函数周期与对称轴

合集下载

函数的对称性与周期性(归纳总结)

函数的对称性与周期性(归纳总结)

函数的对称性与周期性(归纳总结)一、函数对称性:1.2.3.4.5.6.7.8.f(a+x)=f(a-x)==>f(x)关于x=a对称f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。

【解析】求两个不同函数的对称轴,用设点和对称原理作解。

证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)] ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。

证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b] ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.二、函数的周期性令a,b均不为零,若:1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|这里只对第2~5点进行解析。

函数点对称线对称及周期总结

函数点对称线对称及周期总结

函数点对称线对称及周期总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII函数对称性、周期性全解析函数对称性、周期性是函数这一部分在历年高考中的一个重点,现在全部解析如下:一、同一函数的周期性、对称性问题(即函数自身)1、周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。

如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。

2、对称性定义(略),请用图形来理解。

3、对称性:我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =-奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的探讨:(1)函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。

得证。

若写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(b a x b x a x +=-++= 对称 (2)函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。

函数的对称性与周期性

函数的对称性与周期性

函数的对称性与周期性函数是数学中的重要概念之一,也是实际问题建模时必不可少的工具。

在函数的研究中,对称性和周期性是两个重要的特性,它们在解决问题时具有重要的意义。

一、对称性对称性是指当函数中存在一些特定的点、直线或面对称时,函数会出现相应的特征变化。

在函数研究中,对称性分为奇偶对称性、轴对称性和中心对称性三种类型。

1.1 奇偶对称性在定义域上对函数进行某种变换,若此时函数值不变,则称函数具有对称性。

其中,奇偶对称是一种特殊的对称性。

若函数$f(x)$满足$f(-x)=f(x)$,即对于定义域上任意一个$x$,都有$f(-x)=f(x)$成立,则函数$f(x)$具有奇函数对称性。

若函数$f(x)$满足$f(-x)=f(x)$且$f(x)$具有偶函数性质,即对于定义域上任意$x$都有$f(-x)=f(x)$,且对于定义域上任意$x$都有$f(-x)=f(x)$成立,则$f(x)$具有偶函数对称性。

1.2 轴对称性对于定义域上的任意一个$x$,若函数$f(x)$等于一个定值减去该点处的函数值,则称函数$f(x)$具有轴对称性。

定义域上的这条轴称为对称轴。

轴对称性表明函数$f(x)$在对称轴两侧的函数值相等。

1.3 中心对称性对于定义域的任意一个$x$,若函数$f(x)$与以坐标系原点为中心的另一个点对称,则称函数$f(x)$具有中心对称性。

中心对称性表明函数$f(x)$在以原点为中心的圆形中的两侧具有对称性。

二、周期性周期性是指函数具有在某一定量级范围内重复的规律性。

对于函数$f(x)$,若存在正数$T$,使得对于定义域上的任何一个$x$,都有$f(x+T)=f(x)$成立,则函数$f(x)$是周期函数,其中最小正周期为$T$。

具有周期性的函数,其解析式通常为三角函数式。

结论函数在解决实际问题时,对称性和周期性的特性具有重要的意义。

它们可以用来研究函数的性质、求函数的极值、判别函数的奇偶性、求证某些理论结论等。

函数与函数的对称性与周期性

函数与函数的对称性与周期性

函数与函数的对称性与周期性函数是数学中的重要概念,它描述了一种关系,将一个自变量映射到一个因变量。

而函数的对称性和周期性是函数研究中的两个重要性质。

它们不仅在数学中有广泛的应用,而且在日常生活中也有很多实际的例子。

一、函数的对称性函数的对称性是指函数在某个特定的变换下保持不变。

常见的对称性有奇偶性、轴对称性和中心对称性。

首先,奇偶性是指当自变量取相反数时,函数值不变。

如果函数f(x)满足f(-x) = f(x),则该函数是偶函数;如果函数f(x)满足f(-x) = -f(x),则该函数是奇函数。

例如,常见的二次函数y = x²就是一个典型的偶函数,而正弦函数sin(x)则是一个典型的奇函数。

奇偶函数通过其特定的对称性带来了许多在数学和物理领域中的应用。

其次,轴对称性是指函数相对于某一条直线对称。

这条直线称为对称轴。

如果函数f(x)满足f(-x) = f(x),则对称轴为y轴;而如果函数f(x)满足f(x) = f(-x),则对称轴为x轴。

例如,二次函数y = x²是以y轴为对称轴的轴对称函数。

最后,中心对称性是指函数相对于一个点对称。

这个点称为中心。

如果函数f(-x) = -f(x),则中心对称。

例如,正弦函数sin(x)就是以原点为中心的中心对称函数。

二、函数的周期性函数的周期性是指函数在特定距离上具有相同的性质或数值。

一个函数f(x)是周期函数,如果存在一个正数T使得对于任意自变量x,有f(x+T) = f(x)。

这个最小的正周期T被称为函数的周期。

常见的周期函数有三角函数(如正弦函数、余弦函数)和指数函数。

以正弦函数为例,它的周期是2π。

即对于任意自变量x,有sin(x+2π)= sin(x)。

而指数函数f(x) = eˣ的周期是无穷大,即对于任意自变量x,有f(x+T) = f(x),其中T可以是任意实数。

周期函数在自然科学和工程技术中有着广泛的应用。

例如,交流电的电流和电压可以被建模为周期函数,这是交流电工程中的一个重要应用。

函数的周期性与对称性

函数的周期性与对称性

【例2】 f(x)是定义在R上的以3 为周期的奇函数,且 f ( 2 )= 0 , 则方程 f ( x )= 0 在区间( 0 , 6 ) 内解的个数的最小值是 ( ) A.2
C.4
B.3
D. 5
【解析】
∵ f ( x )为奇函数, ∴ f ( 0 )= 0 ,又 函数f(x)以3为周期,且f(2)=0, ∴f(-2)=0,f(1)=0,f(4)= 0,f(3)=0,f(5)=0, ∴在区间(0,6)内的解有1,2,3, 4,5.故选D.
3、关于点(a,0)对称
练习:求函数y=f(x)关于点(a,0)对称的解析 式 答案:y=-f(2a-x) 结论:⑴-f(2a-x)与f(x)的图形关于点(a,0)对称
⑵一个函数y=f(x)本身关于点(a,0)对称,有 f(x)=-f(2a-x)即f(x)+f(2a-x)=0
函数周期性解题的一道经典试题
2、关于直线y=b对称 ⑴函数y=f(x)关于x轴(y=0)对称的函数是y=-f(x)
⑵求函数y=f(x)关于直线y=b对称的函数解析式
解:设(x,y)是所求曲线上任意一点,它关于直 线y=b的对称点为(x,y1),从而y1=f(x)而 y1-b=b-y故y1=2b-y,于是y=2b-f(x) 结论:f(x)与g(x)的图象关于直线y=b对称,则 f(x)+g(x)=2b反之也成立
区间上单调性相反
⑵求函数y=f(x)关于直线x=a对称的函数解析 式 解:用相关点法,设(x,y)是所求曲线上任意 一点,则它关于直线x=a的对称点为(x1,y) 在函数y=f(x)图象上,故y=f(x1),而 x1-a=a-x所以x1=2a-x,于是y=f(2a-x)即为 所求 结论:y=f(x)与y=f(2a-x)的图象关于直线x=a 对称

函数周期性、对称性与奇偶性的关系

函数周期性、对称性与奇偶性的关系
三、对称性与周期性的关系
定理1:若定义在 上的函数 的图象关于直线 和 对称,则 是周期函数,且 是它的一个周期.
推论1:若函数 满足 及 ,则 是以 为周期的周期函数.
定理2:若定义在 上的函数 的图象关于点 和直线 对称,则 是周期函数,且 是它的一个周期.
推论2:若函数 满足 及 ,则 是以 为周期的周期函数.
性质4:设函数 ,如果对于定义域内任意的 ,都有 ,则 的图象关于点 对称.(实际上是奇函数的一般情形)广义奇函数.
【小结】函数对称性的充要条件
函数关系式( )
对称性
函数 图象是奇函数
函数 图象是偶函数

函数 图象关于直线 对称

函数 图象关于点 对称
【注】:这里代数关系式中两个“ ”(对应法则)内的“ ”(变量)前的正负号相异,如果把两个“ ”放在“ ”的两边,则“ ”前的正负号也相异.因为对称性关乎翻转.
5、若偶函数 关于直线 对称,即对于任意的实数 ,函数 满足 ,则 是以 为周期的周期函数.
6、若偶函数 关于点 对称,即对于任意的实数 ,函数 满足 ,则 是以 为周期的周期函数.
7、若奇函数 关于直线 对称,即对于任意的实数 ,函数 满足 ,则 是以 为周期的周期函数.
8、若奇函数 关于点 对称,即对于任意的实数 ,函数 满足 ,则 是以 为周期的周期函数.
四函数图象的对称轴和对称中心举例对称轴中心满足五函数周期性对称性与奇偶性的关系1定义在对称即对于任意的实数为周期的周期函数且是偶函数
函数周期性、对称性与奇偶性的关系
一、函数图象的对称性
(一)一个函数图象自身的对称性
性质1:对于函数 ,若存在常数 使得函数定义域内的任意 ,都有的图象关于直线 对称.

函数的对称性、周期性以及之间的关系

函数的对称性、周期性以及之间的关系

函数的对称性、周期性以及之间的关系对称性、奇偶性、周期性、单调性函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础.在研究函数图象的对称性时,一定要区分是一个图象自身的对称(称之为“自对称”),还是两个函数图象间的对称(称之为“互对称”)。

函数的对称性指的是函数的图象的对称性,通常包括点对称和直线对称,即中心对称和轴对称。

自对称一、函数的对称性关于函数图象的对称性,我们有这样两个命题。

命题1:如果函数y=f(x)的图像关于点M(m, n)对称,那么f (m +x) + f (m-x)=2n 即f(x)+f(2m-x)=2n命题2:如果函数y=f(x)的图像关于直线x=m对称,那么f (m +x) = f (m-x)即f (x) = f (2m-x)二、函数的奇偶性与对称性的联系命题1:函数y=f(x)的图像关于点M(0, 0)对称的充要条件是函数y= f (x)是奇函数,即f (x) + f (-x) = 0命题2:函数y=f(x)的图像关于点直线x=0对称的充要条件是函数y= f (x)是偶函数,即f (x) = f (-x)三、函数的周期性与对称性的联系包括点点对称、线线对称、点线对称的周期性命题:①若函数y = f (x) 图像同时关于点A (m ,c)和点B (n ,c)成中心对称(m ≠n),则y = f (x)是周期函数,且2| m-n|是其一个周期.②若函数y = f (x) 图像同时关于直线x = m 和直线x = n成轴对称(m≠n),则y = f (x)是周期函数,且2| m-n|是其一个周期.③若函数y = f (x)图像既关于点A (m ,c) 成中心对称又关于直线x =n成轴对称(m≠n),则y = f (x)是周期函数,且4| m-n|是其一个周期.(同为中心对称或同为轴对称乘2;一中心对称一轴对称乘4)四、函数的奇偶性、周期性和对称性的联系奇偶性只是特殊的点线对称。

函数的周期性和对称性常用结论

函数的周期性和对称性常用结论

函数的周期性和对称性常用结论1.若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”.2.周期性:(1)若()()f x a f b x +=+,则||T b a =-(2)若()()f x a f b x +=-+,则2||T b a =-(3)若1()()f x a f x +=±,则2T a = (4)若1()()1()f x f x a f x -+=+,则2T a = (5)若1()()1()f x f x a f x ++=-,则4T a = 注:(3)、(4)、(5)要求知道并会推导,不要求死记3.对称性(1)若()()f a x f b x +=-,则()f x 的对称轴为2a b x += (2)若()()f a x f b x c +=--+,则()f x 的图象关于点(,)22a b c +中心对称 (3)函数()y f a x =+与()y f b x =-的图象关于2a b x +=对称 4.若函数的图象同时具备两种对称性:即两条对称轴、两个对称中心、一条对称轴一个对称中心,则函数必定为周期函数,反之亦然。

(只需要知道这个结论,用的时候会推导即可)(1)若()f x 的图象有两条对称轴x a =和x b =,则()f x 必定为周期函数,其一个周期为2||b a -;(2)若()f x 的图象有两个对称中心(,0)a 和(,0)b ()a b ≠,则()f x 必定为周期函数,其一个周期为2||b a -;(3))若()f x 的图象有一条对称轴x a =和一个对称中心(,0)b ()a b ≠,则()f x 必定为周期函数,其一个周期为4||b a -;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的周期是指函数图像在水平方向上重复出现最小正间隔。而对称轴,则是函数图像关于其对称的直线,即函数在对称轴两侧呈镜像对称。当函数具有多个对称轴时,这些对称轴之间的距离与函数的周期密切相关。特别是,两个相邻对称轴之间的距离,往往能够直接反映函数的周期。具体来说,如果函数在两个相邻对称轴之间的图像完全相同,那么这两个对称轴之间的距离就等于函数的一个周期。因此,通过分析函数图像中的对称轴,我们可以更直观地理解和计算函数的周期。这种方法在处理复杂周期函数时尤为有效,它能够帮助我们快速准确地确定函数的周期,从而更深入地理解函数的性质和行为。
相关文档
最新文档