线有关的对称问题

与直线有关的对称问题

与直线有关的对称问题山东 杨道叶一、知识精析1.关于直线对称的点若两点111(,)P x y 与222(,)P x y 关于直线l :0Ax By C ++=对称,则线段12PP的中点在对称轴l 上,而且连结1P 、2P 的直线垂直于对称轴l ,由方程组 12121212022x x y y A B C y y Bx x A⎧++⎛⎫⎛⎫++= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨-⎪=⎪-⎩可得到点1P 关于l 对称的点2P 的坐标222(,)P x y (其中120,A x x ≠≠)。

2.关于直线对称的两条直线此类问题一般转化为关于直线的对称点来解决。

若已知直线1l 与对称轴l 相交,则交点必在与1l 对称的直线2l 上,然后再求出1l 上任一个已知点1P 关于对称轴l 对称的点2P ,那么经过交点及点2P 的直线就是2l ;若已知直线1l 与对称轴l 平行,则与1l 对称的直线和1l 到直线l 的距离相等,由平行直线系和两条平行线间的距离,即可求出1l 的对称直线。

3.点关于特殊直线对称点的坐标例1 求与点(3,5)P 关于直线l :320x y -+=对称的点/P 的坐标。

分析:设点/P 的坐标为00(,)x y ,则直线l 为/PP 的垂直平分线,所以/PP l ⊥,/PP 的中点M 在l 上,列出关于0x ,0y 的方程组,求解即可。

解析:设/00(,)P x y ,则/0053PP y k x -=-,/PP 的中点0035,22x y M ++⎛⎫ ⎪⎝⎭。

∴0000511333532022y x x y -⎧⨯=-⎪-⎪⎨++⎪-⨯+=⎪⎩,解得0051x y =⎧⎨=-⎩, ∴点/P 的坐标为()5,1-。

评注:另解为:先求出过点(3,5)P 与l 垂直的直线/PP 的方程,解/PP 与直线l 的方程组成的方程组,求得交点M 的坐标,再运用中点坐标公式求出点/P 的坐标。

例2 求直线a :240x y +-=关于直线l :3410x y +-=对称的直线b 的方程。

人教版高数必修二第10讲:点、直线的距离和对称(教师版)

人教版高数必修二第10讲:点、直线的距离和对称(教师版)

点、直线的距离和对称一、距离问题1. 设平面上两点()()111222,,,P x y P x y ,则12PP=为两点间距离2.点P (x 0,y 0)到直线Ax +By +C =0(A 2+B 2≠0)的距离d =.3.两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0的距离d =.二、对称问题1. 关于点对称问题 (1)点关于点对称点()00,M x y 关于点(),P a b 的对称点是()002,2a x b y --.特别地,点()00,M x y 关于原点的对称点为()00,x y --.(2)线关于点对称已知l 的方程为:0Ax By C ++=()220A B +≠和点()00,P x y ,则l 关于P 点的对称直线方程.设'P ()'',x y 是对称直线'l 上任意一点,它关于()00,P x y 的对称点()''002,2x x y y --在直线l上,代入得()()''00220A x x B y y C -+-+=.此直线即为所求对称直线.2. 关于线对称问题 (1)点关于线对称已知点()00,M x y ,直线:l 0Ax By C ++=()0A B ≠,设点M 关于直线l 的对称点为()00,N x y ,则由1MN l k k =-得到一个关于,m n 的方程,又线段MN 的中点在直线l 得到另一个关于,m n 的方程,解方程组00001022n y A B m x x m y n A B C -⎧-⨯=-⎪-⎪⎨++⎪++=⎪⎩ 即可求出点()00,N x y .特别说明:①点()00,M x y 关于x 轴对称的点的坐标是()00,x y -,关于y 轴对称点的坐标是()00,x y - ②点()00,M x y 关于直线y x =的对称点坐标是()00,y x ,关于y x =-对称点为()00,y x -- (2)线关于线对称已知1111:0,:0l A x B y C l Ax By C ++=++=,求直线1l 关于直线l 对称直线2l如右图所示,在直线上任取不同于l 与1l 交点P 的任一点M ,先求出点M 关于直线l 的对称点N 的坐标,再由,N P 在2l 上,用两点式求出直线2l 的方程.常见的对称结论有:设直线:0l Ax By C ++=.① l 关于x 轴的对称的直线是:()0Ax B y C +-+=; ②l 关于y 轴的对称的直线是:()0A x By C -++=; ③l 关于原点的对称的直线是:()()0A x B y C -+-+=; ④l 关于y x =的对称的直线是:0Ay Bx C ++=;⑤l 关于y x =-的对称的直线是:()()0A y B x C -+-+=;类型一 点到直线的距离例1:求点P (3,-2)到下列直线的距离: (1)3x -4y -1=0;(2)y =6;(3)y 轴.解析:本题主要考查点到直线的距离公式的应用,直接代入点到直线的距离公式即可. 答案:(1)由点到直线的距离公式可得d =|3×3---1|32+-2=165. (2)由直线y =6与x 轴平行,得d =|6-(-2)|=8.或将y =6变形为0·x +y -6=0,∴d =|0×3+--6|02+12=8. (3)d =|3|=3.练习1:求点P (-1,2)到直线2x +y -5=0的距离;答案:由点到直线距离公式d = 5.练习2:点A (a,6)到直线3x -4y =2距离等于4,求a 的值;答案:由点到直线的距离公式|3a -4×6-2|32+42=4, ∴a =2或463.练习3:求过点A (-1,2)且与原点距离等于22的直线方程. 答案:设所求直线l :y -2=k (x +1),原点O (0,0)到此直线距离为22,可求得k =-1或-7, ∴所求直线方程为x +y -1=0或7x +y +5=0.例2:已知在△ABC 中,A (3,2)、B (-1,5),C 点在直线3x -y +3=0上.若△ABC 的面积为10,求C 点坐标.解析:本题易求|AB |=5,C 点到AB 的距离即为△ABC 中AB 边上的高.设C (x 0,y 0),则y 0=3x 0+3,从而可建立x 0的方程求解.答案:设点C (x 0,y 0),∵点C 在直线3x -y +3=0上,∴y 0=3x 0+3.∵A (3,2)、B (-1,5), ∴|AB |=-2+-1-2=5.设C 到AB 的距离为d ,则12d ·|AB |=10,∴d =4.又直线AB 的方程为y -25-2=x -3-1-3,即3x +4y -17=0,∴d =|3x 0+x 0+-17|32+42=|15x 0-5|5=|3x 0-1|=4.∴3x 0-1=±4,解得x 0=-1或53.当x 0=-1时,y 0=0;当x 0=53时,y 0=8.∴C 点坐标为(-1,0)或(53,8).练习1:求经过点P (1,2)的直线,且使A (2,3),B (0,-5)到它的距离相等的直线方程.答案:解法一:当直线斜率不存在时,即x =1,显然符合题意,当直线斜率存在时,设所求直线的斜率为k ,即直线方程为y -2=k (x -1),由条件得|2k -3-k +2|k 2+1=|5-k +2|k 2+1,解得k =4,故所求直线方程为x =1或4x -y -2=0.解法二:由平面几何知识知l ∥AB 或l 过AB 中点. ∵k AB =4,若l ∥AB ,则l 的方程为4x -y -2=0.若l 过AB 中点(1,-1),则直线方程为x =1, ∴所求直线方程为:x =1或4x -y -2=0.练习2:若动点()111,P x y ,()222,P x y 分别在直线12:50,:150l x y l x y --=--=上移动,则12PP 的中点P 到原点的距离的最小值是( )A . D .答案:B类型二 两条平行线之间的距离例3:求两平行线l 1:3x +4y =10和l 2:3x +4y =15的距离. 解析:由题目可获取以下主要信息: ①直线l 1与l 2的方程已知; ②l 1与l 2平行.解答本题可转化为点到直线的距离或直接利用两平行线间的距离公式或利用原点到两平行线距离的差,从而求解.答案:解法一:若在直线l 1上任取一点A (2,1),则点A 到直线l 2的距离,即是所求的平行线间的距离.如图①所示,∴d =|3×2+4×1-15|32+42=1. 解法二:设原点到直线l 1、l 2的距离分别为|OF |、|OE |,则由图②可知,|OE |-|OF |即为所求.∴|OE |-|OF |=|-15|32+42-|-10|32+42=1,即两平行线间的距离为1. 解法三:直线l 1、l 2的方程可化为3x +4y -10=0,3x +4y -15=0, 则两平行线间的距离为 d =|-10--32+42=55=1. 练习1:两平行直线x +3y -4=0与2x +6y -9=0的距离是________. 答案:1020练习2:已知平行线2330x y +-=与2390x y +-=,则与它们等距离的直线方程是( ) A .23120x y +-= B .2360x y +-= C .230x y += D .2330x y ++= 答案:B类型三 对称问题例4:点P (-1,1)关于直线ax -y +b =0的对称点是Q (3,-1),则a 、b 的值依次是( )A .-2,2B .2,-2 C.12, -12 D.12,12 解析:设PQ 的中点为M ,则由中点坐标公式得M (1,0). ∵点M 在直线ax -y +b =0上,∴a +b =0. 又PQ 所在直线与直线ax -y +b =0垂直,∴-1-13--·a =-1,∴a =2.故b =-2. 答案:B练习1已知直线l :y =3x +3,求点P (4,5)关于直线l 的对称点坐标. 答案:设点A (x ,y )是点P 关于直线l 的对称点,∵A 、P 的中点在直线l 上, ∴y +52=3×x +42+3,即3x -y +13=0又∵AP 与直线l 垂直, ∴y -5x -4×3=-1,即x +3y -19=0 ②解①、②组成的方程组可得x =-2,y =7, 即所求点的坐标为(-2,7).练习2:已知(),P a b 和()1,1Q b a -+是关于直线l 对称的两点,则直线l 的方程为( ) A .0x y += B .0x y -= C .10x y ++= D .10x y -+=答案:D例5:在直线l :3x -y -1=0上求一点P ,使得:(1)P 到A (4,1)和B (0,4)的距离之差最大; (2)P 到A (4,1)和C (3,4)的距离之和最小. 解析:设点B 关于l 的对称点为B ′,AB ′与l 的交点P 满足(1);点C 关于l 的对称点为C ′,AC ′与l 的交点P 满足(2).事实上,对于(1),若P ′是l 上异于P 的点,则||P ′A |-|P ′B ||=||P ′A |-|P ′B ′||<|AB ′|=||PA |-|PB ′||=||PA |-|PB ||;对于(2),若P ′是l 上异于P 的点,则|P ′A |+|P ′C |=|P ′A |+|P ′C ′|>|AC ′|=|PA |+|PC |. 答案:(1)如图所示,设点B 关于直线l 的对称点B ′的坐标为(a ,b ),则k BB ′·k l =-1,即3·b -4a=-1.∴a +3b -12=0.又由于线段BB ′的中点坐标为A (a 2,b +42),且在直线l 上,∴3×a 2-b +42-1=0,即3a -b -6=0.②解①②得a =3,b =3,∴B ′(3,3).于是AB ′的方程为y -13-1=x -43-4,即2x +y -9=0.∴由⎩⎪⎨⎪⎧3x -y -1=02x +y -9=0,解得⎩⎪⎨⎪⎧x =2y =5.即直线l 与AB ′的交点坐标为(2,5). ∴点P (2,5)为所求.(2)如图所示,设点C 关于直线l 的对称点为C ′,求出点C ′的坐标为(35,245).∴AC ′所在直线的方程为19x +17y -93=0,AC ′和l 的交点坐标为(117,267).故P 点坐标为(117,267),为所求.练习1:已知()()3,5,2,15A B -,直线:3440l x y -+= (1)在l 上求一点P ,使PA PB +的值最小; (2)在l 上求一点Q ,使QA QB -的值最小. 答案:(1)设点A 关于直线l 的对称点()'00,A x y ,则0000543335344022y x x y -⎧=-⎪+⎪⎨-+⎛⎫⎛⎫⎪-+= ⎪ ⎪⎪⎝⎭⎝⎭⎩ 解得0033x y =⎧⎨=-⎩ ∴()'3,3A -由两点式可得'A B 的方程为18510x y +-= 又∵点P 应是'A B 和l 的交点∴解方程组18503440x y x y +-=⎧⎨-+=⎩ 得833x y ⎧=⎪⎨⎪=⎩ ∴所求点P8,33⎛⎫⎪⎝⎭(2)∵2AB k = ∴AB 的方程为211y x =+ 由于直线AB 与l 的交点Q 即为所求∴解方程组3440211x y y x -+=⎧⎨=+⎩ 得85x y =-⎧⎨=-⎩∴所求点()8,5Q --练习2:若动点()111,P x y ,()222,P x y 分别在直线12:50,:150l x y l x y --=--=上移动,则12PP 的中点P 到原点的距离的最小值是( ) A.2..2D.答案:B1.已知点()()1,3,2,6A B -,则AB 的长及中点坐标分别是( )A .()1,9--B .19,22⎫-⎪⎭C .19,22⎫--⎪⎭D .19,22⎫⎪⎭答案:B2.若点(),6A a 到直线342x y -=的距离等于4,则a 的值是( ) A .2 B .463 C .0或2 D .2或463答案:D3.过点()1,2A -的直线方程是( ) A .10x y +-= B .750x y ++=C .10x y +-=或750x y ++=D .10x y --=或750x y ++= 答案:C4.若点P 到点()()120,1,7,2P P 及x 轴的距离相等,则P 的坐标是( ) A .()3,5 B .()17,145- C .()3,5或()17,145- D .以上全不对 答案:C5.两平行线4x +3y -1=0与8x +6y +3=0之间的距离是( )A.25B.110C.15D.12 答案:D6.若点P (x ,y )在直线x +y -4=0上,O 为原点,则|OP |的最小值是( )A.10B .2 2C. 6 D .2 答案: B7. 已知平行四边形相邻两边所在的直线方程是l 1:x -2y +1=0和l 2:3x -y -2=0,此四边形两条对角线的交点是(2,3),则平行四边形另外两边所在直线的方程是( )A .2x -y +7=0和x -3y -4=0B .x -2y +7=0和3x -y -4=0C .x -2y +7=0和x -3y -4=0D .2x -y +7=0和3x -y -4=0 答案:B8. 两平行直线x +3y -5=0与x +3y -10=0的距离是________.答案:1029.已知正方形中心G (-1,0),一边所在直线方程为x +3y -5=0,求其他三边所在直线方程.答案:正方形中心G (-1,0)到四边距离相等,均为|-1-5|12+32=610.设与已知直线平行的一边所在直线方程为x +3y +c 1=0, 由|-1+c 1|10=610,∴c 1=-5(舍去)或c 1=7.故与已知直线平行的一边所在直线方程为x +3y +7=0.设另两边所在直线方程为3x -y +c 2=0.由-+c 2|10=610,得c 2=9或c 2=-3.∴另两边所在直线方程为3x -y +9=0或3x -y -3=0.综上可知另三边所在直线方程分别为:x +3y +7=0,3x -y +9=0或3x -y -3=0._________________________________________________________________________________ _________________________________________________________________________________基础巩固1.已知点A (a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =( )A.2B .2- 2C.2-1D.2+1 答案:C2.过点(1,2)且与原点距离最大的直线方程是( )A .x +2y -5=0B .2x +y -4=0C .x +3y -7=0D .3x +y -5=0 答案:A3.P 、Q 分别为3x +4y -12=0与6x +8y +5=0上任一点,则|PQ |的最小值为( )A.95B.185C.2910D.295 答案:C4.过点A (-3,1)的直线中,与原点距离最远的直线方程为________________.答案:3x -y +10=0能力提升5.直线7x +3y -21=0上到两坐标轴距离相等的点的个数为( )A .3B .2C .1D .0 答案:B6.两平行直线l 1,l 2分别过点P (-1,3)、Q (2,-1),它们分别绕P 、Q 旋转,但始终保持平行,则l 1,l 2之间的距离的取值范围是( )A .(0,+∞)B .[0,5]C .(0,5]D .[0,17] 答案:C7. 已知a 、b 、c 为某一直角三角形的三边长,c 为斜边,若点P (m ,n )在直线ax +by +2c =0上,则m 2+n 2的最小值为________.答案:48. 与三条直线l 1:x -y +2=0,l 2:x -y -3=0,l 3:x +y -5=0,可围成正方形的直线方程为__________.答案:x +y -10=0或x +y =09. △ABC 的三个顶点是A (-1,4)、B (-2,-1)、C (2,3).(1)求BC 边的高所在直线的方程; (2)求△ABC 的面积S .答案:(1)设BC 边的高所在直线为l ,由题意知k BC =3--2--=1,则k l =-1k BC=-1,又点A (-1,4)在直线l 上,所以直线l 的方程为y -4=-1×(x +1),即x +y -3=0. (2)BC 所在直线方程为y +1=1×(x +2),即x -y +1=0,点A (-1,4)到BC 的距离d =|-1-4+1|12+-2=22, 又|BC |=-2-2+-1-2=42,则S △ABC =12·|BC |·d=12×42×22=8. 10. 已知直线l 经过点A (2,4),且被平行直线l 1:x -y +1=0与l 2:x -y -1=0所截得的线段的中点M 在直线x +y -3=0上.求直线l 的方程.答案:解法一:∵点M 在直线x +y -3=0上,∴设点M 坐标为(t,3-t ),则点M 到l 1、l 2的距离相等, 即|t --t +1|2=|t --t -1|2,解得t =32,∴M ⎝ ⎛⎭⎪⎫32,32. 又l 过点A (2,4),由两点式得y -324-32=x -322-32,即5x -y -6=0,故直线l 的方程为5x -y -6=0.解法二:设与l 1、l 2平行且距离相等的直线l 3:x -y +c =0,由两平行直线间的距离公式得|c -1|2=|c +1|2,解得c =0,即l 3:x -y =0.由题意得中点M 在l 3上,又点M 在x +y -3=0上.解方程组⎩⎪⎨⎪⎧y -y =0x +y -3=0,得⎩⎪⎨⎪⎧x =32y =32.∴M ⎝ ⎛⎭⎪⎫32,32.又l 过点A (2,4), 故由两点式得直线l 的方程为5x -y -6=0. 解法三:由题意知直线l 的斜率必存在, 设l :y -4=k (x -2),由⎩⎪⎨⎪⎧y -4=k x -x -y -1=0,得⎩⎪⎨⎪⎧x =2k -5k -1y =k -4k -1.∴直线l 与l 1、l 2的交点分别为⎝⎛⎭⎪⎫2k -3k -1,3k -4k -1,⎝ ⎛⎭⎪⎫2k -5k -1,k -4k -1. ∵M 为中点,∴M ⎝ ⎛⎭⎪⎫2k -4k -1,2k -4k -1.又点M 在直线x +y -3=0上, ∴2k -4k -1+2k -4k -1-3=0,解得k =5. 故所求直线l 的方程为y -4=5(x -2), 即5x -y -6=0.。

两条直线的交点坐标与距离公式

两条直线的交点坐标与距离公式

l1上一点,设其关于l的对称点为(x,y),则
{ x + 0 - y - 2-1=0,
22
y +2 ×1
=-1,
x
{ x=-1,

即(1,0),
y=-1.
(-1,-1)为l2上两点,可得l2的方程为x-2y-1=0.
故应选B.)
.
返回目录
考点四 直线系方程的应用 求经过直线l1:3x+2y-1=0和l2:5x+2y+1=0的交点,且垂 直于直线l3:3x-5y+6=0的直线l的方程.
两直线的交点坐标与 距离公式
.
一、两直线的交点
已知两条直线l1:A1x+B1y+C1=0与 l2:A2x+B2y+C2=0的交点坐标对应的是方程组
{A1x+B1y+C1=0 A2x+B2y+C2=0
的解,
.
返回目录
其中①当A1B2-A2B1≠0时,两条直线 相交于一点 , ② 当条A直1线B2无-A交2B点1=,0即且A1C2-A2平C1行≠,0③(当或AB11BC22--AB22BC11=≠00且)A时1,C两2A即2C1=0(或重B合1C. 2-B2C1=0)时,两条直线有无数个公共点,
.
返回目录
*对应演练*
求过点P(-1,2)且与点A(2,3)和B(-4,5)距离 相等的直线l的方程.
解法一:设直线l的方程为y-2=k(x+1),
即kx-y+k+2=0.由题意知
| 2k - 3 + k + 2 | =
| -4k - 5 + k + 2 |

两直线的位置关系及距离公式

两直线的位置关系及距离公式

解:(1)取直线 2x-y+2=0 上一点 A(0,2),设点 A(0,2) 关于直线 x+y-5=0 对称的点为 B(a,b),
则a2b+ -a b2+ =2 21-5=0
,解得ab= =35 ,
∴B(3,5),
由2x+ x-y- y+52==00 ,解得xy= =14 ,
∴直线 2x-y+2=0 与直线 x+y-5=0 的交点为 P(1,4),
线的距离公式,会求两条平行直 难度不大;若与圆、圆锥曲线结
线间的距离.
合,则出现在解答题中,具有一
定的综合性.
一、两条直线的位置关系及判定
平面内两条直线的位置关系有平行、相交、重合三种情况.
1.利用斜率判定
已知直线l1:y=k1x+b1,l2:y=k2x+b2.
(1)l1∥l2⇔k1=k2且

(2)l1⊥l2⇔
∴|4a+35b-2|=2,即4a+3b-2=±10.

由①②得ab= =1-,4, 或ab= =2-77, 87.
∴所求点P的坐标为(1,-4)或277,-87.
【考向探寻】 1.解关于“中心对称、轴对称”的问题. 2.利用对称解决有关最值问题、光线反射问题.
【典例剖析】
(1)一条光线沿直线2x-y+2=0入射到直线x+y-5=0后反射,则
反射光线所在的直线方程为
A.2x+y-6=0
B.x-2y+7=0
C.x-y+3=0
D.x+2y-9=0
(2)已知直线l:2x-3y+1=0,点A(-1,-2),求: ①点A关于直线l的对称点A′的坐标; ②直线m:3x-2y-6=0关于直线l的对称直线m′的方程.
(1)利用入射光线上的点关于直线x+y-5=0的对称点在反射光线上解题. (2)①直线l为线段AA′的垂直平分线,利用垂直关系,中点坐标公式解方程 组求出A′点坐标;②转化为点关于直线的对称.

直线的交点坐标与距离公式

直线的交点坐标与距离公式

互动探究
例3条件不变,求直线l关 于点A(-1,-2)对称的直线 l′的方程.
考点四 直线中的最值问题
例4.在直线l:3x-y-1=0上求一点P,使得: (1)P到A(4,1)和B(0,4)的距离之差最大; (2)P到A(4,1)和C(3,4)的距离之和最小.
【分析】设B关于l的对称点为B′,AB′与l的交点P满 足(1);C关于l的对称点为C′,AC′与l 的交点Q满足(2).事 实上,对于(1),若P′是l上异于P的点,则
由 l1⊥MN 知,k1=-kM1N=-35, ∴l1 的方程为 y+2=-35(x+2),即 3x+5y+16=0. l2 的方程为 y-3=-35(x-1),即 3x+5y-18=0.
练习 已知三条直线l1:2x-y+a=0a 0,直线l2:-4x+
2y+1=0和直线l3:x+y-1=0,且l1与l2的距离是
∴3-=2k=+-b22.k+b1, ②

由①-②得 b1-b2=3k-5,
由 d=|b11-+bk22|=|31k+-k52|两边平方,
整理,得(d2-9)k2+30k+d2-25=0.

由 k∈R,得 Δ=302-4(d2-9)(d2-25)≥0.
又 d>0,故解得 0<d≤ 34.
(2)直线关于点的对称,其主要方法是: 在已知直线上取两点,利用中点坐标公式求 出它们关于已知点对称的两点坐标,再由两 点式求出直线方程,或者求出一个对称点, 再利用l1∥l2,由点斜式得到所求直线方程.
AA12xx+ +BB12yy+ +CC12= =00 的解.
2.距离公式
类型
条件
两点间的 距离
两点P1(x1,y1), P2(x2,y2)

直线中的对称问题方法总结及典型例题

直线中的对称问题方法总结及典型例题

直线中的对称问题—4类对称题型直线的对称问题是我们学习平面解析几何过程中的不可忽视的问题,我们可以把它主要归纳为,点关于点对称,点关于线对称,线关于点对称,线关于线对称问题,下面我们来一一探讨:一、点关于点对称问题解决点点对称问题的关键是利用中点坐标公式,同时也是其它对称问题的基础.例1.求点(1)()3,1A 关于点()2,3P 的对称点'A 的坐标,(2)()2,4A ,()'0,2A 关于点P 对称,求点P 坐标.解:由题意知点P 是线段'AA 的中点,所以易求(1)()'1,5A(2)()1,3P .因此,平面内点关于对称点坐标为平面内点,关于点对称二、点关于线对称问题 求定点关于定直线的对称问题时,根据轴对称定义利用①两直线斜率互为负倒数,②中点坐标公式来求得.例2.已知点直线:,求点关于直线的对称点的坐标 解:法(一)解:设,则中点坐标为且满足直线的方程 ①又与垂直,且斜率都存在即有 ②由①②解得 ,法(二)求点点关于线对称问题,其实我们可以转化为求点关于点对称的问题,可先求出的直线方程进而求与的交点坐标,再利用中点坐标公式建立方程求坐标.三、线关于点对称问题求直线关于某一点的对称直线的问题,一般转化为直线上的点关于点的对称问题.例3.求直线:关于点的对称直线的方程.解:法(一)直线:与两坐标轴交点为,点关于对称点点关于对称点过的直线方程为故所求直线方程为.法(二)由两直线关于点对称,易知两直线平行,则对称点到两直线的距离相等,可以建立等式,求出直线方程.四、线关于线的对称问题求直线关于直线的对称问题,一般转化为点关于直线对称问题:即在已知直线上任取两不同点,求出这两点关于直线的对称点再求出直线方程.例4.求已知直线:关于直线对称的直线方程.解:在:上任取一点直线的斜率为3过点且与直线垂直的直线斜率为,方程为得所以点为直线与的交点,利用中点坐标公式求出关于的对称点坐标为又直线与的交点也在所求直线上由得所以交点坐标为.过和的直线方程为,故所求直线方程.。

高三数学直线的交点坐标与距离公式

高三数学直线的交点坐标与距离公式
(-2≤k≤0)① • 当 E 与 D 重合时, E 点坐标为 (0,1) ,由①式 得k=-1.
• 当 F 与 B 重合时, F 点坐标为 (2,0) ,由①式
得k=-2+
• 当k∈[-2+ 大值为f(-2+
,0]时,f(k)递减,f(k)的最 )=32-16 ;
• 当k∈[-1,-2+
- • 在 [- 2<f(-2+ ]上递减; ,-2+
• 2.点到直线距离公式
• 点P(x0,y0)到直线l:Ax+By+C=0的距离
为: • 3.两平行线间的距离公式 • 已知两条平行线直线l1和l2的一般式方程为l1:
• 1.过点A(4,a)和点B(5,b)的直线与直线y =x+m平行,则|AB|的值为( )

A. 6 D.不能确定
B.
C.2

)时,可证f(k)在[-1,
)上递增,f(-1)= .
)=32-16
【分析点评】
• 本题对直线方程,两点间的距离公式和分段 函数问题进行了综合考查,在考查
• 直线方程时是以折叠为背景,实质是考查对 称问题.
• (1)点与点关于点对称,图形与图形关于点对 称,主要利用中点坐标公式解决. • (2)图形与图形对称问题可转化为点与点对称 解决,对于点与点关于直线x=0,
B2y+C2=0的交点:
• 1.可通过解方程组 若方程组有唯一解,则l1与l2相 • 交;若方程组无解,则直线 l ∥l ;若方 求得,
• 【例 1】 直线 l 被两条直线 l1 : 4x + y + 3 = 0
和 l2 : 3x - 5y - 5 = 0 截得的线段的中点为
P(-1,2),求直线l的方程. • 解 答 : 解 法 一 : 设 直 线 l 与 l1 的 交点为 A(x0 , y0) ,由已知条件,则直线 l 与 l2 的交

直线中的对称问题6种考法

直线中的对称问题6种考法

直线中的对称问题一、点关于点的对称问题1、实质:该点是两对称点连线段的中点2、方法:利用中点坐标公式平面内点()00,y x A 关于()b a P ,对称点坐标为()002,2y b x a --,平面内点()11,y x A ,()22,y x A '关于点⎪⎭⎫⎝⎛++2,22121y y x x P 对称二、直线关于点的对称问题 1、实质:两直线平行2、法一:转化为“点关于点”的对称问题(在l 上找两个特殊点(通常取直线与坐标轴的交点),求出各自关于A 对称的点,然后求出直线方程)法二:利用平行性质解(求一个对称点,且斜率相等或设平行直线系,利用点到直线距离相等) 三、点关于直线的对称问题1、实质:轴(直线)是对称点连线段的中垂线2、(1)当直线斜率存在时:方法:利用”垂直“和”平分“这两个条件建立方程组,就可求出对称点的坐标,一般地:设点()00,x y 关于直线0++=Ax By C 的对称点(),x y '',则'0'0''01022⎧-⎛⎫-=- ⎪⎪-⎪⎝⎭⎨++⎪++=⎪⎩y y A x x B x x y y A B c (2)当直线斜率不存在时:点()00,x y 关于m x =的对称点为()002,-m x y 2、常见的点关于直线的对称点(1)点()00,x y 关于x 轴的对称点为()00,x y -; (2)点()00,x y 关于y 轴的对称点为()00,x y -; (3)点()00,x y 关于直线y x =的对称点为()00,y x ; (4)点()00,x y 关于直线y x =-的对称点为()00,y x --;(5)点()00,x y 关于直线x m =的对称点为()002,m x y -; (6)点()00,x y 关于直线y n =的对称点为()00,2x n y -;(7)点()00,x y 关于直线0x y m -+=的对称点为()00,,y m x m -+; (8)点()00,x y 关于直线0x y m +-=的对称点为()00,,y m x m ---+; 四、直线关于直线的对称问题1、当1l 与l 相交时:此问题可转化为“点关于直线”的对称问题;求直线1:0l ax by c ++=,关于直线2:0l dx ey f ++=(两直线不平行)的对称直线3l 第一步:联立12l l ,算出交点00()P x y ,第二步:在1l 上任找一点(非交点)11()Q x y ,,求出关于直线对称的点22()Q x y ', 第三步:利用两点式写出3l 方程2、当1l 与l 平行时:对称直线与已知直线平行.两条对称直线到已知直线的距离相等,利用平行线间距离公式建立方程即可解得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可得到P2的坐标(x2,y2)(其中B≠0,x1≠x2).
(2)直线关于直线的对称: 转化为点关于直线的对称来解决, 有两种情况:一是已知直线与对称轴相交; 二是已知直线与对称轴平行.
3 k 3 且l l3 5 5 k k 3 1 k , 3 5 L : y 2 (x 1)即5x 3y 1 0 3
2.三种距离
点P1(x1,y1),P2(x2,y2)之间 的距离 点P0(x0,y0)到直线l:Ax+By+C=0 的距离 两条平行线Ax+By+C1=0 与Ax+By+C2=0间的距离
l: 3x-4y-10=0.
(2) |AO|max直线是过点A与AO垂直的直线, ∵l⊥AO,∴klkOA=-1,∴ k 1 2, l 由直线的点斜式得
k OA
y+1=2(x-2),即2x-y-5=0,是过点A且与原点距离最大的
直线l的方程,最大距离是 | 5 | 5.
5
(3)由(2)可知,过点A不存在到原点距离超过 5 的直线,
的中点M的坐标为(x,y),
则 x= 且y= .
1.已知点(a,2)(a>0)到直线l:x-y+3=0的距离为1,则a等
于( )
(A) 2
(C)
(B) 2 2
(D) 2 1
2 1
2
【解析】选C.由 | a 2 3| 1 且a>0,得 a 2 1.
4.已知A(a,-5),B(0,10),|AB|=17,则a=_______. 【解析】依题设及两点间的距离公式得:
| P1P2 |
_________________
Байду номын сангаас
(x 2 x1 )2 (y2 y1 )2
d
| Ax 0 By0 C |
2 2 A B _______________
| C1 C2 | A B d=_________
2 2
线段的中点坐标公式 若点P1,P2的坐标分别为(x1,y1),(x2,y2)且线段P1P2
因此不存在过点A且与原点距离为6的直线.
【拓展提升】
1.中心对称问题的两个类型及求解方法
(1)点关于点对称:若点M(x1,y1)及N(x,y)关于P(a,b)
对称,则根据M,N的中点为P 由中点坐标公式求 M
P N
(2)直线关于点的对称,主要求解方法是:
在已知直线上取两点,利用中点坐标公式求出它们关于
求出方程;若不存在,请说明理由.
【解析】 (1)当斜率不存在时,l : x=2, 原点到直线 l 的距离为2,符合题意; 当斜率存在时,设 l:y+1=k(x-2),即 kx-y-2k-1=0,
∵ | 2k 1|
k 1
2

2,
∴k
3 , 4
l:3x-4y-10=0, 综上:l:x=2 或
积的取值范围是(
)
1] A (0,
1 3 B [ , ] 2 2
1 3 C [ , ] 4 2
1 3 D [ , ] 4 4
已知点A(2,-1), (1)求过点A且与原点距离为2的直线l的方程.
(2)求过点A且与原点距离最大的直线l的方程,最大距离
是多少?
(3)是否存在过点A且与原点距离为6的直线?若存在,
(a 0)2 (5 10)2 17, 解得a=〒8.
答案:〒8
3 3 2 4 3 【解析】直线l2可化为:3x-2y+ =0,由平行线间的距离公式 2 3 | 5 | 13 得: 2 d . 2 2 2 3 (2)
答案:
5.平行线l1:3x-2y-5=0与l2: y x 之间的距离为_______.
13 2
(1)点到直线的距离 可直接利用点到直线的距离公式来求,但要注意此时直线方程必 须为一般式. (2)两平行直线间的距离 要注意两平行直线方程中x,y的系数必须相等.
“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”
求两平行线的距离
考向 2
三种距离公式的应用
在△OAB中,O为坐标原点,A(1,cos θ ),B(sin θ ,1),则△OAB的面
直线交点,距离,
1.两条直线的交点
唯一解
无解
有无数组解
考向 1
直线的交点
求经过直线l1:3x+2y-1=0和l2:5x+2y+1=0的交点,且垂直于直线 l3:3x-5y+6=0的直线 l 的方程.

3x 2y 1 0, x 1 5x 2y 1 0, y 2
已知点对称的两点坐标,再由两点式求出直线方程;
点关于直线的对称: 若两点P1(x1,y1)与P2(x2,y2)关于直线l:Ax+By+C=0对称, 则 线段P1P2的中点在对称轴l上 (平分)
线段P1P2垂直于对称轴l
(垂直)
y1 y 2 x1 x 2 A( ) B( ) C 0 , 2 2 y y A 2 1 ( ) 1 x 2 x1 B
相关文档
最新文档