例析抽象函数周期的求法

合集下载

高中数学抽象函数专题含答案-教师版

高中数学抽象函数专题含答案-教师版

抽象函数周期性的探究(教师版)抽象函数是指没有给出具体的函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力.而在教学中我发现同学们对于抽象函数周期性的判定和运用比较困难 ,所以特探究一下抽象函数的周期性问题.利用周期函数的周期求解函数问题是基本的方法 .此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题.以下给出几个命题:命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x) 是周期函数.(1)函数y=f(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期.(2)函数y=f(x)满足f(x+a)=1f(x),则f(x)是周期函数,且2a是它的一个周期.(3)函数y=f(x)满足f(x+a)+f(x)=1,则f(x)是周期函数,且2a是它的一个周期.命题2:若a、b(a b )是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数.(1) 函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且|a-b|是它的一个周期.(2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期.(3) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期.(4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4|a-b|是它的一个周期.命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x) 是周期函数.(1)若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2a 是它的一个周期.(2)若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4a 是它的一个周期.我们也可以把命题3看成命题2的特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3 (1),其他命题的证明基本类似.设条件A: 定义在R上的函数f(x)是一个偶函数.条件B: f(x)关于x=a对称条件C: f(x)是周期函数,且2a是其一个周期.结论: 已知其中的任两个条件可推出剩余一个.证明: ①已知A、B→ C (2001年全国高考第22题第二问)∵f(x)是R上的偶函数∴f(-x)=f(x)又∵f(x)关于x=a对称∴f(-x)=f(x+2a)∴f(x)=f(x+2a)∴f(x)是周期函数,且2a是它的一个周期②已知A、C→B∵定义在R上的函数f(x)是一个偶函数∴f(-x)=f(x)又∵2a是f(x)一个周期∴f(x)=f(x+2a)∴f(-x)=f(x+2a) ∴ f(x)关于x=a对称③已知C、B→A∵f(x)关于x=a对称∴f(-x)=f(x+2a)又∵2a是f(x)一个周期∴f(x)=f(x+2a)∴f(-x)=f(x) ∴f(x)是R上的偶函数T由命题3(2),我们还可以得到结论:f(x)是周期为T的奇函数,则f( )=02基于上述命题阐述,可以发现,抽象函数具有某些关系.根据上述命题,我们易得函数周期,从而解决问题,以下探究上述命题在解决抽象函数问题中的运用.1.求函数值例1:f(x) 是R上的奇函数f(x)=- f(x+4) ,x∈[0,2]时f(x)=x,求f(2007) 的值解:方法一∵f(x)=-f(x+4) ∴f(x+8) =-f(x+4) =f(x)∴8是f(x)的一个周期∴f(2007)= f(251×8-1)=f(-1)=-f(1)=-1方法二∵f(x)=-f(x+4),f(x)是奇函数∴f(-x)=f(x+4) ∴f(x)关于x=2对称又∵f(x)是奇函数∴8是f(x)的一个周期,以下与方法一相同.例2:已知f(x)是定义在R上的函数,且满足f(x+2)[1-f(x)]=1+f(x),f(1)=2,求f(2009) 的值解:由条件知f(x)1,故f (x + 2) =:f (x + 4) = = 1f(x)类比命题1可知,函数f(x)的周期为8,故f(2009)= f(251×8+1)=f(1)=22. 求函数解析式例3:已知f(x)是定义在R上的偶函数, f(x)= f(4-x),且当x[2,0]时, f(x)=-2x+1,则当x [4,6]时求f(x)的解析式解:当x [0,2]时x [2,0] ∴f(-x)=2x+1∵f(x)是偶函数∴f(-x)=f(x) ∴f(x)=2x+1当x [4,6]时 4 + x [0,2] ∴f(-4+x)=2(-4+x)+1=2x-7又函数f(x)是定义在R上的偶函数, f(x)= f(4-x),类比命题3 (1)知函数f(x)的周期为4故f(-4+x)=f(x)∴当x [4,6]时求f(x)=2x-73.判断函数的奇偶性例4:已知f(x)是定义在R上的函数,且满足f(x+999)=1f(x),f(999+x)=f(999-x),试刘云汉判断函数f(x)的奇偶性.解:由f(x+999)=一1f(x),类比命题1可知,函数f(x)的周期为1998即f(x+1998)=f(x);由f(999+x)=f(999-x)知f(x)关于x=999对称,即f(-x)=f(1998+x)故f(x)=f(-x) :f(x)是偶函数 4.判断函数的单调性例5:已知f(x)是定义在R 上的偶函数, f(x)= f(4-x),且当x =[一2,0]时, f(x)是减函数, 求证当x =[4,6]时f(x)为增函数解:设4 共 x < x 共 6 则一2 共 一x + 4 < 一x + 4 共 01 2 2 1∵ f(x)在[-2,0]上是减函数∴ f (一x + 4) > f (一x + 4)2 1又函数f(x)是定义在R 上的偶函数, f(x)= f(4-x),类比命题3 (1)知函数f(x)的周期为 4故f(x+4)=f(x ) ∴ f (一x ) > f (一x ) ∵ f(-x)=f(x) ∴ f (x ) > f (x )2 1 2 1故当 x =[4,6]时f(x)为增函数例6:f(x)满足f(x) =-f(6-x),f(x)= f(2-x),若f(a) =-f(2000),a ∈ [5,9]且f(x) 在[5,9]上单调.求a 的值.解:∵ f(x)=-f(6-x ) ∴f(x)关于(3,0)对称∵ f(x)= f(2-x ) ∴ f(x)关于x=1对称∴根据命题2 (4)得8是f(x)的一个周期 ∴f(2000)= f(0) 又∵f(a) =-f (2000) ∴f(a)=-f(0)又∵f(x) =-f(6-x) ∴f(0)=-f(6) ∴f(a)=f(6)∵a∈[5,9]且f(x)在[5,9]上单调∴a =6 5.确定方程根的个数例7:已知f(x)是定义在R 上的函数, f(x)= f(4-x),f(7+x)= f(7-x),f(0)=0, 求在区间[-1000,1000]上f(x)=0至少有几个根?解:依题意f(x)关于x=2,x=7对称,类比命题2 (2)可知f(x)的一个周期是10故f(x+10)=f(x ) ∴f(10)=f(0)=0 又f(4)=f(0)=0即在区间(0,10]上,方程f(x)=0至少两个根又f(x)是周期为10的函数,每个周期上至少有两个根,因此方程f(x)=0在区间[-1000,1000]上至少有1+2人200010=401个根.两类易混淆的函数问题:对称性与周期性已知函数 y = f (x ) (x ∈R)满足 f (5+x ) = f (5-x ),问: y = f (x )是周期函数吗它的图像是不是轴对称图形已知函数 y = f (x ) (x ∈R)满足 f (5+x ) = f (5-x ),问: y = f (x )是周期函数吗它的图像是不是轴对称图形这两个问题的已知条件形似而质异。

对抽象函数周期性的认识

对抽象函数周期性的认识

对抽象函数周期性的认识麻城实验高中 阮 晓 锋对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。

可见周期函数是一类特殊的函数,下面就谈谈我对抽象函数周期性的认识。

几种特殊的抽象函数的周期:设函数()y f x =对定义域内任一实数x 满足:(1)()(x)f x T f ±=(T ≠0),则T 是函数()y f x =的一个周期,且kT (k єZ)也是其周期 推论:若(+)=(+)f x a f x b ,则T=b-a 是函数()y f x =的一个周期。

(2)()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; 推论:若函数)(x f y = 定义域为R ,且满足条件)()(b x f x a f --=+,则)(x f y =是 以)(2b a T +=为周期的周期函数。

(3)()()1f x a fx +=±,则()x f 是以2T a =为周期的周期函数;(4)()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数;(5)1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数.(6)()+1(+)=()-1f x f x a f x ,则()x f 是以2T a =为周期的周期函数.(7)1()()1()f x f x a f x -+=-+,则()x f 是以4T a =为周期的周期函数.(8)1()()1()f x f x a f x ++=-,则()x f 是以4T a =为周期的周期函数.(9)若函数f(x)有一条对称轴x=a 和一个对称点(b,c),那么该函数一定为周期函数,且 其中一个周期为T =4|a -b|推论:若奇函数()y f x =满足()()f a x f a x +=-(0a >),则其周期为4T a =。

抽象函数问题解法

抽象函数问题解法

抽象函数问题解法抽象函数是指没有给出具体的函数解析式或图像,但给出了函数满足的一部分性质或运算法则的函数。

它与函数的奇偶性、单调性、周期性、对称性等函数性质联系在一起,具有很强的抽象性。

这类问题主要考查数学思想方法的运用能力,以及对数学语言以及符号的阅读理解能力。

本文结合具体问题分类剖析这类问题的求解策略。

一、利用函数性质的解题思想函数性质是反映函数特征的主要途径,充分利用题设条件中已表明或隐含的函数性质,选择适当的方法解决抽象函数问题。

1.利用对称性,数形结合例1:已知函数f(x)对一切实数x都有f(2+x)= f(2-x),如果方程f(x)=0恰好有4个不同的实根,求这些实根之和。

策略:由f(2+x)= f(2-x)可知是函数图像关于直线x=2对称。

又f(x)=0四个根按由小到大的顺序可设为x1、x2、x3、x4,则x1+x4=2×2=4,x2+x3=2×2=4,∴x1+x2+x3+x4=8。

2. 利用奇偶性分析函数特征例2:已知函数f(x)=ax+bsinx+3,且f(-3)=7,求f(3)的值。

策略:注意到g(x)=ax+bsinx=f(x)-3是奇函数,可得g(-3)= -g(3),即f(-3)-3= -[f(3)-3],f(3)=6-f(-3)= -1。

3. 利用单调性等价转化例3:已知奇函数f(x)在定义域(-1,1)上是减函数,试求满足不等式f(1-a)+f(1-a2)4.利用周期性研究函数特征例4:已知f(x)是定义在正整数集上的函数,对任意正整数x 都有f(x)=f(x-1)+f(x+1),且f(1)=2002,求f(2002)。

分析:根据x的任意性,判断函数的周期。

略解:由f(x)=f(x-1)+f(x+1),可得:f(x+3)=-f(x)。

∴f(x+6)=-f(x+3)=[-f(x)]=f(x),∴f(x)是以6为周期的周期函数,∴f(2002)=f(333×6+4)=f(4)=f(3+1)=-f(1)=-2002。

重难点2-4-抽象函数及其性质8大题型(解析版) (1)

重难点2-4-抽象函数及其性质8大题型(解析版) (1)

重难点2-4 抽象函数及其性质8大题型抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一个函数,由抽象函数构成的数学问题叫做抽象函数问题。

抽象函数问题能综合考查学生对函数概念和各种性质的理解,但由于其表现形式的抽象性和多变性,学生往往无从下手,这类问题是高考的一个难点,也是近几年高考的热点之一。

一、抽象函数的赋值法赋值法是求解抽象函数问题最基本的方法,复制规律一般有以下几种: 1、……-2,-1,0,1,2……等特殊值代入求解; 2、通过()()12-f x f x 的变换判定单调性;3、令式子中出现()f x 及()-f x 判定抽象函数的奇偶性;4、换x 为+x T 确定周期性. 二、判断抽象函数单调性的方法:(1)凑:凑定义或凑已知,利用定义或已知条件得出结论;(2)赋值:给变量赋值要根据条件与结论的关系.有时可能要进行多次尝试.①若给出的是“和型”抽象函数() =+y x f ,判断符号时要变形为:()()()()111212)(x f x x x f x f x f -+-=-或()()()()221212)(x x x f x f x f x f +--=-;②若给出的是“积型”抽象函数() =xy f ,判断符号时要变形为:()()()112112x f x x x f x f x f -⎪⎪⎭⎫ ⎝⎛⋅=-或()()()⎪⎪⎭⎫ ⎝⎛⋅-=-212212x x x f x f x f x f . 三、常见的抽象函数模型1、()()()+=+f x y f x f y 可看做()=f x kx 的抽象表达式;2、()()()+=f x y f x f y 可看做()=x f x a 的抽象表达式(0>a 且1≠a );3、()()()=+f xy f x f y 可看做()log =a f x x 的抽象表达式(0>a 且1≠a );4、()()()=f xy f x f y 可看做()=a f x x 的抽象表达式. 四、抽象函数中的小技巧1、很多抽象函数问题都是以抽象出某一类函数的共同特征而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质;2、解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值法可以找到函数的不变性质,这个不变性质往往是解决问题的突破口;3、抽象函数性质的证明是一种代数推理,和几何推理一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。

抽象函数单调性、奇偶性、周期性和对称性典例分析

抽象函数单调性、奇偶性、周期性和对称性典例分析

抽象函数的对称性、奇偶性与周期性一、典例分析1.求函数值例1.设)(x f 是),(+∞-∞上的奇函数,),()2(x f x f -=+当10≤≤x 时,x x f =)(,则)5.7(f 等于( )(A )0.5;(B )-0.5; (C )1.5; (D )-1.5.例2.已知)(x f 是定义在实数集上的函数,且[])(1)(1)2(x f x f x f +=-+,,32)1(+=f 求)1989(f 的值.(1989)f = 。

2、比较函数值大小例3.若))((R x x f ∈是以2为周期的偶函数,当[]1,0∈x 时,,)(19981xx f =试比较)1998(f 、)17101(f 、)15104(f 的大小.3、求函数解析式例4.设)(x f 是定义在区间),(+∞-∞上且以2为周期的函数,对Z k ∈,用k I 表示区间),12,12(+-k k 已知当0I x ∈时,.)(2x x f =求)(x f 在k I 上的解析式.例5.设)(x f 是定义在),(+∞-∞上以2为周期的周期函数,且)(x f 是偶函数,在区间[]3,2上,.4)3(2)(2+--=x x f 求[]2,1∈x 时,)(x f 的解析式.4、判断函数奇偶性例6.已知)(x f 的周期为4,且等式)2()2(x f x f -=+对任意R x ∈均成立,判断函数)(x f 的奇偶性.5、确定函数图象与x 轴交点的个数例7.设函数)(x f 对任意实数x 满足)2()2(x f x f -=+,=+)7(x f ,0)0()7(=-f x f 且判断函数)(x f 图象在区间[]30,30-上与x 轴至少有多少个交点.6、在数列中的应用例8.在数列{}n a 中,)2(11,3111≥-+==--n a a a a n n n ,求数列的通项公式,并计算.1997951a a a a ++++7、在二项式中的应用例9.今天是星期三,试求今天后的第9292天是星期几?8、复数中的应用例10.(XX 市1994年高考题)设)(2321是虚数单位i i z +-=,则满足等式,z z n =且大于1的正整数n 中最小的是()(A ) 3 ; (B )4 ; (C )6 ; (D )7.9、解“立几”题例11.ABCD —1111D C B A 是单位长方体,黑白二蚁都从点A 出发,沿棱向前爬行,每走一条棱称为“走完一段”。

SX2020A099高考数学必修_抽象函数周期性的结论及应用

SX2020A099高考数学必修_抽象函数周期性的结论及应用

抽象函数周期性的结论及应用抽象函数是指没有具体地给出函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数.下面例析其周期性的三个重要结论及应用.一、三个结论若a,b是非零常数,且a≠b,则有满足以下条件的函数f(x)为周期结论1 (递推式与周期关系结论)⑴若f(x+a)=f(x-a),则T=2a;⑵若f(x+a)=-1()f x,则T=2a;⑶若f(x+a)=-f(x),则T=2a;⑷若f(x+a)=1()1()f xf x+-,则T=4a.结论2(对称性与周期关系结论)⑴f(x)关于x=a及x=b对称,则T=2(b-a);⑵f(x)关于x=b及M(a,0)对称,则T=4(b-a);⑶f(x)关于点M(a,0)和N(b,0)对称,则T=2(b-a).结论3 (奇偶性与周期关系结论)⑴f(x)是偶函数且关于直线x=a对称,则T=2a;⑵f(x)是奇函数且关于直线x=a对称,则T=4a.二、应用举例1.求值例1设f(x)满足f(x+1)=f(x-1),当x∈(0,1)时,f(x)=3x-2,求13log 36f ⎛⎫ ⎪⎝⎭.解:由结论1⑴,得T =2.∴ ()133log 36log 36f f ⎛⎫=-= ⎪⎝⎭f (-log 336+4)=39log 4f ⎛⎫ ⎪⎝⎭. 易知0<log 394<1, ∴ 13log 36f ⎛⎫ ⎪⎝⎭=39log 4f ⎛⎫ ⎪⎝⎭=39log 43-2=94-2=41. 例2 已知f (x )是定义在R 上的函数,且满足f (x +2)[1-f (x )]=1+f (x ),f (1)=2005,求f (2001)的值.解:由f (x )≠1,则有f (x +2)=1()1()f x f x +-,由结论1⑷,得T =2×4=8. ∴ f (2001)=f (1+8×250)=f (1)=2005.例3 已知函数f (x )=f (x +2)+f (x -2)对于x ∈R 成立,且f (1)=100,求f (2005)的值.解:由f (x )=f (x +2)+f (x -2), ①得f (x +2)=f (x +4)+f (x ). ②由①、②,得f (x +4)=-f (x -2),即f (x +6)=-f (x ).由结论1⑵,知T =12.故有f (2005)=f (1+12×167)=f (1)=100.2.判断奇偶性例4 若函数f (x )对于x ∈R 满足,f (x +1002)=-1()f x ,f (1002+x )=f(1002-x),则f(x)为( )(A) 是奇函数而不是偶函数(B) 是偶函数而不是奇函数(C) 是奇函数又是偶函数(D) 不是奇函数也不是偶函数解:由f(x+1002)=-1()f x,结合结论1⑵,知T=2004.∴f(x)=f(2004+x)=f[1002+(1002+x)]=f[1002-(1002+x)]=f(-x).即f(-x)=f(x).∴y=f(x)是偶函数.故选(B).3.求解析式例5已知偶函数f(x)的图象关于直线x=1对称,且x∈[3,4]时,f(x)=2x-1,求当x∈[14,15]时,f(x)的解析式.解:由条件及结论3⑴,知f(x)的周期是2.故当x∈[14,15]时,f(x)=f(x-18)=f(18-x).而知3≤18-x≤4,故f(x)=f(18-x)=[2×(18-x)-1]=-2x+35.。

10 第二章 微专题 抽象函数的性质

10 第二章 微专题 抽象函数的性质

THANKS
(3)如果f (x+a)+f (x)=c(a≠0),那么f (x)是周期函数,其中一个周期T=2a.
ห้องสมุดไป่ตู้
微专题 抽象函数的性质
类型三 抽象函数的奇偶性和对称性
【例3】已知定义在R上的函数f (x)满足f (x+6)=f (x),y=f (x+3)为偶函数.若
f (x)在(0,3)内单调递减,则下面结论正确的是( )
D.c>b>a
A
解析:因为∀x1,x2∈(-∞,0]且x1≠x2时,有f
x1 -f
x1-x2
x2 >0,
所以函数f (x)在(-∞,0]上单调递增.
由f (x)为偶函数,得函数f (x)在[0,+∞)上单调递减.
因为0<sin 3<1,1<ln 3<2,21.5>2,f
ln
1 3
=f (-ln 3)=f (ln 3),
所以f (sin 3)>f (ln 3)>f (21.5),即a>b>c.
微专题 抽象函数的性质
思维建模 比较大小,利用奇偶性把不在同一单调区间上的两个或多个自变量的函数值转 化到同一单调区间上,进而利用函数单调性比较大小.
微专题 抽象函数的性质
类型二 抽象函数的周期性 【例2】(2022·新高考全国Ⅱ卷)若函数f (x)的定义域为R,且f (x+y)+f (x-y)=f
22
所以∑ f k =f (1)+f (2)+f (3)+f (4)=1-1-2-1=-3.故选A.
k=1
微专题 抽象函数的性质
思维建模
抽象函数的周期
(1)如果f (x+a)=-f (x)(a≠0),那么f (x)是周期函数,其中一个周期T=2a.

关于抽象函数问题的解法

关于抽象函数问题的解法

抽象函数问题有关解法一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1x f x x -=- 2.凑配法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x x x +=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例析抽象函数周期的求法
抽象函数周期问题是近年来高考及各地模拟试题中高频出现的问题,其周期求法能有效考查学生的逻辑思维能力和代数推理能力,对培养学生思维品质大有帮助。

下面举例说明求周期的常用方法及技巧。

一、仅含抽象关系式的周期函数
例1 若存在常数m>0,使函数f(x)满足,则的一个正周期是____________。

解:设,则,依题意有
,由周期函数的定义,是的一个周期
所以期
例2 已知函数满足,求证:函数为周期函数。

证明:因为对有
(2)代入(1)得
这样
所以为周期函数,且为它的一个周期。

例3 设函数的定义域关于原点对称,且对定义域内任意,有
,且存在常数,使。

试证:是周期函数,且有一个周期为4a。

证明:设,则
所以y=f(x)为周期函数,且有一个周期为4a。

说明:从以上几例可见,适当的赋值和变量代换,是探求抽象函数周期的关键。

下面再给一个探求周期来计算函数值的例子。

例4 设是定义在R上的函数,且对任意,都有
,又,求的值。

解:

所以
可知是以2为一个周期的周期函数
所以
二、图象中有两条对称轴的抽象函数
例5 若函数的图象关于两条直线和都对称,试证:是周期函数,且是它的一个周期。

证明:因为的图象关于直线和(a<B)都对称< span>
所以且
这样
所以是周期函数,且是它的一个周期。

例6 设是定义在R上的偶函数,且它的图象关于x=2对称,已知时,,求时,的表达式。

解:由题设知:有两条对称轴和
所以为周期函数,且为它的一个周期
又当时,
所以
三、图象关于两点成中心对称的抽象函数
例7 设函数的图象关于相异两点A(a,0),B(b,0)都对称,则是一个周期为的周期函数。

证明:由题设有,这样
故原命题得证
例8 定义在R上的函数f(x)是奇函数,又也是奇函数,求
的值。

解:因为f(x)是R上的奇函数,所以f(x)关于O(0,0)对称,且f(0)=0
又是奇函数,所以f(x)关于点(-1,0)对称
所以是f(x)的一个周期
所以
四、图象有一条对称轴和一个中心对称点的抽象函数
例10 设函数的图象关于点A(a,0)与直线都对称,则f(x)为周期函数,且是它的一个周期。

证明:因为函数f(x)图象点于点A(a,0)对称
所以
又函数f(x)图象关于直线对称
所以
这样
所以为周期函数且为它的一个周期。

相关文档
最新文档