人教版数学八年级下册导学案:16.2-1二次根式的乘法运算
人教版数学八年级下册16.2第1课时《二次根式的乘法》说课稿

人教版数学八年级下册16.2第1课时《二次根式的乘法》说课稿一. 教材分析《二次根式的乘法》是人教版数学八年级下册第16.2节的内容,这部分内容是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行教授的。
二次根式的乘法是数学中基本的运算之一,它在数学问题的解决中有着广泛的应用。
通过学习这部分内容,可以使学生进一步理解和掌握二次根式的性质,提高他们的数学运算能力。
二. 学情分析在八年级的学生已经具备了一定的数学基础,对于二次根式的性质和加减法运算已经有了一定的了解。
但是,学生在进行二次根式的乘法运算时,可能会对如何正确处理根号下的乘法运算感到困惑。
因此,在教学过程中,需要引导学生正确理解二次根式的乘法运算规则,并通过大量的练习来巩固他们的理解。
三. 说教学目标1.知识与技能目标:使学生理解和掌握二次根式的乘法运算规则,能够正确进行二次根式的乘法运算。
2.过程与方法目标:通过教师的引导和学生的自主探究,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极的学习态度和良好的学习习惯。
四. 说教学重难点1.教学重点:使学生理解和掌握二次根式的乘法运算规则。
2.教学难点:如何引导学生正确理解二次根式的乘法运算规则,并能够灵活运用。
五. 说教学方法与手段在教学过程中,我将采用讲授法和探究法相结合的教学方法。
在讲解二次根式的乘法运算规则时,我将通过生动的例子和清晰的解释,帮助学生理解和掌握。
同时,我将引导学生进行自主探究,通过解决实际问题,来加深他们对二次根式乘法运算的理解。
此外,我还将运用多媒体教学手段,如PPT等,来辅助教学,使教学内容更加生动和直观。
六. 说教学过程1.导入:通过一个实际问题,引发学生对二次根式乘法运算的思考,激发他们的学习兴趣。
2.讲解:讲解二次根式的乘法运算规则,并通过大量的例子来解释和巩固。
3.练习:让学生进行二次根式乘法运算的练习,及时发现和纠正他们的错误。
人教版八年级数学下册16.2二次根式的乘除(第2课时)导学案

人教版义务教育课程标准实验教科书八年级下册16.2二次根式的乘除导学案(2)学习目标:1、掌握二次根式的除法法则和商的算术平方根的性质。
2、能熟练进行二次根式的除法运算及化简。
学习重点:掌握和应用二次根式的除法法则和商的算术平方根的性质。
学习难点:正确依据二次根式的除法法则和商的算术平方根的性质进行二次根式的化简。
学习过程:(一)复习回顾1、写出二次根式的乘法法则和积的算术平方根的性质2、计算:(1)38×(-46)(2)3ab12ab63、填空:(1(2=________(3(二)提出问题1、二次根式的除法法则是什么?如何归纳出这一法则的?2、如何二次根式的除法法则进行计算?3、商的算术平方根有什么性质?4、如何运用商的算术平方根的性质进行二次根式的化简?(三)自主学习自学课本内容,完成下面的题目:1、由“知识回顾3题”可得规律:2、利用计算器计算填空:(1=_________(2=_________(3=______3、根据大家的练习和解答,我们可以得到二次根式的除法法则: 。
把这个法则反过来,得到商的算术平方根性质: 。
(四)合作交流1、 自学课本例4,仿照例题完成下面的题目:计算:(1(22、自学课本例5,仿照例题完成下面的题目:化简:(1(23、自学课本例6,仿照例题完成下面的题目:计算:(1)218(2)4032(3)a 3274、自学课本例7,仿照例题完成下面的题目:设长方形的面积为S ,相邻两边的长分别为a,b,已知S=16,b=10,求a(五)精讲点拨1、当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,被开方数之商为被开方数。
2、化简二次根式达到的要求:(1)被开方数不含分母;(2)分母中不含有二次根式。
(六)拓展延伸阅读下列运算过程:3==5== 数学上将这种把分母的根号去掉的过程称作“分母有理化”。
利用上述方法化简:(1)(2=_________=_____ ___ (4=___ ___。
人教版数学八年级下册16.2《二次根式的乘法》(第1课时)教案

人教版数学八年级下册16.2《二次根式的乘法》(第1课时)教案一. 教材分析人教版数学八年级下册16.2《二次根式的乘法》是初中数学的一块重要内容。
这部分内容主要让学生掌握二次根式相乘的法则,并能灵活运用这些法则解决实际问题。
教材通过详细的例题和练习,使学生逐步掌握二次根式的乘法运算。
二. 学情分析学生在学习本课时,已经掌握了二次根式的概念、性质和简单的运算。
但学生在应用二次根式乘法法则解决实际问题时,往往会因为对概念理解不深而出现错误。
因此,在教学过程中,教师需要帮助学生巩固已学知识,提高学生解决问题的能力。
三. 教学目标1.让学生掌握二次根式相乘的法则。
2.培养学生运用二次根式乘法法则解决实际问题的能力。
3.提高学生的数学思维能力和运算能力。
四. 教学重难点1.二次根式相乘的法则。
2.如何运用二次根式乘法法则解决实际问题。
五. 教学方法采用启发式教学法、案例教学法和小组合作学习法。
通过设置启发性问题,引导学生思考;通过分析典型案例,使学生掌握二次根式乘法法则;通过小组合作学习,提高学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关教学案例和练习题。
2.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾二次根式的概念、性质和简单运算。
为新课的学习做好铺垫。
2.呈现(15分钟)教师通过多媒体展示典型案例,引导学生观察、分析并总结二次根式相乘的法则。
案例分析过程中,教师引导学生思考,鼓励学生发表自己的观点。
3.操练(15分钟)教师给出一些练习题,让学生运用刚学的二次根式乘法法则进行计算。
教师巡视课堂,及时给予学生个别辅导,帮助学生巩固所学知识。
4.巩固(5分钟)教师总结本节课所学内容,让学生复述二次根式乘法法则。
通过这个环节,检查学生对知识的掌握程度。
5.拓展(5分钟)教师提出一些拓展问题,引导学生运用二次根式乘法法则解决实际问题。
教师鼓励学生发挥自己的创新能力,尝试不同解题方法。
春学期八年级数学下册人教版八年级数学下册《16.2二次根式的乘除(一)》导学案(Word版)

中学八年级(下)数学“三生五学”自主发展导学稿班级姓名编号主备:审核人:日期:课题:16.2 二次根式的乘除(1)展示课(时段:正课时间:45 分钟)学习目标:会利用a ·b=ab(a≥0,b≥0),ab=a·b(a≥0,b≥0)进行二次根式的化简与运算,并会进行简单的二次根式的乘法运算课堂元素自学合学展学学法指导(内容〃学法〃成果。
时间)互动策略(内容·形式·时间)展示方案(内容〃方式〃时间)温故知新【学习内容】自学教材P6-7页内容,后合上书本完成导学稿相应内容【学法指导】用圈、点、勾、划、记的方法有效习P6-7页旧知连接:1、aa=2)((a≥0)2、aa=2(a≥0),aa-=2(a<0)3、检测:化简:()=-22.0,()=-23,()=233= ,()=25;1、小组长检查自研成果并给出等级评定2、组中带领成员交流自研成果与个人疑难小对子交流分享和对子交流自学的成果并用红笔修正补充。
互助组:4人冲刺挑战攻关挑战:共同体:8人分工预展在行政大组长的主持下,根据本组的展示内容做好分工,完成版面设计,做好展示前的预展.方案一展示探究一:1、谁快谁展示探究中的规律;2、用1分钟时间完成规律展示。
(4分钟)方案二:展示探究二1、组代表展示例1的解题思路;2、用1分钟时间思考同类演练1,准备全班展示;(10分钟)方案三:展示探究三1、组代表汇报展示例2;2、用2分钟时间思考同类演练2准备全班展示。
(10分钟)应用探究【探究一】:法则生成1.(1)完成下列填空;(1)∵×=2×3=___,=____;∴×____(2)∵×=___,____;∴×__(3)×=__ _,_ __ ;∴×__ _(2)观察计算结果,你能发现什么规律?一般地,对二次根式的乘法是:a·b=(a ,b )【探究二】:灵活应用例1.计算(1)5×7(2)13×9思考:例1中是如何运用法则解题的?同类演练1:计算(1)123⨯(2)721288⨯【探究三】把a·b=ab反过来,就得到:ab=a·b,(a ,b ),利用它就可以进行二次根式的化简(在本章中,如果没有特别说明,所有的字母都表示正数)例2 化简,使被开方数不含开得尽方的因数或因式(1)916⨯(2)229x y(3)36×210(4)5a·15ay思考:1、例2中是如何进行二次根式化简的。
人教版数学八年级下册16.2第1课时《 二次根式的乘法》教案

人教版数学八年级下册16.2第1课时《二次根式的乘法》教案一. 教材分析人教版数学八年级下册16.2第1课时《二次根式的乘法》主要介绍了二次根式相乘的方法和性质。
本节课的内容是学生学习二次根式的重要部分,对于学生理解和掌握二次根式有重要意义。
教材通过具体的例子引导学生探究二次根式相乘的规律,让学生在实践中掌握二次根式的乘法。
二. 学情分析学生在学习本节课之前,已经掌握了二次根式的定义、性质和简单的运算。
但学生对于二次根式相乘的规律可能还不够清晰,需要通过实例和练习来进一步理解和掌握。
此外,学生可能对于二次根式相乘的结果中的根式次数和根式系数的变化还不够敏感,需要通过练习和教师的引导来提高。
三. 教学目标1.让学生理解二次根式相乘的规律和方法。
2.让学生能够运用二次根式相乘的方法解决实际问题。
3.培养学生的运算能力和逻辑思维能力。
四. 教学重难点1.教学重点:二次根式相乘的规律和方法。
2.教学难点:二次根式相乘结果中根式次数和根式系数的处理。
五. 教学方法采用问题驱动法、实例教学法和练习法。
通过提出问题,引导学生思考和探索;通过实例讲解,让学生理解和掌握二次根式相乘的方法;通过练习,让学生巩固知识和提高能力。
六. 教学准备教师准备PPT、教案、练习题等教学材料。
学生准备笔记本、笔等学习用品。
七. 教学过程1.导入(5分钟)教师通过提出问题,引导学生思考二次根式相乘的方法。
例如:“如何将两个二次根式相乘?相乘的结果有什么规律?”2.呈现(15分钟)教师通过PPT展示二次根式相乘的实例,引导学生观察和分析实例中的规律。
例如,展示两个二次根式相乘的结果,让学生观察根式次数和根式系数的变化。
3.操练(15分钟)教师让学生进行二次根式相乘的练习。
例如,让学生计算两个二次根式的乘积,并要求学生解释计算过程中的思路和方法。
4.巩固(10分钟)教师通过PPT展示一些巩固性的题目,让学生独立完成。
教师在学生完成后进行讲解和解析,帮助学生巩固知识和提高能力。
人教版八年级下册数学 16.2.1二次根式的乘法导学案设计(无答案)

活动
小组学习并展示
三、反馈达标
基础题:
1、如果 ,那么( )
A、x≥0B、x≥10 C、0≤x≤10D、x为全体实数
2、下列各式计算正确的是( )
A、பைடு நூலகம்B、
C、 D、
3、计算:
⑴ ⑵
4、设 ,计算:
⑴ ⑵
5、计算:
提高题:
1、 2、
能力
提高
教师
引导
学习
反思
有了乘法基础,本节学习收效快,学生掌握较好。
课题
16.2.1二次根式的乘法
编写时间
备课时间
学习
目标
1、知识与能力:能运用二次根式的乘法法则进行乘法运算,并会逆用公式进行二次根式的化.
2、2、过程与方法:经历二次根式乘法法则的探究过程,进一步理解乘法法则
.3、情感态度与价值观标:培养学生从特殊到一般的思维方法.
学习
重点
掌握和应用二次根式的乘法法则.
学习
难点
正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简.
学 习 程 序
学习要求
一、自主学习
1、积的算术平方根的性质用公式表示:
2、二次根式的乘法法则用公式表示:
二、合作交流
1、计算
⑴ ⑵
2、计算下列各式,其中
⑴ ⑵
3、阅读课本“说一说”,写出你(或小组)结论:
学生预习并填写
分组检查并改正
人教版数学八年级下册16.2第1课时《 二次根式的乘法》教学设计

人教版数学八年级下册16.2第1课时《二次根式的乘法》教学设计一. 教材分析人教版数学八年级下册16.2第1课时《二次根式的乘法》是二次根式这一章节的继续,此节内容主要介绍了二次根式的乘法运算。
教材通过实例展示了二次根式乘法的基本方法,并引导学生通过合作交流,探索并掌握二次根式乘法的运算法则。
此节内容对于学生来说,需要具备一定的数学思维能力和抽象思维能力。
二. 学情分析学生在学习此节内容前,已经学习了二次根式的定义、性质和简单的运算。
他们对于二次根式有一定的了解,但还需要进一步的深化。
在学习过程中,学生需要具备一定的观察能力、思考能力和动手能力。
同时,此节内容的学习也为后续的二次根式除法、混合运算等内容的学习打下基础。
三. 教学目标1.理解二次根式的乘法概念,掌握二次根式乘法的运算法则。
2.培养学生观察、思考、动手和合作交流的能力。
3.培养学生的抽象思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.二次根式乘法的运算法则。
2.如何在实际问题中运用二次根式乘法。
五. 教学方法采用问题驱动法、合作交流法和实例教学法。
通过问题引导学生思考,通过合作交流让学生共同探索,通过实例让学生理解并掌握二次根式乘法的运算法则。
六. 教学准备1.准备相关的实例和练习题。
2.准备教学课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考二次根式乘法的问题。
例如,已知√3 * √5 = √15,那么√6 * √10 = ?让学生尝试解答,从而引出二次根式乘法的学习。
2.呈现(10分钟)通过课件呈现二次根式乘法的运算法则,并用实例进行解释。
例如,√a * √b = √(ab),√a / √b = √(a/b)。
让学生观察和思考,总结出二次根式乘法的运算法则。
3.操练(10分钟)让学生通过合作交流,共同解决一些二次根式乘法的问题。
例如,计算√8 * √15,√25 * √4,等。
教师在这个过程中,及时给予指导和纠正。
人教版-数学-八年级下册16.2 第1课时 二次根式的乘法 导学案

二次根式的乘法学习目标:1.理解二次根式的乘法法则;2.会运用二次根式的乘法法则和积的算术平方根的性质进行简单运算.重点:理解二次根式的乘法法则:()0,0≥≥=⋅baabba.难点:会运用二次根式的乘法法则和积的算术平方根的性质解题. 教学过程一、知识回顾1.二次根式的概念是什么?我们上节课学了它的哪些性质?2.使式子2有意义的条件是_________.要点探究探究点1:二次根式的乘法算一算计算下列各式,并观察三组式子的结果:_____;94____;_______94)1(=⨯=⨯=⨯_____;2516____;_______2516)2(=⨯=⨯=⨯._____3625____;_______3625)3(=⨯=⨯=⨯思考你发现了什么规律?你能用字母表示你所发现的规律吗?猜测()_____0,0a b吵,你能证明这个猜测吗?要点归纳:一般地,二次根式相乘,_________不变,________相乘. 语言表述:算术平方根的积等于各个被开方数积的算术平方根.典例精析例1(教材P6例1变式题)方法总结:二次根式乘法法则同样适合三个及三个以上的二次根式相乘,即0,0,0)a b k =≥≥≥L例2 计算:.⎛ ⎝方法总结:当二次根式根号外的因数不为1时,可类比单项式乘单项式的法则计算,即()0,0mn a b =≥≥例3 比较大小(一题多解):(2)--方法总结: 比较两个二次根式大小的方法:可转化为比较两个被开方数的大小,即将根号外的正数平方后移到根号内,计算出被开方数后,再比较被开方数的大小被开方数大的,其算术平方根也大.也可以采用平方法.针对训练1.( )D.22.下面计算结果正确的是 ( )A.==C. =D.=3.=_________.探究点2:积的算术平方根的性质一般的()0,0≥≥=⋅baabba,反过来可写为()______0,0_ab a b=吵要点归纳:算术平方根的积等于各个被开方数积的算术平方根.典例精析例4 (教材P7例2变式题)化简:(1)225328-;(2)()3226900x x y xy x y,++≥≥.方法总结: 当二次根式内的因数或因式可以化成含平方差或完全平方的积的形式,此时运用乘法公式可以简化运算.针对训练1. 计算:()()31(1)144169(2)284a a; .-⨯-⋅2.下面是意大利艺术家列奥纳多·达·芬奇所创作世界名画,若长为24,宽为8,求出它的面积.二、课堂小结二次根式的乘法内容二次根式的乘法法则算术平方根的积等于各个被开方数积的算术平方根.即()0,0≥≥=⋅baabba积的算术平方根积的算术平方根,等于积中各因式的算术平方根的积.即。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 /
4
2 ____
=
)4____
=(
3____ =(第三课时:二次根式的乘法运算(3)
一、学习目标
1、掌握二次根式的乘法法则和积的算术平方根的性质。
2、熟练进行二次根式的乘法运算及化简。
二、学习重点、难点
重点:掌握和应用二次根式的乘法法则和积的算术平方根的性质。
难点:正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化
简。
三、学习过程
1、形如_________(条件:_______)的式子叫做二次根式.
二次根式的概念有两个要点:一是应含有________;二是被开方数的取值范围必须是_____________.
2、二次根式的性质:(1 (2)
3时, .
4 . 5
(二)自主学习
知识点一:二次根式的乘法法则是什么?
1、计算:(1;(2;(3
2、根据上题计算结果,用“>”、“<”或“=”填空: (1(2(3
3、由上题并结合知识回顾中的结论,你发现了什么规律?
能用数学表达式表示发现的规律吗? ___ (0)______ (0)
a a ≥⎧==⎨
<⎩
2 / 4
1
273
⨯(2)1
4 288=____________72
⨯
=()1
3 26___________2
⨯
==() (0,0)
ab a b a b =≥≥0,0)a b ab a b =≥≥2 225
()3 4y
()23
4 16ab c ()1 49121⨯()二次根式的乘法法则:
______ (___0,___0)a b a b =
即: 二次根式相乘:根号_______,被开方数___________. 注意:在本章中,如果没有特别说明,所有的字母都表示正数. 4、例1 计算:
1 35⨯()
5、巩固提高
计算:
1 25=____⨯()
2 312__________⨯==()
知识点二: 积的算术平方根有什么性质?
1、把公式 反过来,得到:
即:积的算术平方根等于各个被开方数的算术平方根的积.
2、例2 化简:
1 1681⨯() 23
2 4a b ()
例3 计算:
3、巩固提高 化简:
()1.147()2.35210()13.
33
x xy
3 / 4
__________ (0,0)
ab a b =≥≥b
a a
b ⋅=)0(≥a 4
32x
(三)知识梳理
1、二次根式的乘法法则:
______ (___0,___0)a b a b =
即: 二次根式相乘:根号_______,被开方数___________. 2、积的算术平方根的性质: 3、化简二次根式的步骤:
(1)将被开方数尽可能分解成几个平方数.
(2)应用
(3)将平方项应用 化简. (四)达标测试: 1、选择题:(1)等式
1112-=-•+x x x 成立的条件是( )
A .x ≥1
B .x ≥-1
C .-1≤x ≤1
D .x ≥1或x ≤-1 (2)下列各等式成立的是( ).
A .45×25=85
B .53×4
2=205
C .43×3
2=75 D .53×42=206
(3)二次根式6)2(2
⨯-的计算结果是( ) A .2
6 B .-26 C .6 D .12
2、化简:
(1)360; (2) (3)2
212b a ;
(6)4925⨯; (5)64100⨯。
3、计算:
(1)3018⨯; (2)75
2
3⨯
; (3)9×27
(4)
(5)
;(6
课后反思:
4 / 4。