分离应用研究

合集下载

吸附分离技术的应用与发展研究

吸附分离技术的应用与发展研究

吸附分离技术的应用与发展研究随着化工、生物工程、制药等行业的不断发展,对于分离纯化技术的需求也越来越高。

在这种情况下,吸附分离技术逐渐受到人们的关注。

本文将探讨吸附分离技术的应用和发展研究。

一. 吸附分离技术的定义吸附分离是一种将固体或液体分离物质从混合物中移除的技术,利用了吸附剂(比如选择性树脂、多孔材料等)对混合物中某些成分的吸附性能,使它们分离出来。

与蒸馏、萃取等分离技术相比,吸附分离技术具有高效、低成本、易操作和可持续性等优点。

二. 吸附分离技术的应用吸附分离技术已经在多个领域得到应用,下面将对其中几个常见的领域做简要介绍。

1. 生物制药吸附分离技术可以用于生物制药中的蛋白质分离和纯化。

由于蛋白质的稳定性和活性对于生物制药的质量至关重要,吸附剂的选择应该是具有特异性且不会对蛋白质造成损伤的。

例如,蛋白A亲和树脂可以用于人源性IgG的分离,钙离子亲和树脂则可以用于酪蛋白激酶的纯化。

2. 污水处理污水中有很多有害物质如重金属离子、有机物以及微生物等,污水处理的目的就是将这些物质从污水中去除。

吸附分离技术可以利用吸附剂吸附目标物质,例如以改性粘土为基质的吸附剂可以用于去除重金属离子,而活性炭则可以用于吸附有机物。

3. 食品加工吸附分离技术可以用于食品加工中去除污染物、调味品或者用于分离颜色分子。

例如,合成聚苯乙烯微球可以用于食品中铬离子的去除;木质素树脂则可以用于咖啡因的去除。

三. 吸附分离技术的发展研究随着技术的不断进步和吸附分离技术的应用领域不断扩展,吸附剂选择、吸附机理以及吸附过程优化等方面的研究也变得越来越重要。

1. 吸附剂的选择选择正确的吸附剂是实现高效分离的关键因素。

随着化学合成和材料科学的快速发展,新型吸附剂的不断涌现和吸附性能的不断提高,为吸附分离技术的应用提供了更多的选择。

2. 吸附机理吸附机理研究的目的是深入了解吸附剂选择的原理,并发掘新的吸附机理。

例如,分子动力学方法可以用于揭示吸附剂-物质分子间的相互作用,以及吸附过程的动力学。

当前萃取分离技术的研究应用与进展

当前萃取分离技术的研究应用与进展

当前萃取分离技术的研究应用与进展当前萃取分离技术是化学、生物、环境等领域的重要技术手段之一,广泛应用于药物开发、环境监测、食品安全等领域。

随着科学技术的进步和需求的不断增加,萃取分离技术也在不断发展和改进。

本文将围绕当前萃取分离技术的研究应用与进展进行探讨。

一、应用领域及需求1.药物开发:药物中间体的分离纯化、天然药物中活性成分的提取等。

2.环境监测:水、土壤、大气中有机污染物和无机污染物的分析监测。

3.食品安全:食品中农药、兽药、重金属等残留物的检测与分离。

4.化学工程:化工原料的纯化、有机废弃物的处理等。

二、萃取分离技术的现状1.传统萃取技术:包括液液萃取、固相萃取等,已经得到广泛应用,但存在工艺复杂、时间长、溶剂耗量大等问题。

2.共价萃取技术:通过改变溶剂特性或添加萃取剂,可以提高萃取效率和选择性,具有更广泛的应用前景。

3.离子液体萃取技术:离子液体是一种新型环保溶剂,在药物开发、催化剂制备等方面显示出较大潜力。

4.超临界流体萃取技术:超临界流体具有较高的溶解能力和较低的表面张力,可用于制备高纯度的化合物。

5.固相微萃取技术:采用微量的吸附剂直接吸附目标化合物,具有快速、高效、省溶剂等优点。

三、研究进展1.萃取剂的改进和设计:研究人员通过改变萃取剂的结构和性质,提高了其分离效率和选择性。

2.新型萃取材料的研发:包括纳米材料、多孔材料等,在提高分离效率和选择性的同时,还具有较高的稳定性和再生能力。

3.萃取工艺的改进:通过优化工艺参数,如溶剂体积、溶剂浓度、萃取温度等,可以提高分离效率和减少工艺复杂性。

4.联合技术的发展:通过将不同的分离技术进行组合,如萃取-膜分离、萃取-吸附分离等,可以提高整体分离效率和减少能耗。

四、挑战和展望1.萃取剂的选择和设计:目前常用的萃取剂仍然存在选择性、稳定性和毒性等问题,需要开发更高效和环保的萃取剂。

2.萃取分离过程的机理研究:了解分子间相互作用和传质过程等机理,有助于优化工艺参数和提高分离效率。

膜分离技术应用的研究进展

膜分离技术应用的研究进展

膜分离技术应用的研究进展一、本文概述随着科技的不断进步,膜分离技术作为一种高效、环保的分离技术,已经在多个领域得到了广泛的应用。

膜分离技术,利用特定的膜材料对混合物中的不同组分进行选择性分离,具有操作简便、能耗低、分离效果好等优点,因此在化工、环保、食品、医药等领域有着广阔的应用前景。

本文旨在对膜分离技术应用的研究进展进行全面的综述,分析各类膜材料的性能特点,探讨膜分离技术在不同领域的应用现状,以及未来可能的发展趋势。

通过对膜分离技术的深入研究,我们期望能够为相关领域的科技进步和产业发展提供有益的参考。

二、膜分离技术的分类与特点膜分离技术是一种基于膜的选择性渗透原理,用于分离、提纯和浓缩溶液中的不同组分的高效分离技术。

根据其分离机制和操作原理,膜分离技术主要分为以下几类,并各自具有其独特的特点。

微滤(Microfiltration,MF):微滤膜通常具有较大的孔径,能够有效截留溶液中的悬浮物、颗粒物和细菌等。

其特点是操作简单、高通量、低能耗,广泛应用于水处理、食品加工和制药等领域。

超滤(Ultrafiltration,UF):超滤膜的孔径介于微滤和纳滤之间,能够截留分子量较大的溶质和胶体物质。

超滤技术具有分离效果好、操作简便、对热敏性物质损伤小等优点,常用于蛋白质、酶等生物大分子的分离和纯化。

纳滤(Nanofiltration,NF):纳滤膜的孔径较小,能够截留分子量较小的溶质和无机盐。

纳滤技术具有对有机物和无机盐的高效分离能力,且能在较低的操作压力下实现较高的分离效率,适用于水软化、废水处理和食品工业等领域。

反渗透(Reverse Osmosis,RO):反渗透膜具有极小的孔径,能够截留溶液中的绝大多数溶质,实现高纯度水的制备。

反渗透技术具有分离效果好、产水水质高、操作稳定等优点,是海水淡化、苦咸水脱盐、工业废水处理等领域的首选技术。

电渗析(Electrodialysis,ED):电渗析技术利用电场作用下的离子迁移原理,实现溶液中阴阳离子的分离。

色谱分离技术的研究与应用

色谱分离技术的研究与应用

色谱分离技术的研究与应用第一章:绪论色谱分离技术是一种重要的分析和检测方法,广泛应用于化学、生物、医药等领域。

其原理是利用样品中的化学物质在移动相和固定相之间的相互作用力的不同,使其在一定条件下在固定相上被分离。

本文将详细介绍色谱分离技术的研究和应用,并着重讨论其在医药领域的应用现状和未来发展方向。

第二章:色谱分离技术概述色谱分离技术包括气相色谱、液相色谱、超临界流体色谱、离子色谱等多种分离方法。

其中,气相色谱主要应用于气态和揮发性样品的分离和分析,液相色谱适用于液态或溶解性样品的分离和分析,超临界流体色谱适用于高分子、生物、环境和天然产物等的分离与分析,离子色谱适用于阴、阳离子分离和有机物离子的分离和检测。

这些不同类型的色谱在分离物质的特性、原理和分析特点上各有不同。

第三章:色谱分离技术在医药领域的应用色谱分离技术在医药领域中得到了广泛的应用。

其中,液相色谱在药物分析、研究和质量控制方面应用最广泛。

利用液相色谱技术,可对药物的含量、杂质及某些药代动力学参数进行分析。

同时,液相色谱技术还可用于对传统药用资源中含有的多种化合物的化学成分进行深入分析和研究。

液相色谱技术在植物药物中的应用已成为当前植物药学研究的主要方法之一。

第四章:色谱分离技术在生物领域的应用色谱分离技术在生物领域中的应用越来越广泛,包括对多肽、多糖、蛋白质和核酸的分离和分析。

其中,高效液相色谱在生物大分子的纯化和鉴定中有着非常显著的优势。

同时,气相色谱-质谱联用技术在精确鉴定各种不同的小分子有机物和生物大分子结构中的小分子有机物残留方面也有着非常重要的应用。

第五章:色谱分离技术在环境领域的应用色谱分离技术在环境领域中也有非常广泛的应用。

其中,超临界流体色谱技术在环境样品的功效评价中已经被应用。

同时,离子色谱技术在环境中对含有异硫氰酸盐、硝酸盐、氯化物等阴离子物质样品的分析和检测有着非常显著的优势。

第六章:未来发展趋势随着对样品中化合物性质分析的需求越来越高,色谱分离技术也在不断创新和发展。

传统中药的分离与提取技术的研究与应用

传统中药的分离与提取技术的研究与应用

传统中药的分离与提取技术的研究与应用中药是我国悠久历史和文化的重要体现,具有独特的疗效和药理作用,在临床上被广泛应用。

然而,传统中药的复杂成分和不规则性结构,给其分离和提取带来了巨大的难度,更具挑战性的是如何保留和发挥中药的天然药效,这也成为中药研究与现代化的重要课题之一。

针对这一问题,传统中药的分离和提取技术不断被改进和创新,以期推动中药材料的开发和应用,本文将从分离和提取技术的研究与应用方面进行探讨。

一、传统中药的分离技术中药的分离技术是中药研究的关键环节之一,也是中药材料加工、生产和质量控制的基础。

中药中所含有的活性成分种类繁多,不同成分之间有着不同的性质和结构,因此分离技术主要面临两大难题:一是活性成分之间难以区分和分离;二是常用的分离技术存在局限性。

传统中药的分离技术主要以色谱技术和质谱技术为主。

其中,色谱技术包括液相色谱、气相色谱、超高效液相色谱等,通过成分的分离和纯化来获得较高纯度的化合物。

质谱技术的主要作用是确定分离出的化合物的结构,以及分析其含量和构成,如广谱质谱分析、中高分辨力质谱等。

有了这些技术的支持,我们可以对中药进行更加精准、高效的分离和纯化,同时为中药的成分结构分析以及活性成分的寻找奠定基础。

值得一提的是,随着技术的不断进步,大量创新性分离技术相继诞生,如超临界流体色谱、离子交换色谱、反相色谱等,成为中药分离技术的重要组成部分。

二、传统中药的提取技术中药的提取技术与分离技术紧密联系在一起。

中药的活性成分分布非常广泛,一般情况下需要将其提取出来进行进一步分离和纯化。

传统的中药提取技术主要包括水煎提取、乙醇浸提、超声波提取、微波提取等。

这些技术都是根据中药活性成分的特点和药材的性质选择相应的提取剂和条件进行提取,从而获得高质量的提取液。

传统的中药提取技术在一定程度上存在着成分的流失和耗用,且分离效果不稳定等问题。

因此,近年来,一些新型中药提取技术也得到了开发和应用,例如介电加热提取技术、超声波-液液萃取技术、超临界流体萃取技术等,逐渐成为中药提取技术发展的新方向。

评定分离应用研究

评定分离应用研究

55自2011年深圳市开始尝试推行评定分离至今,评定分离已经在建设工程招投标行业实践十年有余,期间有推崇也有争议,但可以确定的是,越来越多的地方开始推行这一制度。

尤其是随着2019年底国家发展和改革委、住建部的文件中先后明确允许使用评定分离,越来越多的地区开始扩大评定分离的使用范围。

笔者结合评定分离在国有资金占控股或者主导地位的依法必须招标的工程建设项目中的应用情况进行了研究,现提出个人拙见,供各位同仁参考。

评定分离的国家政策根据《评标委员会和评标方法暂行规定》(七部委令第12号,以下简称“七部委12号令”),评标方法主要为两种,即经评审的最低投标价法和综合评估法,中标条件相应为“能够满足招标文件的实质性要求,并且经评审的投标价格最低(但是投标价格低于成本的除外)” 或“能够最大限度满足招标文件中规定的各项综合评价标准”。

如无异议或违法违规等情况,无论是招标人定标还是招标人委托的评标委员会定标,原则上应当确定排名第一的中标候选人为中评定分离应用研究□文/闫春红标人。

国家关于评定分离的政策引导,主要体现在两个法律文件当中。

一是2019年12月3日国家发展和改革委发布的《招标投标法(修订草案公开征求意见稿)》,其中第四十七条拟修改内容中明确:“评标委员会应当按照招标文件确定的评标标准和方法,集体研究并分别独立对投标文件进行评审和比较。

评标委员会完成评标后,应当向招标人提出书面评标报告,推荐不超过三个合格的中标候选人,并对每个中标候选人的优势、风险等评审情况进行说明;除招标文件明确要求排序的外,推荐中标候选人不标明排序。

招标人根据评标委员会提出的书面评标报告和推荐的中标候选人,按照招标文件规定的定标方法,结合对中标候选人合同履行能力和风险进行复核的情况,自收到评标报告之日起二十日内自主确定中标人。

定标方法应当科学、规范、透明。

招标人也可以授权评标委员会直接确定中标人。

国务院对特定招标项目的评标有特别规定的,从其规定。

液相分离技术的研究与应用

液相分离技术的研究与应用

液相分离技术的研究与应用液相分离技术是一种利用不同物质在液相中的差异来分离杂质、提取目标物质的技术手段。

该技术广泛应用于化学、制药、食品、生物医学等领域。

在化工工艺中,液相分离技术在提高产品质量、降低生产成本、减轻环境污染等方面具有广泛的应用前景。

1. 液相分离技术的种类液相分离技术包括凝胶过滤、离子交换、层析、萃取、膜分离等多种方法。

1.1 凝胶过滤凝胶过滤是利用凝胶过滤膜的孔径大小将大分子物质与小分子物质分开的一种方法。

凝胶过滤技术广泛应用于分离生物大分子,如蛋白质、核酸等。

这种方法操作简便,但凝胶膜的选择很关键。

1.2 离子交换离子交换是利用固相离子交换树脂对样品中的离子进行拦截、富集、分离和纯化。

离子交换技术被广泛用于制药、食品等领域中药品提取和净化,特别是对电解质的切割和分离,具有高效、简便、快速、选择性好等优点。

1.3 层析层析是利用不同固相材料(如硅胶、葡聚糖等)对样品中的成分进行分离的方法。

层析包括分散层析、吸收层析、离子层析、凝胶层析等。

层析技术应用广泛,在医药、生物、食品、环保、化工等领域都有涉及。

1.4 萃取萃取是将混合物中的一些组分,如油、脂肪、色素等有机物分离出来的方法。

萃取技术分为固-液、液-液、气-液等多种方式,例如常用的固-液萃取或是液-液萃取。

1.5 膜分离膜分离是指利用膜的分离作用对杂质与目标物进行分离的技术。

膜分离技术广泛用于电解质、有机物、微生物、碰撞污水等的处理,分离效率高,操作容易,尤其在清洁环保的新技术领域被广泛应用。

2. 液相分离技术的应用2.1 制药工业液相分离技术在制药工业中应用广泛。

例如生物制药中蛋白质、核酸的提取、精修等就要用到层析、尤其是亲和层析技术。

离子交换技术可以用于酸、碱的分离,以便用于药物的制备和纯化。

离子交换树脂是生产某些药物必要原料,如肝素、甘露醇等的重要工业化工原料。

2.2 生物技术生物工程中,蛋白质酶活性与生物学功能的研究中重要的任务就是精细分离属于同一酶家族的各种酶活性状的单个成员。

化学分离技术的发展与应用

化学分离技术的发展与应用

化学分离技术的发展与应用化学分离技术是一种利用化学方法将混合物中的成分分离出来的技术手段。

随着科学技术的不断进步和应用领域的拓展,化学分离技术在许多领域得到了广泛的应用,并取得了显著的发展。

本文将就化学分离技术的发展历程以及其在不同领域的应用进行探讨。

一. 化学分离技术的发展历程化学分离技术的发展可以追溯到几千年前。

古代人们通过热解、萃取等方法进行物质的分离和提纯。

然而,这些方法受限于技术和设备条件,分离效果不稳定且效率低下。

随着科学技术的进步,特别是现代化学的发展,人们逐渐掌握了更多的分离原理和技术手段。

例如,萃取技术、蒸馏技术、结晶技术、色谱技术等分离技术的诞生和不断完善,使得化学分离技术得到了长足的发展。

二. 化学分离技术的应用领域1. 化工行业化工行业是化学分离技术最主要的应用领域之一。

通过化学分离技术,可以将原料中的杂质、有害物质、不需要的成分等进行有效地分离和提取,以获得所需的纯度和质量。

在化工行业中,蒸馏技术是一种常用的分离技术。

通过蒸馏技术,可以将液体混合物中的不同成分按照其沸点的差异分离出来。

这在石油、化肥、药品等行业中得到了广泛的应用。

2. 食品行业化学分离技术在食品行业中也具有重要的应用价值。

例如,通过色谱技术可以对食品中的添加剂、农药残留物等进行分离和鉴定,以确保食品的安全性和质量标准。

此外,结晶技术也是食品行业中常用的分离技术。

通过结晶技术,可以将食品中的物质分离出来,提高食品的纯度和口感。

3. 环境保护环境保护是另一个重要的应用领域。

随着环境污染日益严重,需要对废水、废气、固体废弃物等进行有效的处理和分离。

化学分离技术在环境保护中的应用包括吸附、萃取、膜分离等。

通过这些技术手段,可以将有害物质与废物进行有效地分离,以减少对环境和人体的危害。

4. 药物研发在药物研发过程中,化学分离技术也起到了关键的作用。

药物的研制需要对天然产物或化合物进行提取和纯化,以获得高纯度的活性成分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Journal of Chromatography A,1235 (2012) 34–38Contents lists available at SciVerse ScienceDirectJournal of ChromatographyAj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c h r o maApplication of step-wise gradient high-performance counter-currentchromatography for rapid preparative separation and purification of diterpene components from Pseudolarix kaempferi GordonShichao He a ,b ,Shucai Li a ,Jianhong Yang a ,Haoyu Ye a ,Shijie Zhong a ,Hang Song b ,Yongkui Zhang b ,Cheng Peng c ,Aihua Peng a ,c ,∗,Lijuan Chen a ,b ,∗aState Key Laboratory of Biotherapy,West China Hospital,West China Medical School,Sichuan University,Chengdu 610041,China bCollege of Chemical Engineering,Sichuan University,Chengdu 610065,China cState Key Laboratory Breeding Base of Systematic Research,Development and Utilization of Chinese Medicine,Chengdu University of Traditional Chinese Medicine,Chengdu,Sichuan,Chinaa r t i c l ei n f oArticle history:Received 19October 2011Received in revised form 7January 2012Accepted 15January 2012Available online 9 February 2012Keywords:High-performance counter-current chromatographyPseudolarix kaempferi Gordon Gradient elution Diterpenea b s t r a c tIn general,simultaneously separation and purification of components with a broad polarity range from traditional Chinese medicine (TCM)is a challenge by an ordinary high-speed counter-current chro-matography (HSCCC)method.In this paper,we describes a rapid and efficient separation method of combining three-step gradient elution and two-step flow-rate gradient elution using high-performance counter-current chromatography (HPCCC)to separate 8diterpene compounds simultaneously within 80min in a single run from the alcohol extract of Pseudolarix kaempferi Gordon.This separation pro-cess produced 166mg pseudolaric acid B O-␤-d -glucopyranoside (PABGly),152mg pseudolaric acid C (PAC),8mg deacetylpseudolaric acid A (deacetylPAA),5mg pseudolaric acid A O-␤-d -glucopyranoside (PAAGly),484mg pseudolaric acid B (PAB),33mg pseudolaric acid B methyl ester (PAB methyl ester),10mg pseudolaric acid A (PAA)and 18mg pseudolaric acid H (PAH)from 1.0g crude sample with purities of 98.6%,99.6%,92.3%,92.2%,99.2%,99.4%,98.3%,91.0%,respectively.Our study indicates that the suit-able combination of step-wise gradient elution and flow-rate gradient elution using HPCCC is an effective strategy to separate complex components from natural products.© 2012 Elsevier B.V. All rights reserved.1.IntroductionHPCCC is now accepted as an advanced preparative technique,and widely used for separation and purification of various natu-ral products [1–6].In recent years,several CCC methods which could shorten separation time have been developed,such as elution-extrusion counter-current chromatography (EECCC),step-wise gradient elution,and flow-rate gradient elution.In the EECCC method,when the solutes have been fully separated inside the col-umn before eluting out of the column,it is possible to use the liquid stationary phase to extrude the column contents in order to shorten separation time.As an efficient CCC technique,the EECCC method was developed by Berthod et al.and it has already been applied in the separation of natural products [7–10].In traditional liquid∗Corresponding authors at:State Key Laboratory of Biotherapy,West China Hos-pital,West China Medical School,Sichuan University,Gaopeng Street,Keyuan Road 4,Chengdu 610041,China.Tel.:+862885164063;fax:+862885164060.E-mail addresses:peng aihua@ (A.Peng),lijuan17@ (L.Chen).chromatography,gradient elution is widely employed to improve the resolution efficiency and reduce separation time.Step-wise gra-dient elution with HPCCC is a useful method when one or more compounds need to be obtained from complex sample [11].Flow-rate gradient elution is also a conventional method to separate the compounds with different polarity by a step-wise increase of the mobile phase flow-rate.It had been applied in the separa-tion of compounds from plants by CCC [12–15].However,there are few reports on the combination of step-wise gradient elution and flow-rate gradient elution using HPCCC for the separation and purification of components from natural products.The root bark of Pseudolarix kaempferi Gordon,which is known as “Tu-Jin-Pi”in traditional Chinese medicine,has been employed for the treatment of fungal infections [16].Pseudolaric acid B (PAB),which is a major constituent in P.kaempferi Gordon,was found to be effective on anti-cancer activity [17].Due to the unique structural scaffold and the significant anti-angiogenic activity,PAB has been regarded as an anti-cancer drug lead and the pathway of PAB has also been demonstrated by other researchers [18–20].For devel-oping anti-cancer drugs with high activity and low toxicity,more compounds with similar structure to PAB need to be obtained.So0021-9673/$–see front matter © 2012 Elsevier B.V. All rights reserved.doi:10.1016/j.chroma.2012.01.040S.He et al./J.Chromatogr.A1235 (2012) 34–3835Fig.1.The structures of diterpene compounds1–8isolated from P.kaempferi Gor-don.1=pseudolaric acid B O-␤-d-glucopyranoside(PABGly);2=pseudolaric acid C(PAC);3=deacetylpseudolaric acid A(deacetylPAA);4=pseudolaric acid A O-␤-d-glucopyranoside(PAAGly);5=pseudolaric acid B(PAB);6=pseudolaric acid B methyl ester(PAB methyl ester);7=pseudolaric acid A(PAA);8=pseudolaric acid H(PAH).it is significantly important tofind a fast and effective method to separate components from P.kaempferi Gordon.Although Han et al.had separated four diterpenoids from P. kaempferi Gordon with solvent systems composed of n-hexane-ethyl acetate-methanol-water(HEMWat)at two ratios(5:5:5:5and 1:9:4:6,v/v/v/v)by HSCCC,the whole process for the two-stage separation took about8h[21].In the present study,three differ-ent CCC elution modes,such as EECCC,step-wise gradient elution, andflow-rate gradient elution were tested,andfinally a method of combining three-step gradient elution andflow-rate gradient elu-tion was established.After parameter optimization,the separation method was put into effect by HPCCC and8diterpene compounds were obtained simultaneously within80min.Their structures have been elucidated by means of spectroscopic methods including MS, 1H NMR and13C NMR and compared with the published data(see Fig.1).2.Experimental2.1.ApparatusHPCCC was performed on a HPCCC centrifuge(Dynamic Extrac-tion,Slough,UK).The apparatus has four columns on two bobbins all integrated in one machine:an analytical and preparative column on each bobbin.The analytical columns use stainless steel tubing of 0.8mm diameter with column volumes for columns1and2being 18.5and18.0ml,respectively.The preparative columns use a4mm polyfluoro alkoxy(PFA)tubing with volumes for columns3and4 being460.5and452.0ml,respectively.The revolution radius or the distance between the column axis and central axis of the centrifuge (R)for all of these columns is11cm with aˇvalue varying from 0.52at the internal terminal to0.86at the external terminal.The rotational speed is adjustable from200to1400rpm.A HX-2050 constant temperature regulator(Beijing Boyikang Lab Implement, Beijing,China)was used to control the separation temperature. The HPCCC system was equipped with AKTA Basic system(Amer-sham Pharmacia Biotechnique Group,Uppsala,Sweden),which contained a P-900pump,an UV-900detector and an UNICORN work station.HPLC analysis was performed on Waters2695coupled with 2996photodiode array detector(Waters,Milford,MA,USA).The MS analyses were performed with a Q-TOF Premier Mass Spec-trometer(Waters Micromass,Milford,MA,USA)coupled with an ESI source.The nuclear magnetic resonance(NMR)spectrometer used here was a Mercury Plus400NMR system(Varian,Palo Alto, CA,USA).2.2.Reagents and materialsAnalytical grade n-hexane,ethyl acetate and methanol for HPCCC separation were purchased from Changzheng chemical factory(Chengdu,China).Methanol used for HPLC was chromato-graphic grade and purchased from Fisher Chemical(Loughborough, UK);water was produced by Milli-Q system(18M )(Millipore, Bedford,MA,USA).The root barks of P.kaempferi Gordon were obtained from Chengdu TCM Market in China and identified by Dr.Yan-fang Li(Department of Pharmaceutical Engineering,College of Chemical Engineering,Sichuan University).A voucher specimen (TJP-201011)was deposited in the State Key Laboratory of Biother-apy,Sichuan University,Chengdu,China.2.3.Preparation of two-phase solvent systems and samplesolution for HPCCC separationThe two-phase solvent system was composed of HEMWat at various volume ratios.The solvent mixture was equilibrated in a separated funnel at room temperature,and the two phases were separated shortly before use.The root barks of P.kaempferi Gordon(5kg)were powered and extracted with95%ethanol(25L)three times.After recovering sol-vent under vacuum at40◦C,a total of300g crude sample for HPCCC separation was obtained.The crude sample was dissolved in a sol-vent mixture consisting of equal volumes of both upper and lower phases before every separation process.2.4.Measurement of partition coefficient(K D)Measurement of K D values of target compounds from crude sample was as follows:crude sample(1mg)was weighed into a 10ml glass tube and added1ml of each phase of a pre-equilibrated two-phase solvent system.The glass tube was then shaken vigor-ously for5min to thoroughly equilibrate the sample between the two phases.After settling,500␮l of each phase was transferred to two separate test tubes and evaporated to dryness.The residues were diluted with1ml methanol and analyzed by HPLC.The K D value was expressed as the peak area of target compounds in the upper phase(stationary phase)divided by that in the lower phase (mobile phase).2.5.HPCCC separation procedure2.5.1.Analytical HPCCC separation procedureThe analytical separation was carried out on analytical column 2(18ml)and contained3steps.In each separation run,the mul-tiple layer coiled column wasfirst entirelyfilled with the lower phase(stationary phase)of HEMWat(1:1:1:1)in the tail to head mode.Then the upper phase(mobile phase)of HEMWat(1:1:1:1) was pumped into the column at aflow rate of0.5ml/min while the rotor was rotated at1250rpm.When hydrodynamic equilib-rium was established,1ml of the sample solution(20mg/ml)was injected into the column through the sample valve.In thefirst step, the mobile phase of HEMWat(1:1:1:1)was used and theflow rate36S.He et al./J.Chromatogr.A1235 (2012) 34–38Table1The partition coefficients(K D)of target compounds for n-hexane–ethyl acetate–methanol–water(HEMWat)solvent system(normal phase).HEMWat solvent system Partition coefficient(K D)PABGly(1)PAC(2)deacetylPAA(3)PAAGly(4)PAB(5)PAB methyl ester(6)PAA(7)PAH(8)2:1:2:1>100>10043.48>100 6.67 1.92 1.30 1.04 1:1:1:199.11 1.85 1.3756.87 1.010.430.320.22 2:3:2:334.48 1.080.6620.830.340.150.120.08 1:3.5:1:3.5 1.200.630.340.980.150.070.060.04was0.5ml/min.While the upper phase(mobile phase)of HEMWat (2:3:2:3)and HEMWat(1:3.5:1:3.5)were used in the second and third step,theflow rate of mobile phase was set at1ml/min.The effluent was continuously monitored with a UV-900detector at 262nm.Peak fractions were manually collected according to the chromatogram.Each fraction was evaporated under reduced pres-sure and dissolved in methanol for HPLC analysis.2.5.2.Preparative HPCCC separation procedureThe preparative separation was carried out on two preparative columns(912.5ml),which were connected in series for the scale-up and the process was similar to the analytical separation procedure except that the sample loading andflow rate were linearly scaled up.In the preparative separation process,the initialflow rate of mobile phase was25ml/min in thefirst step and then increased to50ml/min in the second and third step.50ml sample solution containing1.0g of the crude sample was injected into the column via the sample valve(50times the sample loading in the analytical separation).2.6.HPLC analysis of crude sample and fractions from HPCCC separationThe crude extract and fractions separated by HPCCC were analyzed by HPLC coupled with a photodiode array detec-tor.The column used in this study was Sunfire C18column (150mm×4.6mm I.D.,5␮m,Waters).The mobile phase was methanol and0.1%acetic acid water solution in the gradient model as follows:0–18min,50–75%methanol;18–20min,75–95% methanol.Theflow rate was set at1ml/min,and the temperature was30◦C.The detection wavelength was200–400nm.The crude extract and fractions were dissolved in methanol.2.7.MS analysis of compoundsThe ESI-MS experiments were performed on ESI-Q-TOF Premier instrument in positive ion mode.After evaporated under reduced pressure,the fractions were dissolved in methanol and injected at a rate of50␮l/min.Capillary voltage was set at2.6kV;sampling cone voltage was set at40.0V;source temperature was90◦C;Des-olvation gasflow was set at450l/h and collision energy was set at 10.0eV.The mass spectrometer was scanned from m/z200to1000 in full scan mode.3.Results and discussion3.1.Evaluation of the distribution coefficients(K D)An appropriate solvent system providing a suitable range of the distribution coefficients(K D)for target compounds is the key to a successful HPCCC separation.HEMWat is a classic two-phase sol-vent system because it could provide a broad polarity range[22]. In this experiment,the K D values of target compounds in different ratios of HEMWat were determined by HPLC and listed in Table1.The large differences of K D values in different HEMWat sol-vent systems showed that the target compounds covered a wide polarity range,indicating that it was impossible to separate them with a conventional HPCCC method.Thus,the present study aimed to explore a fast and efficient separation method to separate all target compounds with HPCCC in a single run.3.2.Exploration of the separation method and analytical separation of target compounds on Mini-DE HPCCCThe EECCC method was proposedfirstly.According to Ref.[23], the time point to start extrusion step could be calculated theoret-ically.Here,we selected HEMWat(1:1:1:1)as a relatively suitable solvent system to calculate the theoretical time of extrusion and the results showed that due to the large K D values of PABGly(1)and PAAGly(4),if the two compounds were separated with satisfac-tory resolution by extrusion,the extrusion step would be started at 240min(if R s=1.0).So it is too long for a HPCCC separation process. Considering the variations of K D values of the target compounds in the above solvent systems,a three-step gradient elution was designed:first,to separate PAH(8),PAA(7),and PAB methyl ester (6)with HEMWat(1:1:1:1);then to isolate PAB(5),deacetylPAA(3)and PAC(2)with HEMWat(2:3:2:3);last,to separate PAAGly(4)and PABGly(1)with HEMWat(1:3.5:1:3.5).Since the K D values of compounds6–8ranging from0.22to0.43 were very close in HEMWat(1:1:1:1),their peaks were partly over-lapped.Therefore,flow-rate of the mobile phase was reduced to 0.5ml/min at thefirst step of the three-step gradient elution to obtain better resolutions and satisfactory stationary phase reten-tion.As mentioned above,a successful separation of all the compo-nents within80min in a single run was achieved by combining three-step gradient elution and two-stepflow-rate gradient elution on analytical Mini-DE HPCCC(see Fig.2).Three solvent systems of HEMWat(1:1:1:1),HEMWat(2:3:2:3)and HEMWat(1:3.5:1:3.5) Fig.2.Separation chromatogram of the crude sample by Mini-DE HPCCC.Coil vol-ume:18ml;two-phase solvent system:HEMWat(1:1:1:1,2:3:2:3,1:3.5:1:3.5, v/v/v/v)in three-step gradient elution;stationary phase:the lower phase of HEMWat(1:1:1:1);mobile phase:the upper phase of HEMWat(1:1:1:1)from0 to20min,the upper phase of HEMWat(2:3:2:3)from20to31min,the upper phase of HEMWat(1:3.5:1:3.5)from31to80min(the vertical dashed lines represent the time points of replacing mobile phase);flow rate:0.5ml/min from0to20min and 1ml/min from21to80min(the horizontal dashed line shows the change offlow rate in the whole process);sample loading:20mg;rotation speed:1250rpm;tem-perature:25◦C;detection wavelength:262nm;retention of the stationary phase: 67%.S.He et al./J.Chromatogr.A1235 (2012) 34–3837were selected for the separation.The solvent system of HEMWat (1:1:1:1)was usedfirstly and the separation was started at a slow flow rate of0.5ml/min to separate PAH(8),PAA(7),and PAB methyl ester(6).After PAB methyl ester(6)was eluted out,the mobile phase was switched to the upper phase of HEMWat(2:3:2:3)and theflow rate was increased to1.0ml/min simultaneously to elute PAB(5).At last,the upper phase of HEMWat(1:3.5:1:3.5)was pumped into the coil after PAB(5)was eluted out and theflow rate of1.0ml/min was kept to elute deacetylPAA(3),PAC(2),PAAGly (4)and PABGly(1).3.3.Preparative separation of target compounds on Midi-DE HPCCCThe theory of linear scale-up of HPCCC was demonstrated by Sutherland et al.[24,25].In this study,the separation conditions were scaled up to preparative Midi-DE HPCCC as shown in Fig.3.Fractions were collected as described in section2.5and evapo-rated under vacuum.Finally,166mg PABGly(1),152mg PAC(2), 8mg deacetylPAA(3),5mg PAAGly(4),484mg PAB(5),33mg PAB methyl ester(6),10mg PAA(7)and18mg PAH(8)were obtained from1.0g crude sample.In this process,8compounds were separated simultaneously within80min by HPCCC in a single pared to previ-ous study[21],the number and throughput of purified compounds were increased greatly,and the separation time wasshortened Fig.3.Separation chromatogram of the crude sample by Midi-DE HPCCC.Coil vol-ume:912.5ml;two-phase solvent system:HEMWat(1:1:1:1,2:3:2:3,1:3.5:1:3.5, v/v/v/v)in three-step gradient elution;stationary phase:the lower phase of HEMWat(1:1:1:1);mobile phase:the upper phase of HEMWat(1:1:1:1)from0 to24min,the upper phase of HEMWat(2:3:2:3)from24to35min,the upper phase of HEMWat(1:3.5:1:3.5)from35to80min(the vertical dashed lines represent the time points of replacing mobile phase);flow rate:25ml/min from0to24min and 50ml/min from25to80min(the horizontal dashed line shows the change offlow rate in the whole process);sample loading:1.0g;rotation speed:1250rpm;temper-ature:25◦C;detection wavelength:262nm;retention of the stationary phase:82%. remarkably.Two key factors contribute to the improvement of separation performance:(1)the column volume is an important factor of separation paring the TBE-300A HSCCC with column volume of300ml in Ref.[21],the Midi-DEHPCCCFig.4.Chromatograms of the crude sample and peak fractions1–8by HPLC analysis.Column:reversed-phase Sunfire C18column(150mm×4.6mm I.D.,5␮m,Waters); mobile phase:methanol–0.1%acetic acid water(methanol:0–18min,50–75%;18–20min,75–95%);flow rate:1ml/min;temperature:30◦C;detection wavelength: 200–400nm.38S.He et al./J.Chromatogr.A1235 (2012) 34–38instrument used here has a column volume of912.5ml,which is 3.04×(912.5/300).Hence,the enlarged column volume can effec-tively improve the sample loading;(2)Midi-DE HPCCC can provide a rotation speed of1250rpm,gaving a high“g”value of192×g. Hence,the mobile phaseflow-rate in this instrument could be as high as50ml/min with a satisfactory stationary phase retention, resulting in a short separation time of80min.Thus,our results have demonstrated that the HPCCC instrument has the great advantages of high throughput and higher separation efficiency[26–29].3.4.HPLC analysis of crude sample and HPCCC fractionsThe purities of HPCCC fractions were determined by HPLC.As shown in Fig.4,the purity of compounds1–8were98.6%,99.6%, 92.3%,92.2%,99.2%,99.4%,98.3%,91.0%,respectively.3.5.Structure identificationThe structure identification of compounds1–8was performed with MS,1H NMR and13C paring with the published data,compounds1–8were identified as PABGly(1)[21],PAC(2) [30],deacetylPAA(3)[31],PAAGly(4)[21],PAB(5)[30],PAB methyl ester(6)[30],PAA(7)[32]and PAH(8)[33],respectively.4.ConclusionsIn this study,we applied three-step gradient elution and two-stepflow-rate gradient elution together on HPCCC,for rapid preparative separation and purification of8diterpene compounds from P.kaempferi Gordon.The results of our study indicate that the combination of step-wise gradient elution andflow-rate gradient elution is a powerful method for the separation of the components with a broad polarity range.The HPCCC technology by varying sol-vent system andflow-rate of the mobile phase has a great potential on natural products separation.Conflict of interestThe authors have declared no conflict of interest. AcknowledgementsThe work was supported by National Key Programs of China during the12th Five-Year Plan Period(2012ZX09103101-009), the National Natural Science Foundation of China(81071251) and the Open-Study Funds of State Key Laboratory Breeding Base of Systematic Research,Development and Utilization of Chinese Medicine,Chengdu University of Traditional Chinese Medicine.Appendix A.Supplementary dataSupplementary data associated with this article can be found,in the online version,at doi:10.1016/j.chroma.2012.01.040. References[1]Y.Yuan,B.Q.Wang,L.J.Chen,H.D.Luo,D.Fisher,I.A.Sutherland,Y.Q.Wei,J.Chromatogr.A1194(2008)192.[2]H.Y.Ye,S.Ignatova,H.D.Luo,Y.F.Li,A.H.Peng,L.J.Chen,I.Sutherland,J.Chro-matogr.A1213(2008)145.[3]M.Zhang,S.Ignatova,Q.L.Liang,F.W.Jun,I.Sutherland,Y.M.Wang,G.A.Luo,J.Chromatogr.A1216(2009)3869.[4]H.D.Luo,M.Peng,H.Y.Ye,L.J.Chen,A.H.Peng,M.H.Tang,F.Zhang,J.Shi,J.Chromatogr.B878(2010)1929.[5]Y.C.Zhang,C.M.Liu,M.Yu,Z.K.Zhang,Y.J.Qi,J.Wang,G.M.Wu,S.A.Li,J.Yu,Y.Hu,J.Chromatogr.A1218(2011)2827.[6]Y.Wei,Q.Q.Xie,D.Fisher,I.A.Sutherland,J.Chromatogr.A1218(2011)6206.[7]A.Berthod,M.J.Ruiz-Angel,S.Carda-Broch,Anal.Chem.75(2003)5886.[8]Y.B.Lu,R.Liu,A.Berthod,Y.J.Pan,J.Chromatogr.A1181(2008)33.[9]Y.B.Lu,W.Y.Ma,R.L.Hu,A.Berthod,Y.J.Pan,J.Chromatogr.A1216(2009)4140.[10]Y.J.Cheng,M.Zhang,Q.L.Liang,P.Hu,Y.M.Wang,F.W.Jun,G.A.Luo,Sep.Purif.Technol.77(2011)347.[11]J.Shi,G.B.Xu,A.H.Peng,M.Peng,H.Y.Ye,S.J.Zhong,S.C.He,S.C.Li,Y.F.Luo,Y.Q.Wei,L.J.Chen,J.Chromatogr.A1217(2010)3461.[12]H.Oka,K.I.Harada,M.Suzuki,K.Fujii,M.Iwaya,Y.Ito,T.Goto,H.Matsumoto,Y.Ito,J.Chromatogr.A989(2003)249.[13]H.B.Li,F.Chen,J.Chromatogr.A1061(2004)51.[14]W.Jin,P.F.Tu,J.Chromatogr.A1092(2005)241.[15]A.H.Peng,R.Li,J.Hu,L.J.Chen,X.Zhao,H.D.Luo,H.Y.Ye,Y.Yuan,Y.Q.Wei,J.Chromatogr.A1200(2008)129.[16]J.X.Wu,R.S.Hu,G.L.Yang,J.Chin.Dermatol.8(1960)18.[17]V.K.W.Wong,P.Chiu,S.S.M.Chung,L.M.C.Chow,Y.Z.Zhao,B.B.Yang,B.C.B.Ko,Clin.Cancer Res.11(2005)6002.[18]S.P.Yang,Y.J.Cai,B.L.Zhang,L.J.Tong,H.Xie,Y.Wu,L.P.Lin,J.Ding,J.M.Yue,J.Med.Chem.51(2008)77.[19]X.F.Gong,M.W.Wang,S.Tashiro,S.Onodera,T.Ikejima,Arch.Pharm.Res.28(2005)68.[20]K.S.Li,X.F.Gu,P.Li,Y.Zhang,Y.S.Zhao,Z.J.Yao,N.Q.Qu,B.Y.Wang,World J.Gastroenterol.11(2005)7555.[21]Q.B.Han,L.Wong,i,N.Y.Yang,J.Z.Song,C.F.Qiao,H.X.Xu,J.Sep.Sci.32(2009)309.[22]Y.Ito,J.Chromatogr.A1065(2005)145.[23]S.C.Li,S.C.He,S.J.Zhong,X.M.Duan,H.Y.Ye,J.Shi,A.H.Peng,L.J.Chen,J.Chromatogr.A1218(2011)3124.[24]P.Wood,S.Ignatova,L.Janaway,D.Keay,D.Hawes,I.Garrard,I.A.Sutherland,J.Chromatogr.A1151(2007)25.[25]I.Sutherland,P.Hewitson,S.Ignatova,J.Chromatogr.A1216(2009)8787.[26]H.Guzlek,P.L.Wood,L.Janaway,J.Chromatogr.A1216(2009)4181.[27]I.Sutherland,S.Ignatova,P.Hewitson,L.Janaway,P.Wood,N.Edwards,G.Harris,H.Guzlek,D.Keay,K.Freebairn,D.Johns,N.Douillet,C.Thickitt,E.Vilminot,B.Mathews,J.Chromatogr.A1218(2011)6114.[28]C.DeAmicis,N.A.Edwards,M.B.Giles,G.H.Harris,P.Hewitson,L.Janaway,S.Ignatova,J.Chromatogr.A1218(2011)6122.[29]H.Y.Ye,S.Ignatova,A.H.Peng,L.J.Chen,I.Sutherland,J.Chromatogr.A1216(2009)5101.[30]E.G.Li,A.M.Clark,C.D.Hufford,J.Nat.Prod.58(1995)57.[31]P.Liu,H.Z.Guo,W.X.Wang,J.Zhang,N.Li,J.Han,J.P.Zhou,Y.C.Hu,T.Zhang,Z.M.Liu,D.Guo,J.Nat.Prod.70(2007)533.[32]B.N.Zhou,B.P.Ying,G.Q.Song,Z.X.Chen,J.Han,Y.F.Yan,Planta Med.47(1983)35.[33]S.P.Yang,Y.Wu,J.M.Yue,J.Nat.Prod.65(2002)1041.。

相关文档
最新文档