波形发生器(DDS)_毕业设计论文
基于DDS技术的任意波形发生器的设计

基于DDS技术的任意波形发生器的设计1.设计思路信号发生器广泛应用于电子电路、自动控制和科学试验等领域。
是一种为电子测量和计量工作提供符合严格技术要求的电信号设备,也是应用最广泛的电子仪器之一,几乎所有的电参量的测量都需要用到信号发生器。
本设计研究的信号发生器的基本思路是:基于DDS芯片AD9850基础的任意波形发生器。
系统是基于AD9850芯片产生的波形。
它是由相位累加器、正弦查询表、D/A转换器组成的集成芯片。
其中相位累加器的位数N=32位,寻址RAM用14位,舍去18位,采用高速10位数模转换,DDS的时钟频率为125MHz,输出信号频率分辨率可达0.0291Hz;系统的微处理器采用8051,外围电路主要是接口电路、调幅电路、滤波电路和积分电路的设计。
同时还包括键盘接口。
系统的软件主要是启动和初始化8051,然后处理键盘输入的频率控制字和相位控制字,并将其转换为32位的二进制数的控制字,最后并行递交给AD9850并启动AD9850,让它实现从正弦查询表中取数产生波形再输出。
2.方案设计2.1 DDS的基本原理1971年,美国学者J. Tierncy, C. M. Rader和B. Gold提出了以全数字技术,从相位概念出发直接合成所需波形的一种新的频率合成原理。
限于当时的技术和器件水平,它的性能指标尚不能与已有的技术相比,故未受到重视。
近20年间,随着技术和器件水平的提高,一种新的频率合成技术——直接数字合成频率合成(DDS)得到了飞速的发展,它以有别于其它频率合成方法的优越性能和特点成为现代频率合成技术中的佼佼者。
DDS基本原理图如图1所示,DDS由相位累加器,只读存储器,数模转换器DAC及低通滤波器组成。
以合成正弦波为例,幅值表ROM中存有正弦波的幅值码,相位累加器在时钟f c的触发下,对频率控制字K进行累加,相位累加器输出的相位序列(即相码)作为地址去寻址ROM,得到一系列离散的幅度编码(即幅码)。
基于单片机的DDS信号发生器设计毕业论文

摘要本文首先介绍了信号发生器的发展以及直接数字频率合成技术(DDS)的现状和发展趋势,然后介绍了DDS的原理结构及其主要构成部分。
再根据系统的要求,比较合理地采用了DDS技术,以单片机AT89S52和AD9850芯片为核心,设计了一种结构简单性能优良的信号发生器。
最后详细分析了该信号发生器的系统结构,软硬件设计和具体电路实现。
信号发生器的硬件部分包括三个模块,分别是单片机主控制模块,DDS模块和信号频率显示模块。
软件部分主要开发基于单片机AT89S52的数据处理和控制程序,以及信号发生器的外部通信程序。
最终完成实验电路板的制作,并通过电路板的调试,实现电路工作正常。
根据系统的最终测试结果可知该信号发生器具有输出信号波形精度高,频带宽等特点。
关键词:信号发生器;DDS;AT98S52;AD9850;频率;ABSTRACTThis article describes the development of the signal generator, the status and development trends of direct digital frequency synthesis (DDS) technology at first, then introduces the principle of DDS structure and its main components. According to system requirements, more rational use of DDS technology, single-chip AT89S52 and AD9850 chip as the core, has designed a simple structure and excellent performance of the signal generator. Finally, there is a detailed analysis of the signal generator system architecture, hardware and software design and specific circuit implementation. The hardware portion of the signal generator consists of three modules, namely, single-chip main control module, DDS module and signal frequency display module. Some of the major software development based on MCU AT89S52 data processing and control procedures, as well as external communication signal generator program. Completing the pilot circuit board production, and through the debug board to realize the circuit is working properly. According to the results of final test, the system shows that the output signal waveform signal generator has high accuracy, bandwidth and other characteristics.Keywords: Signal Generator; DDS; AT98S52; AD9850; Frequency目录摘要 (I)ABSTRACT .................................................................................................................. I I 第1章绪论 (1)1.1 课题背景 (1)1.2 课题的主要研究目的和意义 (1)第2章 DDS简介 (3)2.1 DDS结构 (3)2.2 频率预置与调节电路 (4)2.3 累加器 (4)2.4 控制相位和控制波形的加法器 (5)2.5 波形存储器 (5)2.6 D/A转换器 (5)2.7 低通滤波器 (6)第3章系统整体设计方案 (7)3.1 系统设计原理 (7)3.2 总体设计框图 (7)第4章系统各模块组成 (8)4.1 单片机控制模块 (8)4.1.1 AT89S52单片机介绍 (8)4.1.2 AT89S52功能特性描述 (8)4.1.3 时钟电路 (11)4.1.4 复位电路 (11)4.2 按键控制模块 (12)4.3 LCD显示模块 (13)4.4 AD9850 与单片机连接模块 (13)4.4.1 AD9850简介 (13)4.4.2 AD9850的控制字与控制时序 (16)4.4.3 单片机与AD9850的接口 (18)第5章软件设计与硬件调试 (20)5.1 程序流程图 (20)5.2 软件测试 (21)5.3 硬件电路制作 (21)5.4 硬件电路调试 (22)第6章结束语 (27)致谢 (28)参考文献 (29)附录1 原理图 (30)附录2 主程序代码 (31)第1章绪论1.1 课题背景信号发生器[1],它是一种悠久的测量仪器,最早出现于十九世纪20年代。
【毕业设计】基于FPGA的DDS信号发生器

术中的佼佼者。现场可编程门阵列FPGA设计灵活、速度快在数字专用集
成电路的设计中得到了广泛的应用由于现场可编程门阵列(FPGA)具有高集成
度、高速度、可实现大容量存储器功能的特性能有效地实现DDS技术极大
generators have become increasingly demanding. In recent years, direct digital
synthesizers (DDS) has a frequency resolution because of its high-frequency
I
基于FPGA的DDS波形发生器 姓名:张怡 专业班级:电子2班 指导教师:易诗
摘 要
波形发生器己成为现代测试领域应用最为广泛的通用仪器之一代表了波形
发生器的发展方向。随着科技的发展对波形发生器各方面的要求越来越高。近
年来,直接数字频率合成器DDS由于其具有频率分辨率高、频率变换速度快、
analyzer on the results of observation and analysis. By analyzing the results, it show
that the design meets the requirements intended to.
And Proved that using Flex way to programming the FPGA to produce a
technology to become the leader in . Field-programmable gate array (FPGA) design
基于DDS信号发生器毕业设计论文

目录绪论 (1)1 系统设计 (1)1.1方案论证 (2)1.1.1 信号模块 (2)1.1.2 控制模块 (3)1.1.3 显示模块 (4)1.1.4 键盘输入模块 (4)1.1.5 系统各模块的最终方案 (4)1.2理论分析与计算 (5)1.2.1 频率精度计算 (5)1.2.2 DDS的理论分析 (5)1.2.3 DDS的参数计算 (6)2 硬件系统设计 (7)2.1硬件元器件的选用 (7)2.1.1 C8051F020控制芯片简介 (7)2.1.2 AD9954简介 (9)2.2单元硬件电路设计 (13)2.2.1 矩阵(4×4)键盘电路 (13)2.2.2 电源电路 (14)2.2.3 电压调幅电路 (14)2.2.4 方波电路 (14)2.2.5 三角波电路 (15)3 软件系统设计 (16)3.1程序流程图 (16)4 系统测试 (19)4.1仿真测试 (19)4.2指标测试 (19)4.3测试方法 (20)5 结束语 (22)致谢 (23)参考文献 (24)附录一对AD9954编程的主要源程序清单 (25)附录二LCD显示子程序 (35)摘要:随着数字集成电路、微电子技术和EDA技术的深入研究,DDS技术以其有别于其它频率合成技术的优越性能和特点,成为现代频率合成技术中的佼佼者。
根据题目要求,我们以单片机C8051F020芯片和AD9954芯片为核心,辅以必要的模拟电路,设计一台信号发生器,使之能产生正弦波、方波和三角波。
该系统主要由控制模块、信号模块、显示模块、键盘输入模块构成。
仅用单片AD9954就实现了直接数字频率合成技术(DDS),产生稳幅正弦波。
输出的正弦波经过比较电路来实现方波的输出,而三角波则是在方波的基础上通过接入积分电路来实现的。
单片机对内部寄存器控制,AD9954就可以产生一个频谱纯净、频率和相位都可编程控制且稳定性很好的模拟波形,整个系统结构紧凑,电路简单,功能强大,可扩展性强。
波形发生器毕业论文

波形发生器毕业论文题目: 简易波形发生器系别:电气工程系专业:计算机控制专业目录前言 (1)1 系统总体设计 (2)1.1系统总体框图设计 (2)1.2系统的主要性能指标 (2)2 系统硬件设计 (3)2.1 单片机最小系统 (3)2.2 单片机D/A连接电路 (3)2.3放大电路 (4)2.4 PCB板设计 (4)3 系统软件设计 (6)3.1系统总体流程图 (6)3.2方波程序设计 (7)3.3 锯齿波程序设计 (8)3.4三角波程序设计 (9)3.5 正弦波程序设计 (10)4软硬件调试及结果分析 (11)4.1单片机软件开发系统 (11)4.2 软件调试 (11)4.3 硬件调试 (14)5 总结 (15)致谢 (16)参考文献 (17)附录1 电路原理图 (18)附录2 源程序 (18)元器件清单 (22)摘要:本课题硬件设计是采用89S51单片机作为控制核心,外围采用数字/模拟转换电路(DAC0832)、运放电路(OP07)、和独立联接式按键。
通过Protues 软件进行程序的编写。
以实现波形选择。
仿真通过以后再进行硬件的安装和调试,结果表明:本设计基本完成任务,能够产生正角波、方波和锯齿波四种波形,并可以通过键盘选择波型关键词:波形发生器,单片机,D/A转换,运算放大器前言单片机是一种集成的电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。
波形发生器是一种数据信号发生器,在调试硬件时,常常需要加入一些信号,以观察电路工作是否正常。
用一般的信号发生器,不但笨重,而且只发能发出一些简单的波形,不能满足需要。
例如用户要调试串口通信程序时,就要在计算机上写好一段程序,再用线连接计算机和用户实验板,如果不正常,不知道是通讯线有问题还是程序有问题。
毕业设计(论文)-基于DDS的正弦信号发生器的设计

1引言信号发生器是指产生所需参数的电测试信号的仪器。
按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。
信号发生器又称信号源或振荡器,各种波形曲线均可以用三角函数方程式来表示。
能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。
在生产实践和科技领域中有着广泛的应用。
信号发生器在电路实验和设备检测中具有十分广泛的用途。
例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器[7]。
在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。
正弦信号发生器的实现方法通常有以下几种:(1)用分立元件组成的信号发生器:通常是单函数发生器且频率不高,其工作不很稳定,不易调试。
(2)采用传统的直接频率合成法直接合成。
利用混频器、倍频器、分频器和带通滤波器完成对频率的算术运算。
由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂,体积庞大,成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。
(3)采用锁相环间接频率合成 (Phase Lock Loop简称PLL)。
虽然具有工作频率高、宽带、频谱质量好的优点,但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。
另外,由模拟方法合成的正弦波的参数(如幅度、频率和相位等)都很难控制,不易实现[2]。
(4)用专用直接数字合成(Direct Digital Synthesize r简称DDS)芯片的信号发生器:能产生任意波形并达到很高的频率。
用随机读/写存储器RAM存储所需波形的量化数据,按照不同频率要求,以频率控制字K为步进对相位增量进行累加,以累加相位值作为地址码读取存在存储器内的波形数据,经D/A转换和幅度控制,再滤波即可得所需波形。
DDS任意波形发生器的设计与实现

DDS任意波形发生器的设计与实现DDS任意波形发生器的设计与实现近年来,随着电子技术的飞速发展,任意波形发生器在信号发生、测试、测量等领域扮演着重要的角色。
而Direct Digital Synthesis(DDS)任意波形发生器作为一种数字信号处理技术,由于其高精度、低失真、灵活性强等优点,成为了目前最为常用的任意波形发生器技术之一。
DDS任意波形发生器工作原理基于数字信号处理与相位累加器。
其主要组成部分包括振荡器、相位累加器、数字控制模块和DAC(数模转换器)模块。
其中,相位累加器用于产生一个累加的相位值,该相位值会被数字控制模块处理后再输入DAC模块进行数模转换,并输出到外部电路。
而该外部电路连接到输出端口,可以控制输出的幅值以及频率,从而生成所需的任意波形。
在DDS任意波形发生器的设计与实现过程中,需要考虑多个关键因素。
首先,选择合适的振荡器型号以及参考时钟。
振荡器的质量和稳定性直接影响到输出信号的频率稳定性。
而参考时钟的准确性则决定了相位累加器的性能。
其次,在相位累加器的设计中,需要合理选择累加的相位步进值以及相位累加位数。
过大的步进值可能导致相位分辨率降低,而过小的步进值会增加累加器的位数,增加系统的复杂度。
另外,数字控制模块的设计需要考虑到输入的频率、相位和幅度的变化。
最后,需要合理选择DAC模块以及输出电路,以确保输出信号的质量和稳定性。
在实际实现过程中,可以使用FPGA(Field-Programmable Gate Array)作为主要硬件实现平台,并利用VHDL(VHSIC Hardware Description Language)进行硬件描述,从而构建DDS任意波形发生器。
FPGA的高度灵活性使得其适用于DDS任意波形发生器的实现,并且其可重构的特点使得系统可以根据需要进行扩展和改进。
在软件方面,可以使用C语言编写相应的控制程序,以实现对DDS任意波形发生器的控制和调节。
基于dds的毕业设计论文

1.3总设计框图
本文的设计框图如下1.1所示:DDS简介
直接数字频率合成技术是从相位概念出发直接合成所需波形的一种新技术。它在众多领域中都有着广泛的应用。
、C.M.Radar和B.Gold首次提出了直接数字频率合成(DDS---Direct Digital Synthesis)技术的观点。这是一种从相位概念出发的直接合成所需要波形的频率合成技术。同传统的频率合成技术相比,DDS具有优良的频率分辨率、相位变化连续、相位噪声低的优点,因此也非常重要的发展。
△f:相邻两个输出频率之间的间隔,也称为输出间隔频率,或频率步进值。如参考频率不变时,DDS的频率分辨率由相位累加器的位数N来决定。N的值一般比较大,如32位、48位、64位等。在通信系统中波段内的频率通道应该尽可能多,以满足通信的要求,所以希望△f应尽可能的小。DDS合成器则能够做到很低的频率。
在模拟直接频率合成技术、锁相频率合成技术和DDS合成技术中,输出频率的稳定度主要取决于参考频率的稳定度。
本设计以51单片机及DDS芯片AD9854为核心,采用直接数字合成技术来完成多功能信号发生器的设计。设计中采用DDS合成FSK、BPSK、方波和正弦波信号,最后所测波形基本上达到了任务书的要求。
关键词:DDS技术;AD9854;信号源;单片机
Research andDesign ofMulti-WaveformGeneratorBased on DDS
结论38
参考文献39
致谢40
附录41
基于DDS的多波形发生器的研究与设计
摘要:DDS器件采用了高速数字电路和高速D/A转换技术,具备了频率转换时间短、相对带宽宽、频率分辨率高、相位输出连续以及相位可快速切换等优点,可以实现对信号的全数字式调试。而且,由于DDS是数字化高密度集成电路产品,芯片体积小、功耗低,因此用DDS构成高性能频率合成的信号源来取代传统的频率信号源是未来的趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文) 题目:波形发生器成都工业学院论文摘要设计采用MCS-51系列单片机构成具有高可靠性的波形发生器,以单片机AT89C52为控制器,以DDS AD9850、D/A转换器TLC5615为核心。
通过微处理器控制AD9850,实现信号发生器功能,微处理器控制D/A转换器TLC5615,从而控制乘法器AD534,实现正弦信号幅值的可调性。
系统由单片机AT89C52最小系统模块、键盘模块、函数信号发生模块、I/O 口扩展模块(8155)、LCD1602显示模块、TLC5615与AD534调幅模块、中断调频和调相模块组成、积分电路模块组成。
单片机AT89S52最小系统模块为单片机提供12MHz晶振和复位电路,为单片机提供复位信号和内部时钟。
键盘模块以键盘扫描方式输入信号频率的初始值,以实现频率初始值时时可改的功能。
函数信号发生模块用数控的方法控制DDS芯片AD9850产生25Hz-40MHz正弦信号,25Hz-5MHz方波信号。
I/O口扩展模块利用8155芯片扩展单片机I/0口,以满足本设计对I/O口的需求量。
LCD1602显示模块时时显示输出波形频率、相位和幅值。
TLC5615与AD534调幅模块利用微处理器控制D/A转换器TLC5615,从而控制乘法器AD534,实现正弦信号幅值的可调性,精度可达O.05 V。
中断调频和调相模块由外中断0和外中断1组成,分别实现对输出信号频率步进、相位步进以及频率初值设定功能,频率步进量可达0.024,相位可按11.25°、22.5°、45°、90°、180°依此循环调节。
积分电路模块通过运算放大器,对输出方波积分实现三角波输出。
本设计用C语言编写模块化程序,增强可读性,便于AT89S52对各模块的控制。
关键词:单片机波形发生器直接频率合成器AbstractThis design adopts the MCS - 51 series single chip waveform generator with high reliability.AT89S52 as the controller, and DDS AD9850、TLC5615 D/A converter as the core. Through the microprocessor control of AD9850, realizes the signal generator. the microprocessor control of TLC5615 D/A converter, so as to control the multiplier AD534, adjustable sine wave signal amplitude.This system with 51 single-chip microcomputer as control core, by the power supply module, SCM AT89S52 minimum system module, keyboard module, I/O port extension module (8155), function module, LCD1602 display module, interrupt signal of frequency modulation, phase modulation modules. Keyboard input signal frequency scanning way, use the method of numerical control DDS chip AD9850 produces 25 HZ - 40 MHZ sine signal, 25 HZ - 5 MHZ square wave signal, and the triangular wave signal, the output waveform is stable, and the precision is higher. Adopt LCD1602 display frequency and phase of output waveform. Modular design using C language program, enhance readability, facilitate AT89S52 control of every module, realizing the function of each set.Key words:SCM Waveform Generator DDS目录论文摘要 (II)ABSTRACT (III)第1章绪论 (1)1.1题目背景与选题意义 (1)第2章 DDS技术的基本原理 (2)2.1 DDS结构 (2)2.1.1 频率预置与调节电路 (2)2.1.2 累加器 (3)2.1.3 控制相位的加法器 (3)2.1.4 D/A转换器 (3)2.1.5 低通滤波器 (3)2.2 DDS数学原理 (4)第3章总体设计方案 (6)3.1系统设计原理 (6)3.2总体设计框图 (6)第4章系统的硬件设计 (7)4.1 DDS芯片的选择 (7)4.2 AD9850简介 (7)4.2.1 AD9850功能概述 (7)4.2.2 AD9850的引脚功能 (7)4.2.3 AD9850的控制时序 (8)4.2.4 AD9850的控制字(频率相位调节) (9)4.2.5 单片机与AD9850的接口 (10)4.3 单片机(AT89C52)控制电路 (11)4.3.1 AT89C52主要性能 (11)4.3.2 时钟电路 (12)4.3.3 复位电路 (13)4.4 TLC5615与AD534幅值调节模块 (13)4.4.1 幅值调节的实现 (13)4.4.2 TLC5615和AD534与单片机的链接 (14)4.5 液晶显示模块 (15)4.5.1 LCD 1602的主要性能 (15)4.5.2 LCD 1602引脚功能及基本操作 (15)4.5.3 LCD 1602的显示地址 (16)4.5.4 LCD 1602指令说明 (17)4.5.5 LCD 1602与单片机的连接 (18)4.6 I/O口扩展(8155) (19)4.6.1 8155主要性能 (19)4.6.2 8155各引脚功能说明 (19)4.6.3 8155的地址编码及工作方式 (20)4.6.4 8155与单片机的链接 (20)4.7 键盘控制模块 (21)4.7.1 矩阵键盘的工作原理与接口(3*4) (21)4.7.2矩阵键盘与单片机链接电路 (22)4.8 低通滤波器的设计 (22)4.9 方波、三角波转换 (23)第5章波形发生器的软件设计 (24)5.1 主函数程序流程图 (24)5.2 频率相位步进值设置 (25)5.2.1 外中断0子程序 (25)5.2.2 流程图 (25)5.3 频率初始值设置 (26)5.3.1 外中断1子程序 (26)5.3.2 流程图 (26)5.4 波形生成 (27)5.4.1 AD9850子程序 (27)5.4.2 流程图 (27)5.5 信号幅值调节 (28)5.5.1 TLC5615子程序 (28)5.5.2 流程图 (28)5.6 键盘扫描 (29)5.6.1 键盘子程序 (29)5.6.2 流程图 (29)5.7 LCD的显示 (30)设计结果及结论 (31)参考文献 (32)附录1 硬件原理图 (33)附录2 程序代码 (34)第1章绪论1.1题目背景与选题意义信号发生器是一种常用的信号源,广泛应用于电子测量、自动控制和工程设计等领域。
随着电子技术的发展,对信号源频率的稳定度、准确度以及频谱纯度的要求越来越高。
通过单片机与DDS器件相结合,利用采样定理,通过查表法所产生的波形,不仅能满足多种类,高精度等条件,且输出波形的覆盖频率宽,可由0.029Hz到62.5MHz,频率步进间隔也足以满足<=10Hz的要求。
而DDS器件内部自带DA 转换器输出波形幅度可控,且转换精度高,也足以满足可按步进0.1V(峰-峰值)调整的要求。
利用所学单片机知识,设计出高精确度和稳定度,能产生多种波形,且易于产生任意波形和各种基本波形的线性组合的波形发生器,不仅能巩固和加深我们对所学单片机知识的理解,还能提高我们分析问题、解决问题的综合能力,同时还培养了自己的动手能力。
因此利用所学知识设计出多波形,宽频覆盖,高精度,自动化和智能化的波形发生器对培养我们各方面的能力非常必要。
第2章DDS技术的基本原理2.1 DDS结构直接数字频率合成器(Direct Digital Synthesizer)是从相位概念出发直接合成所需波形的一种频率合成技术。
一个直接数字频率合成器由相位累加器、加法器、波形存储ROM、D/A转换器和低通滤波器(LPF)构成。
DDS的原理框图如下所示:图2.1 DDS原理框图其中K为频率控制字、P为相位控制字、fc为参考时钟频率,N为相位累加器的字长,D为ROM数据位及D/A转换器的字长。
相位累加器在时钟fc的控制下以步长K作累加,输出的N位二进制码与相位控制字P相加后作为波形ROM的地址,对波形ROM进行寻址,波形ROM输出D位的幅度码S(n)经D/A 转换器变成阶梯波S(t),再经过低通滤波器平滑后就可以得到合成的信号波形。
这里我们用DDS实现正弦波的合成。
2.1.1 频率预置与调节电路K被称为频率控制字,也叫相位增量。
DDS方程为:f0=fCLK/2n,f0为输出频率,fc 为时钟频率。
当K=1时,DDS输出最低频率(也即频率分辨率),为fc/2n,而DDS的最大输出频率由Nyquist采样定理决定,即fc/2,也就是说K 的最大值为2N-1。
因此,只要N足够大,DDS可以得到很细的频率间隔。
要改变DDS的输出频率,只要改变控制字K即可。
2.1.2 累加器图2.2 累加器框图相位累加器由N位加法器与N位寄存器级联构成。
每来一个时钟脉冲fc,加法器将频率控制字K与寄存器输出的累加相位数据相加,再把相加后的结果送至寄存器的数据输入端。
寄存器将加法器在上一个时钟作用下继续与频率控制字进行相加。
这样,相位累加器在时钟的作用下,进行相位累加。
当相位累加器累加满时就会产生一次溢出,完成一个周期性的动作。
2.1.3 控制相位的加法器通过改变相位控制字P可以控制输出信号的相位参数。
令相位加法器的字长为N,当相位控制字由0跃变到P(P≠0)时,波形存储器的输入为相位累加器的输出与相位控制字P之和,因而其输出的幅度编码相位会增加P/2N,从而使最后输出的信号产生相移。