连续周期信号的频谱
合集下载
信号与系统第4章 周期信号的频域分析(3学时)

T0 /2
0
x(t )sin(n 0t )dt
四、信号对称性与傅里叶系数的关系
3、半波重迭信号
~ x (t ) ~ x (t T0 / 2)
~ x (t )
A t
T0
T0 / 2 0
T0 / 2
T0
特点: 只含有正弦与余弦的偶次谐波分量,而无奇次谐波分量。
四、信号对称性与傅里叶系数的关系
~ x (t )
2 1 -4 -3 -2 -1 1 2 3 4
~ x (t ) ~ x1 (t ) ~ x2 (t )
nπ nπt t~ x (t ) 1.5 Sa ( ) cos( ) 2 2 n 1
~ x1 (t )
2
x 1(t ) 2
1 2 3 4
-4 -3 -2 -1
三、周期信号的功率谱
一、周期信号频谱的概念
连续时间周期信号可以表示为虚指数信号之和,其 中Cn 为傅里叶系数 。
~ x (t )
n =
Cn e
jn0t
1 Cn T0
T0 t 0
t0
~ x (t )e jn 0t dt
问题1:不同信号的傅里叶级数形式是否相同? 相同 问题2:不同信号的傅里叶级数不同表现在哪里? 系数
例3 课本P129
例4 已知连续周期信号的频谱如图,试写出信号的 Fourier级数表示式。 Cn
3 2 1 1 3 4 3 2
9
6
0
3
6
9
n
解: 由图可知 C0 4
C 1 3
C2 1
C 3 2
~ x (t )
周期信号的频谱解读

X
第
3.3.2 周期矩形脉冲信号的频谱
本小节以周期矩形脉冲信号为例进行分析
7 页
主要讨论:频谱的特点,频谱结构,
频带宽度,能量分布。
X
第
一.频谱结构
f (t ) E
8 页
脉宽为 脉冲高度为E
T1
t
T1
O 2 2
周期为T1
1. 三角函数形式的谱系数 2. 指数函数形式的谱系数 3. 频谱特点
2
0
2
n 1
X
不变, T1改变
E 2π T1 幅度 , 谱线 间隔1 T1 T1
f (t )
2π 第一个过零点频率 不变
第 13 页
当ET1 ,时, 1 0, 为无限小, T1 f t 由周期信号 非周期信号。 4
T1 2T1
T1 5E
Fn
2π
O 1 2 1
第一个零点集中了信号绝大部分能量(平均功率)
由频谱的收敛性可知,信号的功率集中在低频段。
X
第
周期矩形脉冲信号的功率
1 P T
16 页
T
0
f 2 ( t )dt
n
Fn
2
n
F ( n1 )
2
1 1 以 s, T1 s为例,取前5 次谐波 20 4
X
1 2 1
第
4.讨论
2π 谱 线 间 隔1 不变 T1不变, 改变 T1 E 2π 幅 度 , 第 一个 过零 点 T1
f (t ) E
12 页
周期信号及其频谱

50
2A
2 2A 2A
T O T2 2
2
2
30 0周O 期0三角3波0 50
2A t 2 70
(a)
(b)
2
a0 T
T 2 0
A
2A T
t
dt
A 2
4
an T
T 2 0
A
2A T
tcosn0tFra bibliotekt4A
n2
2
0
其幅频谱(单边谱)如图(a)所示。
n 1,3,5, n 2,4,6,
aanAn
(傅a) 里叶级数
可x知(tA) ,a0=0,an=0,Abnn=
2A n
1
cos
n
T
T
2
2
O
t
A
O 0 30 50 70 90
30 50 70 9 (b)
x(t)
4A
sin 0t
1 3
sin
30t(a)
1 5
sin
50t
1 7
sin
70t
(幅b)频谱
1.4 复数形式的傅里叶级数
傅里叶级数也可以表示成复指数形式的展开式。根据欧拉公式
若用复数形式表示,则根据
Cn
Cn
1 2
an
C0 a0
可求得如图(b)所示的幅频谱(双边谱)。
通过以上例题可以看出,周期信号有以下几个特点: (1)周期信号的频谱是由无限多条离散谱线组成的,每一条谱线 (单边谱)代表一个谐波分量。 (2)各次谐波的频率只能是基波频率的整数倍。 (3)谱线的高度表示了相应谐波分量的幅值大小。对于工程中常见 的周期信号,其谐波幅值的总趋势是随着谐波次数的增高而减小。当谐 波次数无限增高时,其幅值就趋于零。
连续周期信号的频域分析

三、周期信号的频谱及其特点
3. 频谱的特性
(3) 信号的有效带宽
0~2 / 这段频率范围称为周期矩形脉冲信号的 有效频带宽度,即 2π B
信号的有效带宽与信号时域的持续时间成反比。 即 越大,其B越小;反之, 越小,其B 越大。
三、周期信号的频谱及其特点
3. 频谱的特性
(3) 信号的有效带宽 物理意义:在信号的有效带宽内,集中了信 号绝大部分谐波分量。若信号丢失有效带宽以 外的谐波成分,不会对信号产生明显影响。
n=—4 4
1 T /2 2 P T / 2 f (t )dt 0.2 T 包含在有效带宽(0 ~ 2 / )内的各谐波平均功率为
2 2 C0
2 | Cn | 2 0.1806
n=1
4
P 0.1806 1 90% P 0.200
例3 试求周期矩形脉冲信号在其有效带宽(0~2 /t)内
频谱的特性频谱的特性信号的有效带宽信号的有效带宽这段频率范围称为周期矩形脉冲信号的有效频带宽度有效频带宽度即信号的有效带宽与信号时域的持续时间信号的有效带宽与信号时域的持续时间成反比
连续周期信号的频域分析
周期信号的傅里叶级数展开 傅里叶级数的基本性质 周期信号的频谱及其特点 周期信号的功率谱
三、周期信号的频谱及其特点
三、周期信号的频谱及其特点
4. 相位谱的作用
幅频不变,零相位
幅频为常数,相位不变
四、周期信号的功率谱
帕什瓦尔(Parseval)功率守恒定理
2 1 T P 2T f (t ) dt Cn T 2 n 2
物理意义:任意周期信号的平均功率等于信号所 包含的直流、基波以及各次谐波的平均功率之和。
4.3 周期信号的频谱及特点

A、计算|Fn |和θn
4.3
周期信号的频谱及特点
2)、周期矩形脉冲的频谱
有一幅度为E,脉冲宽度为τ的周期矩 形脉冲,其周期为T,如图所示。求 频谱。 T τ
−
τ
2
τ
2
Fn =
1 T
∫
2
T − 2
f (t ) e
− jnΩt
E e− jnΩt = T − jnΩ
τ
2 −
τ
2
E 2 − jnΩt dt = dt τ e ∫ − T 2 nΩτ sin( ) Eτ sin nΩτ 2E 2 2 = = T nΩτ T nΩ
1)、定义
依据复傅立叶系数Fn随nΩ的变化关系所画的图称为 双边频谱图,简称双边谱; |Fn|~ nΩ为双边幅度谱,见图4.3-1(b);其 以纵轴对称。 θn~ nΩ为双边相位谱。见图4.3-1(d)图。其 以原点对称。
第 第23 23-8 8页 页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案 电子教案
, n = 0,1,2,..., φ0 = 0.
Fn ~ nΩ
θ n ~ nΩ
周期信号的频谱是指周期信号中各次谐波幅值、相位随 频率的变化关系。
第 第23 23-3 3页 页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案 电子教案
4.3
A0 f (t ) = + 2
∞
周期信号的频谱及特点
ω1
T τ = = 2π Ω τ T
2π
见课本P131 页图4.3-4。
增多。
(b)、 τ 一定,T增大,谱线间隔 Ω 减小,频谱谱 线密度增大。谐波幅度减小:
4.3
周期信号的频谱及特点
2)、周期矩形脉冲的频谱
有一幅度为E,脉冲宽度为τ的周期矩 形脉冲,其周期为T,如图所示。求 频谱。 T τ
−
τ
2
τ
2
Fn =
1 T
∫
2
T − 2
f (t ) e
− jnΩt
E e− jnΩt = T − jnΩ
τ
2 −
τ
2
E 2 − jnΩt dt = dt τ e ∫ − T 2 nΩτ sin( ) Eτ sin nΩτ 2E 2 2 = = T nΩτ T nΩ
1)、定义
依据复傅立叶系数Fn随nΩ的变化关系所画的图称为 双边频谱图,简称双边谱; |Fn|~ nΩ为双边幅度谱,见图4.3-1(b);其 以纵轴对称。 θn~ nΩ为双边相位谱。见图4.3-1(d)图。其 以原点对称。
第 第23 23-8 8页 页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案 电子教案
, n = 0,1,2,..., φ0 = 0.
Fn ~ nΩ
θ n ~ nΩ
周期信号的频谱是指周期信号中各次谐波幅值、相位随 频率的变化关系。
第 第23 23-3 3页 页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案 电子教案
4.3
A0 f (t ) = + 2
∞
周期信号的频谱及特点
ω1
T τ = = 2π Ω τ T
2π
见课本P131 页图4.3-4。
增多。
(b)、 τ 一定,T增大,谱线间隔 Ω 减小,频谱谱 线密度增大。谐波幅度减小:
4.2周期信号的频谱

2A ( n 1, 3, 5,) n 90o ( n 1,3,5,) n o ( n 1, 3, 5,) 90 Fn
信号与系统
周期矩形脉冲信号的频谱
对于周期矩形脉冲,在一个周期内为
A t t
4.2-5
f (t )
0
2 2
4A (n 1,3,5,...) nπ
矩形波:
图1
n 90o (n 1,3,5,...)
谱 线
相位值 振幅 图2 角频率
信号与系统
4.2
周期信号的频谱
4.2-3
4.2.1 周期信号频谱的特点
频谱特点:
•
离散性:每根谱线代表一个谐波分量, 称为离散谱线。 谐波性:基波1的整数倍频率 收敛性:高次谐波幅度渐小,当谐波次 数无限增多时,谐波分量的振幅趋于无 穷小。
4.2 周期信号的频谱
信号与系统
4.2-1
4.2.1 周期信号频谱的特点
将周期信号分解为傅里叶级数(简称傅氏级数),为在频域 中认识信号特征提供了重要的手段。由于在时域内给出的 不同信号,不易简明地比较它们各自的特征,而当周期信 号分解为傅氏级数后,得到的是直流分量和无穷多正弦分 量的和,从而可在频域内方便地予以比较。为了直观地反 映周期信号中各频率分量的分布情形,可将其各频率分量 的振幅和相位随频率变化的关系用图形表示出来,这就是 信号的“频谱图”。频谱图包括振幅频谱和相位频谱。前 者表示谐波分量的振幅An随频率变化的关系;后者表示谐 波分量的相位φn 随频率变化的关系。习惯上常将振幅频谱 简称为频谱。
奇谐函数
偶谐函数
注:指交流分量
信号与系统
第四章(2)周期信号的频谱

周期性矩形脉冲信号的频谱还有自己的特点 周期性矩形脉冲信号的频谱还有自己的特点 : 1、各谱线的幅度按包络线 T 、
ωτ
= m π ( m = ±1, ± 2,...)
τ
Sa (
ωτ
2
) 的规律变化。 的规律变化。
各处, 的各处, 在 2 各处,即 的各处, τ 包络为零,其相应的谱线, 包络为零,其相应的谱线,亦即相应的频谱分量也等 于零。 于零。 2、周期矩形脉冲信号包含无限多条谱线,也就是说, 、周期矩形脉冲信号包含无限多条谱线,也就是说, 它可分解为无限多个频率分量。 它可分解为无限多个频率分量。 通常把频率范围 0 ≤ f ≤ τ (0 ≤ ω ≤ τ ) 称为周期矩形脉冲 带宽, 表示, 信号的带宽 信号的带宽,用符号 ∆F 表示,即周期矩形脉冲信 1 号的频带宽度为 ∆F = 。 τ
Fn F ( jω ) = lim = lim FnT T →∞ 1 / T T →∞
为频谱密度函数。 称 F ( jω )为频谱密度函数。
Fn lim = lim FnT 如何求频谱密度函数? 如何求频谱密度函数? F ( jω ) = T →∞ 1 / T T →∞
由式 f ( t ) =
n = −∞
T 2T f (t) T=8τ
0
3T
4T t
0 1/ 8
T f (t) T=16τ
0
2T
t
0 1/16
0
T
t
0
f (t) T→∞ τ/T
0 t 0
图4.3-5 周期与频谱的关系
思考: 思考:
1 1 1 f (t ) = [sin(Ωt ) + sin(3Ωt ) + sin(5Ωt ) + .... + sin(nΩt ) + ...] 3 5 n π 4
周期信号的频谱

当 n1 0
2
即 n1 0
基波分量的幅度:A Sa1
T 2
Fn
A
T
San1
2
Fn
为最大值 :A T
二次谐波分量的幅度:
A Sa 21
T 2
编辑版
15
3.3.2 双边频谱与信号的带宽
3.相位的确定
Fn
A
T
San1
2
是 n1 的实函数
Fn Fnejn Fn(consjsinn) Fn cosn
• 周期信号频谱的特点:
❖离散性:
由不连续的谱线组成,每一条谱线代表一个正弦分量,所以
此频谱称为不连续谱或离散谱;每条谱线间的距离为 ❖谐波性:
1
2
T
每一条谱线只能出现在基波频率 1 的整数倍频率上,即含 有 1 的各次谐波分量,而决不含有非 1 的谐波分量。
❖收敛性:
各次谐波分量的振幅虽然随 n1 的变化有起伏变化,但总的 趋势是随着 n1的增大而逐渐减小。
信号f1(t)和f2(t)的波形如图所示,设 f(t)=f1(t)*f2(t),则f(0)等于( )。
卷积练习
编辑版
1
3.3 周期信号的频谱
编辑版
2
3.3 周期信号的频谱
• 3.3.1 周期信号频谱的特点 • 3.3.2 双边频谱与信号的带宽 • 3.3.3 周期信号的功率
编辑版
3
3.3.1 周期信号频谱的特点
1
e jn1t
T n
1
2 T
编辑版
33
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
以相位为纵坐标所得到的谱线图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
x(t)
3 0
t
-3
根据指数形式傅里叶级数的定义可得
C1
1 2
ej4 ,
C1
1 2
e j4 ,
C3 ej2 ,
Cn 0, n 1;n 3.
C3 e j2
连续周期信号的频谱
x(t)
3 0
t
-3
x(t) cos(0t 4) 2cos(30t 2)
C1
1 2
ej4 ,
C1
1 2
e j4 ,
C3 ej2 ,
C3 e j2
Cn 0, n 1;n 3.
| Cn |
幅度谱
1
1
1
1
2
2
30
0 0 0
30
n
4 相位谱
2
30
0
0 0
302Leabharlann 4连续周期信号的频谱
~x(t) A
Cn
A
T0
Sa( n0 )
2
Cn AT0
T0
O
T0
t
2
2
周期矩形信号的时域波形
2π
2π
0
0 2π T0
周期矩形信号的频谱
~x(t)
解:周期矩形信号在一个周期内的定义为:
A
A,
x(t)
0 ,
|t|
2
|t|>
2
1
Cn T0
T0 2
x(t)e jn0tdt
T0
2
1 T0
T0
2 A e jn0tdt
T0 2
T0
O
T0
t
2
2
A
T0(jn0 )
e jn0t
2
2
A
2
sin(n0
)
T0n0
2
Cn
A
T0
Sa( n0 )
有效带宽
~x(t) A
T0
O
T0
t
2
2
Cn AT0
2π
2π
0
0 2π T0
通常将包含主要谐波分量的频率范围(0 ~ 2π/ )
称为周期矩形信号的有效频带宽度
B
2
信号的有效带宽和时域持续时间成反比。
连续周期信号的频谱特性
丢失有效带宽以外的谐波成分,不会对信号产生明显影响
x(t) 1
Cn AT0
主讲人:陈后金 电子信息工程学院
连续周期信号的频域分析
连续周期信号的频域表示 连续周期信号的频谱 连续傅里叶级数的性质
连续周期信号的频谱
~x (t)
Cn
e
0
jn t
n=
指数形式的傅里叶级数
Cn
1 T0
T0 x(t)e jn0t dt
0
周期信号 x(t) 可以表示为无数个虚指数信号的线性叠加
2 /(nπ)2, n为奇数
Cn
~x(t)
Cn
1/
2,
n 0
1/ 2
-2 1 0 2
t
周期三角波信号的时域波形
3 0 0
0
30
2 / 9π2
2/ π2 0 2/ π2
2 / 9π2
周期三角波信号的频谱
连续周期信号的频谱特性
~x(t) A
T0
O
T0
t
2
2
Cn
A
T0
Sa( n0 )
2
Cn AT0
Cn 反映了周期信号 x(t) 中各次谐波的分布 Cn 称为周期信号x(t)的频谱,x(t)与Cn存在一一对应关系。
连续周期信号的频谱
~x(t)
Cn e jn0t
n=
C 1 T0 t0 ~x (t)e jn0t dt
T n
t0
0
Cn Cn e jn
幅度频谱
相位频谱
连续周期信号的频谱
[例] 计算周期矩形信号指数形式的傅里叶级数,并画出频谱图。
~x(t)
-2 1 0 2
t
解:
Cn
1 T0
T0 2
x(t)e jn0t dt
1
T0
2
2
1 x(t)e jn0t dt
1
1 2
0 1
(
t)e jn0t dt
1 0
te
jn0t
dt
Cn
1 (nπ) 2
(cosnπ
1)
2 /(nπ)2 , n为奇数
1/ 2,
n 0
连续周期信号的频谱
...
...
1 1
t
40
40
2π
2π
0
A=1,T0=1/4, = 1/20, 0= 2/T0 =8
0 2π T0
Cn 0.2Sa (n0 / 40) 0.2Sa (nπ / 5)
第一个零点出现在
2
40
8
连续周期信号的频谱
谢谢
本课程所引用的一些素材为主讲老师多年的教学积累,来 源于多种媒体及同事、同行、朋友的交流,难以一一注明出处, 特此说明并表示感谢!
2
0
连续周期信号的频谱
[例] 已知周期信号 x(t) cos(0t 4) 2cos(30t 2),求其频谱Cn 。
解:
x(t) cos( t 4) 2cos(3 t 2)
0
0
1 2
e j(0t 4)
e j(0t4)
+ e j(30t 2)
e j(30t 2)
1 e j4e j0t 1 e j4e j0t +e j2e j30t e j2e j30t
2
连续周期信号的频谱
[例] 计算周期矩形信号指数形式的傅里叶级数,并画出频谱图。
Cn
~x(t)
AT0
A
T0
O
T0
t
2
2
A, x(t)
0,
|t|
2
|t|>
2
2π
2π
0
0 2π T0
Cn
A
T0
Sa( n0 )
2
周期矩形信号的频谱
连续周期信号的频谱
[例] 计算周期三角波信号指数形式的傅里叶级数展开式。
[例] 计算周期三角波信号指数形式的傅里叶级数展开式。
~x(t)
Cn
1/ 2
-2 1 0 2
t
3 0 0 0
0
30
2 / 9π2
2 / 9π2
Cn
1 (nπ) 2
(cosnπ
1)
2 /(nπ)2 , n为奇数
1/ 2,
n 0
2/ π2
2/ π2
周期三角波信号的频谱
x(t) 1 e jt e jt e j3t e j3t ...
Cn 是n0 的函数, Cn Cn (n0 )简写为 Cn
连续周期信号的频谱
~x (t)
Cn e jn0t
n=
x(t)
C0 +C1e j0t
C e j0t 1
C2e j20t
C e j20t 2
... CN e jN0t
C e jN0t N
...
直流分量
基波分量
N 次谐波分量
2π
2π
0
0 2π T0
周期矩形信号的频谱
连续周期信号的频谱特性
离散特性:周期信号的频谱是由间隔为0 的谱线组成
Cn AT0
2π
2π
0
0 2π T0
连续周期信号的频谱特性
衰减特性: 幅度频谱|Cn|随谐波n0增大时逐渐衰减,
并最终趋于零
Cn AT0
2π
2π
0
0 2π T0
连续周期信号的频谱特性