2021年中考数学二轮专题复习《动点问题》精选练习(含答案)

合集下载

中考动点问题专项训练(含详细解析)

中考动点问题专项训练(含详细解析)

8. 已知:如图,在平行四边形
中,
动,速度为
;点 从点 出发,沿


方向匀速运动,速度为
,点 从点 出发,沿
方向匀速运
,连接并延长
交 的延长线于点
,过 作
,垂足是 ,设运动时间为

( 1)当 为何值时,四边形
是平行四边形 ?
( 2)证明:在 , 运动的过程中,总有

( 3)是否存在某一时刻 ,使四边形
的面积为矩形
面积的 ;
( 4)是否存在某一时刻 ,使得点 在线段 的垂直平分线上.
6. 已知:如图①,在
速度为
;点
中, 由 出发沿
, 方向向点

,点
匀速运动,速度为

),解答下列问题:
由 出发沿 方向向点 匀速运动, ;连接 .若设运动的时间为
( 1)当 为何值时,
( 2)设
的面积为
? ,求 与 之间的函数关系式;
的面积是平行四边形
不存在,说明理由.
面积的一半 ?若存在,求出相应的 值;若
9. 如图,在梯形 方向向点
中,

匀速运动,速度为


;点 从点 出发,沿
, 方向向点
.点 从点 出发沿折线
匀速运动,速度为

, 同时出发,且其中任意一点到达终点,另一点也随之停止运动,设点
, 运动的时间是

第 3 页(共 19 页)
因为



所以

所以

设点 , 运动的时间是


形,


所以

解得:

(中考数学)动点问题专题训练(含答案)

(中考数学)动点问题专题训练(含答案)

中考专题训练 动点问题例1. 如图, 在ABC ∆中,AB AC =,AD BC ⊥于点D ,10BC cm =,8AD cm =. 点P 从点B 出发, 在线段BC 上以每秒3cm 的速度向点C 匀速运动, 与此同时, 垂直于AD 的直线m 从底边BC 出发, 以每秒2cm 的速度沿DA 方向匀速平移, 分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时, 点P 与直线m 同时停止运动, 设运动时间为t 秒(0)t >.(1) 当2t =时, 连接DE 、DF ,求证: 四边形AEDF 为菱形;(2) 在整个运动过程中, 所形成的PEF ∆的面积存在最大值, 当PEF ∆的面积最大时, 求线段BP 的长;(3) 是否存在某一时刻t ,使PEF ∆为直角三角形?若存在, 请求出此时刻t 的值;若不存在, 请说明理由 .【解答】(1) 证明: 当2t =时,4DH AH ==,则H 为AD 的中点, 如答图 1 所示 . 又EF AD ⊥ ,EF ∴为AD 的垂直平分线,AE DE ∴=,AF DF =.AB AC = ,AD BC ⊥于点D ,AD BC ∴⊥,B C ∠=∠.//EF BC ∴,AEF B ∴∠=∠,AFE C ∠=∠,AEF AFE ∴∠=∠,AE AF ∴=,AE AF DE DF ∴===,即四边形AEDF 为菱形 .(2) 解: 如答图 2 所示, 由 (1) 知//EF BC ,AEF ABC ∴∆∆∽, ∴EF AH BC AD =,即82108EF t -=,解得:5102EF t =-. 221155510(10)210(2)10(0)222223PEF S EF DH t t t t t t ∆==-=-+=--+<< , ∴当2t =秒时,PEF S ∆存在最大值, 最大值为210cm ,此时36BP t cm ==.(3) 解: 存在 . 理由如下:①若点E 为直角顶点, 如答图 3①所示,此时//PE AD ,2PE DH t ==,3BP t =.//PE AD ,∴PE BP AD BD =,即2385t t =,此比例式不成立, 故此种情形不存在; ②若点F 为直角顶点如答图 3②所示,此时//PF AD ,2PF DH t ==,3BP t =,103CP t =-.//PF AD ,∴PF CP AD CD =,即210385t t -=,解得4017t =;③若点P 为直角顶点,如答图③所示 .过点E 作EM BC ⊥于点M ,过点F 作FN BC ⊥于点N ,则2EM FN DH t ===,////EM FN AD .//EM AD ,∴EM BM AD BD =,即285t BM =,解得54BM t =, 57344PM BP BM t t t ∴=-=-=. 在Rt EMP ∆中, 由勾股定理得:2222227113(2)()416PE EM PM t t t =+=+=. //FN AD ,∴FN CN AD CD =,即285t CN =,解得54CN t =, 5171031044PN BC BP CN t t t ∴=--=--=-. 在Rt FNP ∆中, 由勾股定理得:22222217353(2)(10)85100416PF FN PN t t t t =+=+-=-+. 在Rt PEF ∆中, 由勾股定理得:222EF PE PF =+, 即:2225113353(10)()(85100)21616t t t t -=+-+ 化简得:21833508t t -=, 解得:280183t =或0t =(舍 去) 280183t ∴=. 综上所述, 当4017t =秒或280183t =秒时,PEF ∆为直角三角形 .例2. 如图, 在同一平面上, 两块斜边相等的直角三角板Rt ABC ∆和Rt ADC ∆拼在一起,使斜边AC 完全重合, 且顶点B ,D 分别在AC 的两旁,90ABC ADC ∠=∠=︒,30CAD ∠=︒,4AB BC cm ==(1) 填空:AD = )cm ,DC = ()cm(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发, 且分别在AD ,CB 上沿A D →,C B →方向运动, 当N 点运动到B 点时,M 、N 两点同时停止运动, 连接MN ,求当M 、N 点运动了x 秒时, 点N 到AD 的距离 (用 含x 的式子表示)(3) 在 (2) 的条件下, 取DC 中点P ,连接MP ,NP ,设PMN ∆的面积为2()y cm ,在整个运动过程中,PMN ∆的面积y 存在最大值, 请求出y 的最大值 .(参考数据sin 75︒=sin15︒=【解答】解: (1)90ABC ∠=︒ ,4AB BC cm ==,AC ∴===,90ADC ∠=︒ ,30CAD ∠=︒,12DC AC ∴==,AD ∴==;故答案为:,;(2) 过点N 作NE AD ⊥于E ,作NF DC ⊥,交DC 的延长线于F ,如图所示:则NE DF =,90ABC ADC ∠=∠=︒ ,AB BC =,30CAD ∠=︒,45ACB ∴∠=︒,60ACD ∠=︒,180456075NCF ∴∠=︒-︒-︒=︒,15FNC ∠=︒,sinFC FNCNC ∠=,NC x=,FC x∴=,NE DF x∴==+,∴点N到ADx+;(3)sinFN NCFNC ∠=,FN x∴=,P为DC的中点,PD CP∴==PF x∴=PMN∴∆的面积y=梯形MDFN的面积PMD-∆的面积PNF-∆的面积111)) 222x x x x=+-+--+2x x=+,即y是x的二次函数,0<,y∴有最大值,当x==时,y=.例3. 如图,BD 是正方形ABCD 的对角线,2BC =,边BC 在其所在的直线上平移, 将通过平移得到的线段记为PQ ,连接PA 、QD ,并过点Q 作QO BD ⊥,垂足为O ,连接OA 、OP .(1) 请直接写出线段BC 在平移过程中, 四边形APQD 是什么四边形?(2) 请判断OA 、OP 之间的数量关系和位置关系, 并加以证明;(3) 在平移变换过程中, 设OPB y S ∆=,(02)BP x x =……,求y 与x 之间的函数关系式,并求出y 的最大值 .【解答】(1) 四边形APQD 为平行四边形;(2)OA OP =,OA OP ⊥,理由如下:四边形ABCD 是正方形,AB BC PQ ∴==,45ABO OBQ ∠=∠=︒,OQ BD ⊥ ,45PQO ∴∠=︒,45ABO OBQ PQO ∴∠=∠=∠=︒,OB OQ ∴=,在AOB ∆和OPQ ∆中,AB PQABO PQO BO QO=⎧⎪∠=∠⎨⎪=⎩()AOB POQ SAS ∴∆≅∆,OA OP ∴=,AOB POQ ∠=∠,90AOP BOQ ∴∠=∠=︒,OA OP ∴⊥;(3) 如图, 过O 作OE BC ⊥于E .①如图 1 ,当P 点在B 点右侧时,则2BQ x =+,22x OE +=, 1222x y x +∴=⨯,即211(1)44y x =+-, 又02x ……,∴当2x =时,y 有最大值为 2 ;②如图 2 ,当P 点在B 点左侧时,则2BQ x =-,22x OE -=, 1222x y x -∴=⨯ ,即211(1)44y x =--+, 又02x ……,∴当1x =时,y 有最大值为14; 综上所述,∴当2x =时,y 有最大值为 2 .例4. 如图, 在平面直角坐标系中,O 为原点, 四边形ABCO 是矩形, 点A ,C 的坐标分别是(0,2)A 和C ,0),点D 是对角线AC 上一动点 (不 与A ,C 重合) ,连结BD ,作DE DB ⊥,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1) 填空: 点B 的坐标为 ;(2) 是否存在这样的点D ,使得DEC ∆是等腰三角形?若存在, 请求出AD 的长度;若不存在, 请说明理由;(3)①求证:DE DB =; ②设AD x =,矩形BDEF 的面积为y ,求y 关于x 的函数关系式 (可 利用①的结论) ,并求出y 的最小值 .【解答】解: (1) 四边形AOCB 是矩形,2BC OA ∴==,OC AB ==90BCO BAO ∠=∠=︒,B ∴2).故答案为2).(2) 存在 . 理由如下:2OA = ,OC =,tan AO ACO OC ∠== , 30ACO ∴∠=︒,60ACB ∠=︒①如图 1 中, 当E 在线段CO 上时,DEC ∆是等腰三角形, 观察图象可知, 只有ED EC =,30DCE EDC ∴∠=∠=︒,60DBC BCD ∴∠=∠=︒,DBC ∴∆是等边三角形,2DC BC ∴==,在Rt AOC ∆中,30ACO ∠=︒ ,2OA =,24AC AO ∴==,422AD AC CD ∴=-=-=.∴当2AD =时,DEC ∆是等腰三角形 .②如图 2 中, 当E 在OC 的延长线上时,DCE ∆是等腰三角形, 只有CD CE =,15DBC DEC CDE ∠=∠=∠=︒,75ABD ADB ∴∠=∠=︒,AB AD ∴==,综上所述, 满足条件的AD 的值为 2 或(3)①如图 1 ,过点D 作MN AB ⊥交AB 于M ,交OC 于N ,(0,2)A 和C ,0),∴直线AC 的解析式为2y x =+,设(,2)D a +,2DN ∴=+,BM a =90BDE ∠=︒ ,90BDM NDE ∴∠+∠=︒,90BDM DBM ∠+∠=︒,DBM EDN ∴∠=∠,90BMD DNE ∠=∠=︒ ,BMD DNE ∴∆∆∽,∴DE DN BD BM ===②如图 2 中, 作DH AB ⊥于H .在Rt ADH ∆中,AD x = ,30DAH ACO ∠=∠=︒,1122DH AD x ∴==,AH x ==,BH x ∴=, 在Rt BDH ∆中,BD ==,DE ∴==, ∴矩形BDEF的面积为22612)y x x ==-+,即2y x =-+,23)y x ∴=-+,0>,3x ∴=时,y .例5. 已知Rt OAB ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,如图 1 ,连接BC .(1) 填空:OBC ∠= 60 ︒;(2) 如图 1 ,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3) 如图 2 ,点M ,N 同时从点O 出发, 在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动, 当两点相遇时运动停止, 已知点M 的运动速度为 1.5 单位/秒, 点N 的运动速度为 1 单位/秒, 设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?【解答】解: (1) 由旋转性质可知:OB OC =,60BOC ∠=︒,OBC ∴∆是等边三角形,60OBC ∴∠=︒.故答案为 60 .(2) 如图 1 中,4OB = ,30ABO ∠=︒,122OA OB ∴==,AB ==11222AOC S OA AB ∆∴==⨯⨯=BOC ∆ 是等边三角形,60OBC ∴∠=︒,90ABC ABO OBC ∠=∠+∠=︒,AC ∴==2AOC S OP AC ∆∴===.(3)①当803x <…时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE OC ⊥且交OC 于点E .则sin 60NE ON x =︒= ,11 1.522OMN S OM NE x x ∆∴==⨯ ,2y x ∴=.83x ∴=时,y 有最大值, 最大值=. ②当843x <…时,M 在BC 上运动,N 在OB 上运动 .作MH OB ⊥于H . 则8 1.5BM x =-,sin 60 1.5)MH BM x =︒=- ,212y ON MH x ∴=⨯⨯=+.当83x =时,y 取最大值,y < ③当4 4.8x <…时,M 、N 都在BC 上运动, 作OG BC ⊥于G .12 2.5MN x =-,OG AB ==,12y MN OG ∴== ,当4x =时,y 有最大值, 最大值=,综上所述,y 有最大值, .。

2021届中考数学专题复习训练——二次函数 专题2.2函数动点图象问题

2021届中考数学专题复习训练——二次函数 专题2.2函数动点图象问题

函数图象解题思路起点:动点从何处出发,何时出发,何速度运动,运动方向是什么,形成的是何图形?起点有没有意义?点运动的路程(边长)中间点:分阶段运动,中间的位置是什么?终点:何时何地结束运动,停止时是否有先后?特殊点:运动过程中特殊的位置。

类型一、实际问题【经典例题1】已知A ,B 两地相距120千米,甲、乙两人沿同一条公路从A 地出发到B 地,乙骑自行车,甲骑摩托车,图中DE ,OC 分别表示甲、乙离开A 地的路程s (单位:千米)与时间t (单位:小时)的函数关系的图象,设在这个过程中,甲、乙两人相距y (单位:千米),则y 关于t 的函数图象是( )A.B. C. D.【解析】 由题意和图象可得,乙到达B 地时甲距A 地120km ,开始时两人的距离为0; 甲的速度是:120÷(3−1)=60km/h ,乙的速度是:80÷3=380km/h ,即乙出发1小时后两人距离为380km ;设乙出发后被甲追上的时间为x h ,则60(x −1)=380x ,得x =1.8,即乙出发后被甲追上的时间为1.8h.所以符合题意的函数图象只有选项B.故选:B.练习1-1甲、乙两位同学进行长跑训练,甲和乙所跑的路程S (单位:米)与所用时间t (单位:秒)之间的函数图象分别为线段OA 和折线OBCD ,则下列说法正确的是( )A.两人从起跑线同时出发,同时到达终点B.跑步过程中,两人相遇一次C.起跑后160秒时,甲、乙两人相距最远D.乙在跑前300米时,速度最慢练习1-2小明在书上看到了一个实验:如图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t 的函数关系的大致图象,如下图所示.小明选择的物体可能是( )A.B.C.D.练习1-3如图,在一个盛水的圆柱形容器的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速将小球从水下向水面上拉动时,圆柱形容器内水面的高度与时间的函数图象大致是()类型二:几何动态①动点图形面积【经典例题2】如图,在等腰△ABC中,AB=AC=4cm,△B=30°,点P从点B 出发,以3cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A. B. C. D.【解析】作AH ⊥BC 于H ,∵AB=AC=4cm ,∴BH=CH ,∵∠B=30°,∴AH=12AB=2,BH=3AH=23,∴BC=2BH=43,∵点P 运动的速度为3m/s ,Q 点运动的速度为1cm/s ,∴点P 从B 点运动到C 需4s ,Q 点运动到C 需8s ,当0△x △4时,作QD ⊥BC 于D ,如图1,BQ=x ,BP=3x ,在Rt △BDQ 中,DQ=21BQ=21x , ∴y=21⋅21x ⋅3x =43x 2,当4<x △8时,作QD ⊥BC 于D ,如图2,CQ=8−x ,BP=43在Rt △BDQ 中,DQ=21CQ=21(8−x ),∴y=21⋅21(8−x )⋅43=−3+83, 综上所述,⎪⎩⎪⎨⎧≤<+-≤≤=)84(383)40(432x x x x y ,,,.故选D.练习2-1四边形ABCD 为直角梯形,CD△AB ,CB△AB 且CD=BC=21AB ,若直线l △AB ,直线l 截这个梯形所得的位于此直线左方的图形面积为y ,点A 到直线L 的距离为x ,则y 与x 关系的大致图象为( )A.B. C. D.练习2-2如图,四边形ABCD 是矩形,AB=8,BC=4,动点P 以每秒2个单位的速度从点A 沿线段AB 向B 点运动,同时动点Q 以每秒3个单位的速度从点B 出发沿B −C −D 的方向运动,当点Q 到达点D 时P 、Q 同时停止运动,若记△PQA 的面积为y ,运动时间为x ,则下列图象中能大致表示y 与x 之间函数关系图象的是( )练习2-3如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A. B. C. D.练习2-4如图,四边形ABCD为正方形,若AB=4,E是AD边上一点(点E与点A、D不重合),BE的中垂线交AB于M,交DC于N,设AE=x,则图中阴影部分的面积S与x的大致图象是()A. B. C. D.练习2-5如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s 的速度分别沿CB﹣BA、CD﹣DA运动,到点A时停止运动.设运动时间为t (s),△AEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为()练习2-6如图,在△ABCD中,AB=6,BC=10,AB△AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是()A.B.C.D.练习2-7如图,在平面直角坐标系x Oy中,A(2,0),B(0,2),点M在线段AB 上,记MO+MP最小值的平方为s,当点P沿x轴正向从点O运动到点A时(设点P的横坐标为x),s关于x的函数图象大致为()A. B. C. D.练习2-8木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A. B. C. D.练习2-9数学课上,老师提出一个问题:如图△,在平面直角坐标系中,点A的坐标为(0,1),点B是x轴正半轴上一动点,以AB为边作等腰直角三角形ABC,使△BAC=90°,点C在第一象限,设点B的横坐标为x,设……为y,y与x之间的函数图象如图△所示,题中用“……”表示的缺失的条件应补为( )A. 点C的横坐标B. 点C的纵坐标C. △ABC的周长D. △ABC的面积练习2-10如图,在平面直角坐标系x Oy中,以点A(2,3)为顶点作一直角∠PAQ,使其两边分别与x轴,y轴的正半轴交于点P,Q.连接PQ,过点A作AH⊥PQ 于点H.设点P的横坐标为x,AH的长为y,则下列图象中,能表示y与x函数关系的图象大致是().②动点图形边长【经典例题3】如图△,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图△所示,则AD边的长为( )A. 3B. 4C. 5D. 6【解析】当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,△AOP 面积最大为3. ∴21AB •21=3,即AB •BC=12. 当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为7,∴AB+BC=7.则BC=7-AB ,代入AB •BC=12,得AB 2-7AB+12=0,解得AB=4或3, 因为AB<AD ,即AB<BC ,所以AB=3,BC=4.故选:B .练习3-1如图1,动点P 从菱形ABCD 的顶点A 出发,沿以1cm/s 的速度运动到点D ,设点P 的运动时间为x (s ),△PAB 的面积为y(cm 2),表示y 与x 的函数关系的图象如图2所示,则a 的值为( ) A.25 B.5 C. 2 D.52练习3-2如如图△,菱形ABCD中,∠B=60°,动点P以每秒1个单位的速度自点A出发沿线段AB运动到点B,同时动点Q以每秒2个单位的速度自点B--运动到点D.图△是点P、Q运动时,△BPQ的面积S随时出发沿折线B C D间t变化关系图象,则a的值是()A.2B.2.5C.3D.练习3-3如如图1,四边形ABCD中,AB△CD,△B=90°,AC=AD.动点P从点B出发沿折线B﹣A﹣D﹣C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.10B.C.8D.练习3-4如如图1,点P 从ABC △的顶点B 出发,沿B C A →→匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC △的面积是______.练习3-5如图1,在矩形ABCD 中,动点E 从A 出发,沿AB →BC 方向运动,当点E 到达点C 时停止运动,过点E 做FE ⊥AE ,交CD 于F 点,设点E 运动路程为x ,FC=y ,如图2所表示的是y 与x 的函数关系的大致图象,当点E 在BC 上运动时,FC 的最大长度是52,则矩形ABCD 的面积是() A.523 B. 5 C. 6 D. 425【经典例题4——圆】如图,在平面直角坐标系x Oy中,以(3,0)为圆心作△P,△P与x轴交于A. B,与y轴交于点C(0,2),Q为△P上不同于A. B的任意一点,连接QA、QB,过P点分别作PE△QA于E,PF△QB于F. 设点Q的横坐标为x,PE2+PF2=y.当Q 点在△P上顺时针从点A运动到点B的过程中,下列图象中能表示y与x的函数关系的部分图象是( )【解析】△P(3,0),C(0,2),△PC2=13.△AC是直径,△△Q=90°.又PE△QA于E,PF△QB于F,△四边形PEQF是矩形。

中考二次函数动点问题(含答案)

中考二次函数动点问题(含答案)

中考二次函数动点(Dian)问题(含答案)1.如(Ru)图(Tu)①,正(Zheng)方形的(De)顶点的坐标(Biao)分别为,顶(Ding)点在(Zai)第一象限.点从点出发,沿正方形按逆时针方向匀速运动,同时,点从点出发,沿轴正方向以相同速度运动.当点P到达点时,两点同时停止运动,设运动的时间为秒.(1)求正方形ABCD的边长.(2)当点P在边上运动时,的面积(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分(如图②所示),求P Q,两点的运动速度.(3)求(2)中面积S(平方单位)与时间t(秒)的函数关系式及面积S取最大值时点P 的坐标.(4)若点P Q,保持(2)中的速度不变,则点P沿着AB边运动时,的大小随着时间t的增大而增大;沿着边运动时,OPQ∠的大小随着时间t的增大而减小.当点P沿着这两边运动时,使的点P有个.(抛物线的顶点坐标是.[解] (1)作轴于.,..(2)由图②可知,点P从点A运动到点用了10秒.又.两点的运动速度均为每秒1个单位.(3)方法一:作轴于,则.,即... ,.即(Ji).,且(Qie),当(Dang)时(Shi),S 有最(Zui)大值.此(Ci)时, ∴点(Dian)P 的坐(Zuo)标为.(8分)方法二:当时,.设所求函数关系式为.抛物线过点,.19195323210b a -=-=⎛⎫⨯- ⎪⎝⎭,且190103≤≤, ∴当193t =时,S 有最大值.此时,∴点P 的坐标为7631155⎛⎫⎪⎝⎭,.(4).[点(Dian)评(Ping)]本题主要考查函数性质的简单运用和几何知识,是近年来较为流行的试(Shi)题,解题的关键在于结合题目的要求动中取静,相信解决这种问题不会非常难。

. 2. 如(Ru)图(Tu)①,中(Zhong),,.它的(De)顶点A 的坐(Zuo)标为,顶点B 的坐标为,,点P 从点A 出发,沿的方向匀速运动,同时点Q 从点出发,沿轴正方向以相同速度运动,当点P 到达点C 时,两点同时停止运动,设运动的时间为t 秒. (1)求的度数.(2)当点P 在AB 上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分,(如图②),求点P 的运动速度.(3)求(2)中面积S 与时间t 之间的函数关系式及面积S 取最大值时点P 的坐标. (4)如果点P Q ,保持(2)中的速度不变,那么点P 沿AB 边运动时,的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小,当点P 沿这两边运动时,使的点P 有几个?请说明理由.解: (1).(2)点P 的运动速度为2个单位/秒. (3)().∴当时,S 有最大值为,此时.(4)当点P 沿这两边运动时,90OPQ =∠的点P 有2个. ①当点P 与点A 重合时,, 当点P 运动到与点B 重合时,的长是12单位长度, 作交y 轴于点,作轴于点,由得:,所以,从而. 所以当点P 在AB 边上运动时,90OPQ =∠的点P 有1个. ②同理当点P 在BC 边上运动时,可算得.而构成直角时交y 轴于,,所以,从而90OPQ =∠的点P 也有1个.所以当(Dang)点P 沿这两边运动(Dong)时,90OPQ =∠的(De)点P 有(You)2个(Ge).3. (本(Ben)题满分(Fen)14分(Fen))如图,直线与轴交于点,与轴交于点,已知二次函数的图象经过点A 、C 和点.(1)求该二次函数的关系式;(2)设该二次函数的图象的顶点为,求四边形的面积;(3)有两动点、同时从点出发,其中点D 以每秒个单位长度的速度沿折线按O →A →C 的路线运动,点E 以每秒个单位长度的速度沿折线按O →C →A 的路线运动,当D 、E 两点相遇时,它们都停止运动.设D 、E 同时从点O 出发秒时,的面积为S .①请问D 、E 两点在运动过程中,是否存在∥,若存在,请求出此时t 的值;若不存在,请说明理由;②请求出S 关于t 的函数关系式,并写出自变量t 的取值范围;③设是②中函数S 的最大值,那么0S = .解:(1)令,则; 令则.∴.∵二次函数的图象过点()04C ,, ∴可设二次函数的关系式为 又∵该函数图象过点.∴解之,得,.∴所求二次函数的关系式为(2)∵438342++-=x x y =∴顶(Ding)点M 的坐标(Biao)为过(Guo)点M 作(Zuo)MF轴(Zhou)于F ∴=∴四边(Bian)形AOCM 的面(Mian)积为(Wei)10 (3)①不存在DE ∥OC∵若DE ∥OC ,则点D ,E 应分别在线段OA ,CA 上,此时,在中,. 设点E 的坐标为∴,∴ ∵,∴∴∵38=t >2,不满足12t <<.∴不存在DE OC ∥.②根据题意得D ,E 两点相遇的时间为(秒)现分情况讨论如下: ⅰ)当时,;ⅱ)当时,设点E 的坐标为∴,∴∴ⅲ)当2 <<时,设点E 的坐标为,类似ⅱ可得设点D 的坐标为∴,∴∴=③47.关(Guan)于x的(De)二次函数以(Yi)y轴为(Wei)对称轴,且与y 轴(Zhou)的交点在x轴(Zhou)上方.(1)求此抛物线的解析式(Shi),并在下面的直角坐标系中画出函数的草图;(2)设(She)A是y轴右侧抛物线上的一个动点,过点A作AB垂直于x轴于点B,再过点A作x轴的平行线交抛物线于点,过点D作垂直于x轴于点C,得到矩形ABCD.设矩形ABCD的周长为,点A的横坐标为x,试求l关于x的函数关系式;(3)当点A在y轴右侧的抛物线上运动时,矩形ABCD能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.参考资料:抛物线的顶点坐标是2424b ac ba a⎛⎫-- ⎪⎝⎭,,对称轴是直线.解:(1)据题意得:,.当时,.当时,.又抛物线与y轴的交点在x轴上方,.∴抛物线的解析式为:.函数的草图如图所示.(只要与坐标轴的三个交点的位置及图象大致形状正确即可)(2)解:令,得.不时,,,.当时,, ..关于x 的函数关系是: 当02x <<时,;当2x >时,.(3)解法一:当02x <<时,令,得.解(Jie)得(舍(She)),或.将(Jiang)13x =-+代(Dai)入2244l x x =-++, 得(De).当(Dang)2x >时(Shi),令,得(De).解得(舍),或.将13x =+代入2244l x x =+-,得.综上,矩形ABCD 能成为正方形,且当时正方形的周长为;当时,正方形的周长为.解法二:当02x <<时,同“解法一”可得13x =-+. ∴正方形的周长. 当2x >时,同“解法一”可得13x =+.∴正方形的周长.综上,矩形ABCD 能成为正方形,且当31x =-时正方形的周长为838-;当31x =+时,正方形的周长为838+.解法三:点A 在y 轴右侧的抛物线上,,且点A 的坐标为.令,则.∴,①或②由①解得13x =--(舍),或13x =-+; 由②解得13x =-(舍),或13x =+. 又,∴当13x =-+838l =;当13x =838l =.综上,矩形ABCD 能成为正方形,且当31x =时正方形的周长为838;当31x =时,正方形的周长为838.5.已知抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标;(2)求此抛物线的表达式;(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.解:(1)解方程x 2-10x +16=0得x 1=2,x 2=8∵点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,且OB <OC ∴点B 的坐标为(2,0),点C 的坐标为(0,8) 又∵抛物线y =ax 2+bx +c 的对称轴是直线x =-2 ∴由抛物线的对称性可得点A 的坐标为(-6,0)(2)∵点(Dian)C (0,8)在(Zai)抛物线y =ax 2+bx +c 的(De)图象上 ∴c =8,将(Jiang)A (-6,0)、B (2,0)代入(Ru)表达式,得⎩⎨⎧0=36a -6b +80=4a +2b +8解(Jie)得⎩⎪⎨⎪⎧a =-23b =-83∴所求抛物线的表达式(Shi)为y =-23x 2-83x +8(3)依(Yi)题意,AE =m ,则BE =8-m , ∵OA =6,OC =8,∴AC =10 ∵EF ∥AC ∴△BEF ∽△BAC ∴EF AC =BE AB 即EF 10=8-m8 ∴EF =40-5m 4过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =45∴FG EF =45 ∴FG =45·40-5m 4=8-m ∴S =S △BCE -S △BFE =12(8-m )×8-12(8-m )(8-m )=12(8-m )(8-8+m )=12(8-m )m =-12m 2+4m 自变量m 的取值范围是0<m <8(4)存在.理由:∵S =-12m 2+4m =-12(m -4)2+8 且-12<0,∴当m =4时,S 有最大值,S 最大值=8∵m =4,∴点E 的坐标为(-2,0) ∴△BCE 为等腰三角形.6.(14分)如图:抛物线经过A (-3,0)、B (0,4)、C (4,0)三点. (1) 求抛物线的解析式.(2)已知AD = AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小?若存在,请求出点M 的坐标;若不存在,请说明理由。

2021中考数学 压轴专题训练之动点问题(含答案)

2021中考数学 压轴专题训练之动点问题(含答案)

2021中考数学 压轴专题训练之动点问题1. 如图1,在平面直角坐标系中,四边形OABC 各顶点的坐标分别为O (0,0),A (3,33),B (9,53),C (14,0).动点P 与Q 同时从O 点出发,运动时间为t 秒,点P 沿OC 方向以1单位长度/秒的速度向点C 运动,点Q 沿折线OA -AB-BC 运动,在OA ,AB ,BC 上运动的速度分别为3,3,52(单位长度/秒).当P ,Q 中的一点到达C 点时,两点同时停止运动. (1)求AB 所在直线的函数表达式.(2)如图2,当点Q 在AB 上运动时,求△CPQ 的面积S 关于t 的函数表达式及S 的最大值.(3)在P ,Q 的运动过程中,若线段PQ 的垂直平分线经过四边形OABC 的顶点,求相应的t 值.图1 图22. 如图,抛物线y=-x 2+bx+c 与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点N ,过A 点的直线l :y=kx+n 与y 轴交于点C ,与抛物线y=-x 2+bx+c 的另一个交点为D ,已知A (-1,0),D (5,-6),P 点为抛物线y=-x 2+bx+c 上一动点(不与A ,D 重合).(1)求抛物线和直线l 的解析式;(2)当点P 在直线l 上方的抛物线上时,过P 点作PE ∥x 轴交直线l 于点E ,作PF ∥y 轴交直线l 于点F ,求PE+PF 的最大值;(3)设M 为直线l 上的点,探究是否存在点M ,使得以点N ,C ,M ,P 为顶点的四边形为平行四边形.若存在,求出点M 的坐标;若不存在,请说明理由.3. 如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 经过A (-2, -4 )、O (0, 0)、B (2, 0)三点.(1)求抛物线y =ax 2+bx +c 的解析式;(2)若点M 是该抛物线对称轴上的一点,求AM +OM 的最小值.4. 设直线l 1:y =k 1x +b 1与l 2:y =k 2x +b 2,若l 1⊥l 2,垂足为H ,则称直线l 1与l 2是点H 的直角线.(1)已知直线①122y x =-+;②2y x =+;③22y x =+;④24y x =+和点C (0,2),则直线_______和_______是点C 的直角线(填序号即可);(2)如图,在平面直角坐标系中,直角梯形OABC 的顶点A (3,0)、B (2,7)、C (0,7),P 为线段OC 上一点,设过B 、P 两点的直线为l 1,过A 、P 两点的直线为l 2,若l 1与l 2是点P 的直角线,求直线l 1与l 2的解析式.5. 如图①,在平面直角坐标系xOy 中,已知抛物线y=ax 2-2ax -8a 与x 轴相交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,-4).(1)点A 的坐标为 ,点B 的坐标为 ,线段AC 的长为 ,抛物线的解析式为 .(2)点P 是线段BC 下方抛物线上的一个动点.如果在x 轴上存在点Q ,使得以点B ,C ,P ,Q 为顶点的四边形是平行四边形,求点Q 的坐标.①6. 如图,已知抛物线211(1)444by x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示); (2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.7. 如图,已知A 、B 是线段MN 上的两点,,,.以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设. (1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?4=MN 1=MA 1>MB x AB=8. 如图,已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.9. 在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).(1)当k=-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随x增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.10. 如图,已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3,抛物线与x轴相交于A,B两点,与y轴相交于点C,已知B点的坐标为(8,0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点,点N为线段BC上的一点,若MN∥y 轴,求MN的最大值;(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.11. 如图,直线y=2x+6与反比例函数y=kx(k>0)的图象交于点A(m,8),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的解析式;(2)观察图象,直接写出当x>0时不等式2x+6-kx>0的解集;(3)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?最大值是多少?12. 如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.13. 在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=6,BA=分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.14. 如图,已知一次函数y =-x +7与正比例函数43y x 的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.15. 如图,二次函数y =a (x 2-2mx -3m 2)(其中a 、m 是常数,且a >0,m >0)的图像与x 轴分别交于A 、B (点A 位于点B 的左侧),与y 轴交于点C (0,-3),点D 在二次函数的图像上,CD //AB ,联结AD .过点A 作射线AE 交二次函数的图像于点E ,AB 平分∠DAE . (1)用含m 的式子表示a ; (2)求证:ADAE为定值; (3)设该二次函数的图像的顶点为F .探索:在x 轴的负半轴上是否存在点G ,联结GF ,以线段GF 、AD 、AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G 即可,并用含m 的代数式表示该点的横坐标;如果不存在,请说明理由.16. 如图,二次函数y=-x2+4x+5的图象的顶点为D,对称轴是直线l,一次函数y=x+1的图象与x轴交于点A,且与直线DA关于l的对称直线交于点B.(1)点D的坐标是.(2)直线l与直线AB交于点C,N是线段DC上一点(不与点D,C重合),点N 的纵坐标为n.过点N作直线与线段DA,DB分别交于点P,Q,使得∥DPQ与∥DAB 相似.①当n=时,求DP的长;②若对于每一个确定的n的值,有且只有一个∥DPQ与∥DAB相似,请直接写出n的取值范围.17. 已知直线y=3x-3分别与x轴、y轴交于点A,B,抛物线y=ax2+2x+c经过点A,B.(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l,点B关于直线l的对称点为C,若点D在y 轴的正半轴上,且四边形ABCD为梯形.∥求点D的坐标;∥将此抛物线向右平移,平移后抛物线的顶点为P,其对称轴与直线y=3x-3交于点E ,若73tan =∠DPE ,求四边形BDEP 的面积.18. 如图,在平面直角坐标系xOy 中,二次函数y =-x 2+2x +8的图象与一次函数y =-x +b 的图象交于A 、B 两点,点A 在x 轴上,点B 的纵坐标为-7.点P 是二次函数图象上A 、B 两点之间的一个动点(不与点A 、B 重合),设点P 的横坐标为m ,过点P 作x 轴的垂线交AB 于点C ,作PD ⊥AB 于点D . (1)求b 及sin ∠ACP 的值;(2)用含m 的代数式表示线段PD 的长;(3)连接PB ,线段PC 把△PDB 分成两个三角形,是否存在适合的m 值,使这两个三角形的面积之比为1∶2?如果存在,直接写出m 的值;如果不存在,请说明理由.19. 如图,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.20. 已知平面直角坐标系中两定点A (-1, 0)、B (4, 0),抛物线y =ax 2+bx -2(a≠0)过点A 、B ,顶点为C ,点P (m , n )(n <0)为抛物线上一点. (1)求抛物线的解析式和顶点C 的坐标; (2)当∠APB 为钝角时,求m 的取值范围;(3)若m >32,当∠APB 为直角时,将该抛物线向左或向右平移t (0<t <52)个单位,点C 、P 平移后对应的点分别记为C ′、P ′,是否存在t ,使得顺次首尾连接A 、B 、P ′、C ′所构成的多边形的周长最短?若存在,求t 的值并说明抛物线平移的方向;若不存在,请说明理由.2021中考数学 压轴专题训练之动点问题-答案一、解答题(本大题共20道小题)1. 【答案】【思维教练】(1)设一次函数解析式,将已知点A 、B 的坐标值代入求解即可;(2)S △CPQ =12·CP·Q y ,CP =14-t ,点Q 在AB 上,Q y 即为当x =t 时的y 值,代入化简得出S 与t 的函数关系式,化为顶点式得出最值;(3)垂直平分线过顶点需以时间为临界点分情况讨论,当Q 在OA 上时,过点C ;当Q 在AB 上时,过点A ;当Q 在BC 上时,过点C 和点B ,再列方程并求解.解图1解:(1)把A(3,33),B(9,53)代入y =kx +b ,得⎩⎨⎧3k +b =33,9k +b =53,解得⎩⎨⎧k =33,b =23,∴y =33x +23;(3分)(2)在△PQC 中,PC =14-t ,∵OA =32+(33)2=6且Q 在OA 上速度为3单位长度/s , AB =62+(23)2=43且Q 点在AB 上的速度为3单位长度/s , ∴Q 在OA 上时的横坐标为t ,Q 在AB 上时的横坐标为32t , PC 边上的高线长为33t +2 3.(6分)所以S =12(14-t )(32t +23)=-34t 2+532t +143(2≤t ≤6).当t =5时,S 有最大值为8134.(7分)解图2(3)①当0<t ≤2时,线段PQ 的中垂线经过点C(如解图1).可得方程(332t )2+(14-32t )2=(14-t )2.解得t 1=74,t 2=0(舍去),此时t =74.(8分)解图3②当2<t ≤6时,线段PQ 的中垂线经过点A(如解图2). 可得方程(33)2+(t -3)2=[3(t -2)]2.解得t 1=3+572,∵t 2=3-572(舍去),此时t =3+572. ③当6<t ≤10时,(1)线段PQ 的中垂线经过点C(如解图3).可得方程14-t =25-52t ,解得t =223.(10分)解图4(2)线段PQ 的中垂线经过点B(如解图4).可得方程(53)2+(t -9)2=[52(t -6)]2. 解得t 1=38+2027,t 2=38-2027(舍去). 此时t =38+2027.(11分) 综上所述,t 的值为74,3+572,223,38+2027.(12分)【难点突破】解决本题的关键点在于对PQ 的垂直平分线过四边形顶点的情况进行分类讨论,在不同阶段列方程求解.2. 【答案】[分析] (1)将点A ,D 的坐标分别代入直线表达式、抛物线的表达式,即可求解; (2)设出P 点坐标,用参数表示PE ,PF 的长,利用二次函数求最值的方法.求解; (3)分NC 是平行四边形的一条边或NC 是平行四边形的对角线两种情况,分别求解即可.解:(1)将点A ,D 的坐标代入y=kx +n 得:解得:故直线l 的表达式为y=-x -1.将点A ,D 的坐标代入抛物线表达式, 得解得故抛物线的表达式为:y=-x 2+3x +4. (2)∵直线l 的表达式为y=-x -1,∴C (0,-1),则直线l 与x 轴的夹角为45°,即∠OAC=45°, ∵PE ∥x 轴,∴∠PEF=∠OAC=45°.又∵PF ∥y 轴,∴∠EPF=90°,∴∠EFP=45°.则PE=PF .设点P 坐标为(x ,-x 2+3x +4), 则点F (x ,-x -1),∴PE +PF=2PF=2(-x 2+3x +4+x +1)=-2(x -2)2+18,∵-2<0,∴当x=2时,PE +PF 有最大值,其最大值为18. (3)由题意知N (0,4),C (0,-1),∴NC=5,①当NC 是平行四边形的一条边时,有NC ∥PM ,NC=PM. 设点P 坐标为(x ,-x 2+3x +4),则点M 的坐标为(x ,-x -1), ∴|y M -y P |=5,即|-x 2+3x +4+x +1|=5, 解得x=2±或x=0或x=4(舍去x=0),则点M 坐标为(2+,-3-)或(2-,-3+)或(4,-5);②当NC 是平行四边形的对角线时,线段NC 与PM 互相平分. 由题意,NC 的中点坐标为0,,设点P 坐标为(m ,-m 2+3m +4), 则点M (n',-n'-1), ∴0==,解得:n'=0或-4(舍去n'=0), 故点M (-4,3).综上所述,存在点M ,使得以N ,C ,M ,P 为顶点的四边形为平行四边形,点M 的坐标分别为: (2+,-3-),(2-,-3+),(4,-5),(-4,3).3. 【答案】(1)212y x x =-+。

中考数学动点问题专题练习(含答案)

中考数学动点问题专题练习(含答案)

动点专题一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥O A,垂足为H,△OPH 的重心为G .(1)当点P在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设P Hx =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PG H是等腰三角形,试求出线段PH 的长.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC =1,点D,E在直线B C上运动.设BD=,x CE=y . (1)如果∠B AC=30°,∠DA E=105°,试确定y 与x 之间的函数解析式;(2)如果∠B AC的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.AEDCB 图2H M NG PO A B 图1 x yC三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△A BC中,∠BAC =90°,AB=AC =22,⊙A 的半径为1.若点O在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A相切时, △AO C的面积.一、以动态几何为主线的压轴题 (一)点动问题.1.(09年徐汇区)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE的长.AB C O 图8HAB CDEOlA ′(二)线动问题2,在矩形A BCD 中,AB =3,点O 在对角线A C上,直线l过点O ,且与AC 垂直交AD于点E .(1)若直线l 过点B,把△ABE 沿直线l 翻折,点A 与矩形A BCD的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F,且AO=41AC,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以-x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由.(三)面动问题3.如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长.解决动态几何问题的常见方法有:C一、 特殊探路,一般推证例2:(2004年广州市中考题第11题)如图,⊙O 1和⊙O2内切于A,⊙O1的半径为3,⊙O2的半径为2,点P为⊙O1上的任一点(与点A 不重合),直线PA 交⊙O2于点C,PB 切⊙O2于点B ,则PCBP的值为(A)2 (B)3 (C)23(D)26二、 动手实践,操作确认例4(2003年广州市中考试题)在⊙O中,C 为弧AB 的中点,D 为弧A C上任一点(与A 、C 不重合),则(A)A C+CB=AD+DB (B) A C+C B<AD+DB(C) AC+CB >A D+D B (D) AC+C B与AD+DB 的大小关系不确定例5:如图,过两同心圆的小圆上任一点C 分别作小圆的直径CA 和非直径的弦CD ,延长CA 和C D与大圆分别交于点B 、E,则下列结论中正确的是( * ) (A)AB DE = (B )AB DE >(C)AB DE <(D )AB DE ,的大小不确定三、 建立联系,计算说明例6:如图,正方形ABCD 的边长为4,点M在边DC 上,且DM=1,N为对角线A C上任意一点,则DN +MN 的最小值为 .BMND CBA以圆为载体的动点问题中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重例1.在Rt ABC合),Q是BC边上的动点(与点B、C不重合),当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由。

2021年中考数学二轮复习:动点问题

2021年中考数学二轮复习:动点问题

(2)设 P(m,0),则 M(m,-m2+5m+6),N(m,m-6),
∴MN=-m2+4m+12.S△MDB=12 MN·OB=-3m2+12m+36= -3(m-2)2+48, ∴当 m=2 时,△MDB 的面积最大,此时 P 点的坐标为(2,0);
(3)由(2)知 M(2,12),N(2,-4).当∠QMN=90°时,QM∥x 轴, 则 Q(0,12);当∠MNQ=90°时,NQ∥x 轴,则 Q(0,-4); 当∠MQN=90°时,设 Q(0,n),则 QM2+QN2=MN2, 即 4+(12-n)2+4+(n+4)2=(12+4)2,解得 n=4±2 15 , ∴Q(0,4+2 15 )或 Q(0,4-2 15 ). 综上,存在以 Q,M,N 三点为顶点的三角形是直角三角形, 其中点 Q 坐标为(0,12)或(0,-4)或(0,4+2 15 )或(0,4-2 15 ).
C
C
C
A
B
A
B
A
B
C' 图(1)
C' 图(2)
C' 图(3)
典型例题——“两圆一线”模型法
已知点A(2,1),B(6,4),若在x轴上取点C,使△ABC为等腰三角形,求满足条件的点C的坐标.
y
B(6,4)
A(,若在x轴上取点C,使△ABC为 等腰三角形,求满足条件的点C的坐标.
(1)如图,AB=AC 时,由勾股定理可得:
,则

y
5 C1 2 6
B
5
A
1
5
D 26
C2 x
图(1)
y
B 5 A 54 5
O
C3 3 E 3 C4 x
图(2)
y

2021年春中考数学二轮复习专题突破训练:函数图象的动点问题(附答案)

2021年春中考数学二轮复习专题突破训练:函数图象的动点问题(附答案)

2021年春中考数学二轮复习专题突破训练:函数图象的动点问题(附答案)1.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.2.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.3.如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.4.如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D作匀速运动,那么△ABP的面积y与点P运动的路程x之间的函数图象大致是()A.B.C.D.5.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2C.D.26.如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△P AD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.7.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD ﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.8.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E →B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是()A.2B.C.D.19.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A 和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.10.如图,在△ABC中,∠C=90°,AC=BC=3cm,动点P从点A出发,以cm/s的速度沿AB方向运动到点B,动点Q同时从点A出发,以1cm/s的速度沿折线AC→CB方向运动到点B.设△APQ的面积为y(cm2),运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.11.如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan ∠DCE=.设AB=x,△ABF的面积为y,则y与x的函数图象大致为()A.B.C.D.12.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC 的面积是.13.如图①,四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△P AD 的面积为S,S关于t的函数图象如图②所示,当P运动到BC中点时,△P AD的面积为.14.如图1,在矩形ABCD中,动点P从点B出发,沿BC﹣CD﹣DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y.如果y关于x的函数图象如图2所示,则△ABC 的面积是.15.在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,则矩形ABCD的面积是.16.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE﹣ED﹣DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t 之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③当14<t<22时,y=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是.17.如图1,长方形ABCD中,动点P从B出发,沿B→C→D→A路径匀速运动至点A处停止,设点P运动的路程为x,△P AB的面积为y,如果y关于x的函数图象如图2所示,则长方形ABCD的面积等于.18.如图①,在矩形ABCD中,对角线AC与BD交于点O,动点P从点A出发,沿AB匀速运动,到达点B时停止,设点P所走的路程为x,线段OP的长为y,若y与x之间的函数图象如图②所示,则矩形ABCD的周长为.19.如图(a),在直角坐标系中,将平行四边形ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图(b)所示,那么AD的长为.20.如图,Rt△ABC中,∠ACB=90°,点D是AC上一点,过点D作DE⊥AC交AB于点E.动点P从D点出发,以每秒1个单位长度的速度,按D→E→B→C的路径匀速运动,设P点的运动时间为t秒,△PCD的面积为S,S关于t的函数图象如图所示,则△ABC 的周长为.21.已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为10cm,CA与MN在同一条直线上,点A从点M开始向右移动,设点A的移动距离为xcm(0≤x≤20),重叠部分的面积为S(cm2).(1)当点A向右移动4cm时,重叠部分的面积S=cm2;(2)当10cm<x≤20cm时,则S与x的函数关系式为.22.如图,在矩形ABCD中,动点P从点A出发,沿A→B→C运动,设P A=x,点D到直线P A的距离为y,且y关于x的函数图象如图所示,则当△PCD和△P AB的面积相等时,y的值为.23.如图1,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP 的长,y表示线段BP的长,y与x之间的关系如图2所示,当线段BP最短时,△BCP与△ABP的周长的差为.24.如图(1),矩形ABCD的两条对角线相交于点O,∠BOC=120°,AB=3,一动点P 以均匀的速度沿折线OB﹣BA运动,若点P的运动时间x(s)与点C、O、P围成的三角形的面积y之间的函数图象如图(2),那么P点运动的速度为.25.周末的一天,小明和他爷爷从家出发沿笔直的滨江大道散步,要走到距家1440米的公园再返回,途中要经过音乐喷泉广场.爷爷先出发4分钟,小明再出发追赶,两人各自的速度均保持不变,在到达公园之前,小明追上了爷爷,然后小明陪同爷爷以爷爷的速度走到公园再返回家里.如图反映了在到达公园之前,两人与音乐广场的距离之和y(米)与爷爷行走的时间t(分钟)之间的函数关系,则整个散步过程一共用了分钟.26.如图①,在平行四边形ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA 运动至点A停止.设点P运动的路程为xcm,△P AB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为.27.如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴.直线y=﹣x 从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,则▱ABCD的面积为.28.如图1,在矩形ABCD中,AB=12cm,BC=6cm,点P从A点出发,沿A→B→C→D 路线运动,到D点停止;点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为每秒c(cm).如图2是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图3是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.根据图象:(1)求a、b、c的值;(2)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后y1、y2与出发后的运动时间x(秒)的函数关系式,并求出P与Q相遇时x的值.29.如图1,在长方形ABCD中,AB=12cm,BC=10cm,点P从A出发,沿A→B→C→D 的路线运动,到D停止;点Q从D点出发,沿D→C→B→A路线运动,到A点停止.若P、Q两点同时出发,速度分别为每秒1cm、2cm,a秒时P、Q两点同时改变速度,分别变为每秒2cm、cm(P、Q两点速度改变后一直保持此速度,直到停止),如图2是△APD的面积s(cm2)和运动时间x(秒)的图象.(1)求出a值;(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1、y2和运动时间x(秒)的关系式;(3)求P、Q两点都在BC边上,x为何值时P、Q两点相距3cm?30.某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s(即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段PQ的长)为d个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.31.如图①,在长方形ABCD中,AB=10 cm,BC=8 cm,点P从A出发,沿A、B、C、D路线运动,到D停止,点P的速度为每秒1 cm,a秒时点P的速度变为每秒bcm,图②是点P出发x秒后,△APD的面积S1(cm2)与x(秒)的函数关系图象:(1)根据图②中提供的信息,a=,b=,c=.(2)点P出发后几秒,△APD的面积S1是长方形ABCD面积的四分之一?32.如图①,在矩形ABCD中,AB=12cm,BC=6m,点P从A点出发,沿A→B→C→D 路线运动,到D点停止:点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为每秒c(cm),如图②是△APD的面积S1(cm2)与点P出发时间x(秒)之间的关系:图③是△AQD的面积S2(cm2)与Q点出发时间x(秒)之间的关系,根据图象回答下列问题:(1)则a=;b=;c=.(2)设点P出发x(秒)后离开点A的路程为y(cm),请写出y与x的关系式,并求出点P与Q相遇时x的值.33.如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ 并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.34.如图①,在矩形ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB﹣BC﹣CD上相距的路程s(cm)与时间t(s)之间的函数关系图象.(1)请解释图中点H的实际意义?(2)求P、Q两点的运动速度;(3)将图②补充完整;(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.35.如图,在△ABC中,AB=AC=6cm,BC=8cm,点D为BC的中点,BE=DE,将∠BDE 绕点D顺时针旋转α度(0≤α≤83°),角的两边分别交直线AB于M、N两点,设B、M两点间的距离为xcm,M,N两点间的距离为ycm.小涛根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小涛的探究过程,请补充完整.(1)列表:下表的已知数据是B,M两点间的距离x进行取点、画图、测量,分别得到了y与x的几组对应值:x/cm00.300.50 1.00 1.50 2.00 2.50 3.00 3.50 3.68 3.81 3.90 3.93 4.10y/cm 2.88 2.81 2.69 2.67 2.80 3.15 3.85 5.24 6.01 6.717.277.448.87请你通过计算,补全表格;(2)描点、连线,在平面直角坐标系xOy中,描出表格中各组数值所对应的点(x,y),并画出函数y关于x的图象.(3)探究性质:随着自变量x的不断增大,函数y的变化趋势:.(4)解决问题:当MN=2BM时,BM的长度大约是cm.(保留两位小数).参考答案1.解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,s=,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始是直线一部分,最后为水平直线的一部分.故选:C.2.解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE•AF=x(6﹣x)=﹣x2+3x(2<x≤4),图象为:故选:A.3.解:设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,当C从D点运动到E点时,即0≤x≤2时,y=×2×2﹣(2﹣x)×(2﹣x)=﹣x2+2x.当A从D点运动到E点时,即2<x≤4时,y=×[2﹣(x﹣2)]×[2﹣(x﹣2)]=x2﹣4x+8,∴y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.故选:A.4.解:从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);因为从点C到点D,△ABP的面积一定:2×1÷2=1,所以y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:.故选:C.5.解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE===1∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.6.解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C和D不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项B正确;故选:B.7.解:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=BP•BQ,解y=•3x•x=x2;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=BQ•BC,解y=•x•3=x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=AP•BQ,解y=•(9﹣3x)•x=x﹣x2;故D选项错误.故选:C.8.解:由图象可知:AE=3,BE=4,∠DAE=∠CEB=α,设:AD=BC=a,在Rt△ADE中,cosα==,在Rt△BCE中,sinα==,由(sinα)2+(cosα)2=1,解得:a=,当x=6时,即:EN=3,则y=MN=EN sinα=.故选:B.9.解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的增大而减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的增大而减小.故选:D.10.解:(1)过点Q作QD⊥AB于点D,①如图1,当点Q在AC上运动时,即0≤x≤3,由题意知AQ=x、AP=x,∵∠A=45°,∴QD=AQ=x,则y=•x•x=x2;②如图2,当点Q在CB上运动时,即3<x≤6,此时点P与点B重合,由题意知BQ=6﹣x、AP=AB=3,∵∠B=45°,∴QD=BQ=(6﹣x),则y=×3×(6﹣x)=﹣x+9;故选:D.11.解:设AB=x,则AE=EB=由折叠,FE=EB=则∠AFB=90°由tan∠DCE=∴BC=,EC=∵F、B关于EC对称∴∠FBA=∠BCE∴△AFB∽△EBC∴∴y=故选:D.12.解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∵图象右端点函数值为5,∴AB=BC=5∴P A=3,AP=PC=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:1213.解:由图象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根据题意可知,当P点运动到C点时,△P AD的面积最大,S△P AD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,当P点运动到BC中点时,BP=PC,如图,作PQ⊥AD于点Q,∴AB∥PQ∥CD,∴PQ为梯形ABCD的中位线,则PQ=(AB+CD),∴△P AD的面积=×(AB+CD)×AD=5,故答案为:5.14.解:∵动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP的面积不变,函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9﹣4=5,∴AB=5,BC=4,∴△ABC的面积是:×4×5=10.故答案为:10.15.解:当点P在BC上时,y=S△ABP=AB•BP,∵AB是定值,∴点P从点B到C的过程中,y逐渐增加,增加到点P到点C时,增加到最大,从图(2)知,x=4时增加到最大,∴BC=4,当点P在CD上时,y=S△ABP=AB•BC,∵BC,AB是定值,所以y始终保持不变,从(2)知,x从4到9时,y保持不变,∴CD=9﹣4=5,所以矩形ABCD的面积为:4×5=20.故答案为:2016.解:由图象可以判定:BE=BC=10 cm.DE=4 cm,当点P在ED上运动时,S△BPQ=BC•AB=40cm2,∴AB=8 cm,∴AE=6 cm,∴当0<t≤10时,点P在BE上运动,BP=BQ,∴△BPQ是等腰三角形,故①正确;S△ABE=AB•AE=24 cm2,故②错误;当14<t<22时,点P在CD上运动,该段函数图象经过(14,40)和(22,0)两点,解析式为y=110﹣5t,故③正确;△ABP为等腰三角形需要分类讨论:当AB=AP时,DE上存在一个符号题意的P点,当AB=BP时,BE上存在一个符合同意的P点,当AP=BP时,点P在AB垂直平分线上,所以BE和CD上各存在一个符号题意的P点,共有4个点满足题意,⑤△BPQ与△ABE相似时,只有;△BPQ∽△BEA这种情况,此时点Q与点C重合,即==,∴PC=7.5,即t=14.5.故⑤正确.综上所述,正确的结论的序号是①③⑤.故答案是:①③⑤.17.当点P在BC段时,对应图2,x≤3的部分,故BC=3;当点P在CD段时,对应图2,3<x≤8的部分,故DC=5;故长方形ABCD的面积等于CB×CD=3×5=15,故答案为15.18.解:∵当OP⊥AB时,OP最小,且此时AP=4,OP=3,∴AB=2AP=8,AD=2OP=6,∴C矩形ABCD=2(AB+AD)=2×(8+6)=28.故答案为:28.19.解:设当直线y=﹣x平移到C时,与直线AB交于点E,过点C作CF⊥AE于F 由题意,直线y=﹣x从A平移到D时,平移距离为7﹣4=3则BE=3,设直线平移到D时交AB于M,此时直线被平行四边形所截线段最长DM=2由平移可知CE=DM=∵∠CEF=45°则BF=1∴AD=BC=故答案为:20.解:∵当t=6秒时,S有最大值8,当t=10秒时,S=0∴BC=10﹣6=4∵当t=6时,S=8∴×CD×4=8∴CD=4∵CD×DE=2∴×4×DE=2∴DE=1∴BE=6﹣1=5∵DE⊥AC∴∠ADE=90°∵∠ACB=90°∴DE∥BC∴△ADE∽△ACB∴==∴==解得:AD=,AE=∴AC=+4=,AB=+5=∴△ABC的周长为++4=16故答案为:16.21.解:(1)当x=4cm时,AM=4,重叠部分的面积S=AM2=×4×4=8(cm2).(2)当10cm<x≤20cm时,如图所示.AN=x﹣MN=x﹣10,∴S=S△ABC﹣S△ANE=AC2﹣AN2=×102﹣(x﹣10)2=﹣x2+10x(10<x≤20).故答案为:S=﹣x2+10x(10<x≤20).22.解:当P点在AB上运动时,D点到AP的距离不变始终是AD长,从图象可以看出AD =4,当P点到达B点时,从图象看出x=3,即AB=3.当△PCD和△P AB的面积相等时,P点在BC中点处,此时△ADP面积为×4×3=6.在Rt△ABP中,AP=,则×AP×y=6,解得y=.故答案为.23.解:当线段BP最短时,BP⊥AC,从图2可以看出:AB=2,AP=1,PC=5﹣1=4,BC=4.5,此时,BP==,△BCP的周长=BC+PC+BP=4.5+4+,△ABP的周长=AB+AP+BP=2+1+,故:BCP与△ABP的周长的差为5.5,故答案为5.5.24.解:根据题意得:OB=AB=3,x=6,∴OB+AB=6,∴P点运动的速度=6÷6=1;故答案为:1.25.解:如图:A表示两人在家,E表示小明追上了爷爷,这两个点表示二人距离广场的和都是960米,说明广场在家与追上地之间的正中间,即家到广场480米,广场到追上地480米.B表示小明出发,C表示爷爷经过广场,D表示小明经过广场,小明6分钟走完这480米,所以小明的速度是80米/分.小明追上爷爷时间为960÷80=12分钟,所以爷爷从家出发到被追上用了4+12=16分钟,所以爷爷的速度为60米/分.所以整个散步过程一共用了分钟.故答案为:48.26.解:由图象可知,当x=4时,点P到达C点,此时△P AB的面积为6,∵∠B=120°,BC=4,∴×2×AB=6,解得AB=6,H点表示点P到达A时运动的路程为4+6+4=14,故答案为:14.27.解:根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣3=5,当直线经过D点,设交AB与N,则DN=2,如图,作DM⊥AB于点M.∵y=﹣x与x轴形成的角是45°,又∵AB∥x轴,∴∠DNM=45°,∴DM=DN•sin45°=2×=2,则平行四边形的面积是:AB•DM=5×2=10,故答案为:10.28.解:(1)观察图象得,S△APQ=P A•AD=×(1×a)×6=24,解得a=8(秒)b==2(厘米/秒)(22﹣8)c=(12×2+6)﹣2×8解得c=1(厘米/秒)(2)依题意得:y1=1×8+2(x﹣8),即:y1=2x﹣8(x>8),y2=(30﹣2×8)﹣1×(x﹣8)=22﹣x(x>8)又据题意,当y1=y2,P与Q相遇,即即2x﹣8=(22﹣x),解得x=10.故出发10s时P、Q相遇.29.解:(1)由图象可知,当点P在BC上运动时,△APD的面积保持不变,则a秒时,点P在AB上.∴AP=6则a=6(2)由(1)6秒后点P变速,则点P已行的路程为y1=6+2(x﹣6)=2x﹣6∵Q点路程总长为34cm,第6秒时已经走12cm,点Q还剩的路程为y2=34﹣12﹣=(3)当P、Q两点相遇前相距3cm时,﹣(2x﹣6)=3解得x=10当P、Q两点相遇后相距3cm时(2x﹣6)﹣()=3解得x=∴当x=10或时,P、Q两点相距3cm30.解:(1)作AT⊥BD,垂足为T,由题意得,AB=8,AT=,在Rt△ABT中,AB2=BT2+AT2,∴BT=,∵tan∠ABD=,∴AD=6,即BC=6;(2)在图①中,连接P1P2.过P1,P2分别作BD的垂线,垂足为Q1,Q2.则P1Q1∥P2Q2.∵在图②中,线段MN平行于横轴,∴d1=d2,即P1Q1=P2Q2.∴P1P2∥BD.∴.即.又∵CP1+CP2=7,∴CP1=3,CP2=4.设M,N的横坐标分别为t1,t2,由题意得,CP1=14+1﹣t1,CP2=t2﹣14﹣2,∴t1=12,t2=20.31.解:(1)依函数图象可知:当0≤x≤a时,S1=×8a=24 即:a=6当a<x≤8时,S1=×8×[6×1+b(8﹣6)]=40 即:b=2当8<x≤c时,①当点P从B点运动到C点三角形APD的面积S1=×8×10=40(cm2)一定,所需时间是:8÷2=4(秒)②当点P从C点运动到D点:所需时间是:10÷2=5(秒)所以c=8+4+5=17(秒)故答案为:a=6,b=2,c=17.(2)∵长方形ABCD面积是:10×8=80(cm2)∴当0≤x≤a时,×8x=80×即:x=5;当12≤x≤17时,×8×2(17﹣x)=80×即:x=14.5.∴点P出发后5秒或14.5秒,△APD的面积S1是长方形ABCD面积的四分之一32.解:(1)由图象可得,S△APQ=P A•AD=×(1×a)×6=24解得:a=8∴b==2∴(22﹣8)c=(12×2+6)﹣2×8解得:c=1故答案为:8;2;1.(2)依题意得:y1=1×8+2(x﹣8)∴y1=2x﹣8 (x>8)y2=(30﹣2×8)﹣1×(x﹣8)=22﹣x(x>8)∵点P与Q相遇时,y1=y2∴2x﹣8=22﹣x∴x=10∴点P与Q相遇时x的值为10.33.解:(1)∵P A=6时,AB=6,BC=4.37,AC=4.11,∴AB2=AC2+BC2,∴∠ACB=90°,∴AB是直径.当x=3时,P A=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当P A=PC或P A=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.34.解:(1)图中点H的实际意义:P、Q两点相遇;(2)由函数图象得出,当两点在F点到G点两点路程随时间变化减慢得出此时Q点停留1秒,只有P点运动,此时纵坐标的值由75下降到45,故P点运动速度为:30cm/s,再根据E点到F点s的值由120变为75,根据P点速度,得出Q点速度为120﹣75﹣30=15(cm/s),即P点速度为30cm/s,Q点速度为15cm/s;(3)如图所示:根据4秒后,P点到达D点,只有Q点运动,根据运动速度为15cm/s,还需要运动120﹣45=75(cm),则运动时间为:75÷15=5(s),画出图象即可;(4)如图1所示,当QP=PC,此时QC=BP,即30﹣30t=(30﹣15t),解得:t=,故当时间t=s时,△PCQ为等腰三角形,如图2所示,当D,P重合,QD=QC时,当Q在BA上时,应该为AB的中点,此时AQ=120﹣15(t﹣1)=15,解得:t=8.故当时间t=8s时,△PCQ为等腰三角形.若如图3,PC=CQ故30=15(t﹣1)﹣30解得:t=5综上所述:t=或t=5或t=8秒时,△PCQ为等腰三角形.35.解:(1)①当x=BM=0时,ED是三角形ABC的中位线,则ED=AC=3=BE=MN;②x=BM=,在△MBD中,BD=4,BM=,cos∠B==,设cos B=cosβ,tanβ=,过点M作MH⊥BD于点H,则BH=BM cosβ=,则MH=,MD2=HD2+MH2=,则BD2=BM2+MD2,故∠BMD=90°,则y=MN=MD tanβ=(DB sinβ)tanβ=;故:答案为3,;(2)描点出如下图象,(3)从图象可以看出:0≤x≤1.65时,y随x增大而减小,当1.65<x≤4.10时,y随x增大而增大(数值是估值,不唯一);(4)方法一:MN=2BM,即y=2x,在上图中作直线y=2x,直线与曲线交点的横坐标1.33和4.00,故答案为:1.33或4.00.方法二:如图3,DN与CA的延长线交于点H.设BM=x,MN=2xEN=3x﹣3,AN=6﹣3x∵∠NDB=∠H+∠C(外角的性质)∠NDB=∠MDB+∠NDM∴∠MDB+∠NDM=∠H+∠C∴∠MDB=∠H,∠B=∠C∴△MDB∽△DHC∴=∴,CH=,HA=HC﹣AC=﹣6又∵△HAN∽△DEN∴=∴=解得x1=4,x2=.故答案为:1.33或4.00。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考二轮专题复习《动点问题》精选练习
一、选择题
1.如图所示,直角三角形AOB中,AB⊥OB,且AB=OB=3.设直线l:x=t截此三角形所得的阴影部分面积为S,则S与t之间的函数关系的图象为(如选项所示)( )
2.如图,正方形ABCD的边长为4,将长为4的线段QR的两端放在正方形的相邻的两边上同时滑动.如果Q点从A点出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从B点出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为( )
A.16
B.
C.
D.
3.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD 交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()
4.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()
A.3≤OM≤5
B.4≤OM≤5
C.3<OM<5
D.4<OM<5
5.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()
A. B. C. D.
6.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()
7.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP 的面积S随着时间t变化的函数图象大致是()
8.如图,已知直线y=0.75x-3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是()
A.8
B.12
C.10.5
D.8.5
二、填空题
9.如图,半径为1的⊙P的圆心在(﹣4,0)处.若⊙P以每秒1个单位长度,沿x轴向右匀速运动.设运动时间为t秒,当⊙P上有且只有2个点到y轴的距离为2,则t的取值范围是.
10.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(6,0)、(0,4),点P是线段BC上的动点,当△OPA是等腰三角形时,则P点的坐标是.
11.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D 是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为 .
12.如图,在矩形ABCD中,AB=6,BC=8,点E从点A出发,以1个单位/秒的速度向B移动,同时,点F 从点B出发,以2个单位/秒的速度向C移动,当点F到达C点时均停止运动,则秒后△EBF的面积为5个平方单位.
13.如图,已知⊙C半径为2,OA=OB=4,P在⊙C上为一动点,连接PA,交y轴于E点,则ABE面积的最大值为;最小值为 .
14.如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2015次相遇在边上.
15.如图,定点A(-2,0),动点B在直线y=x上运动,当线段AB最短时,点B的坐标为.
16.如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为G,连结CG.
下列说法:
①AG>GE;
②AE=BF;
③点G运动的路径长为π;
④CG的最小值为.
其中正确的说法是(把你认为正确的说法的序号都填上)
参考答案
1.D.
2.C
3.C
4.B
5.A
6.B
7.B
8.C
9.答案为:1<t <3或5<t <7.
解:①⊙P 位于y 轴左侧时,
当t=1时,⊙P 的圆心在(﹣3,0)处,此时⊙P 到y 轴距离为2的点只有1个; 当t=3时,⊙P 的圆心在(﹣2,0)处,
此时⊙P 到y 轴的距离为2的点只有垂直于x 轴的直径的两端点;
∴当1<t <3时,⊙P 上有且只有2个点到y 轴的距离为2;
②⊙P 位于y 轴右侧时,
当t=5时,⊙P 的圆心在(1,0)处,此时⊙P 到y 轴距离为2的点只有(2,0)这1个; 当t=7时,⊙P 的圆心在(﹣2,0)处,
此时⊙P 到y 轴的距离为2的点只有(2,0)这1个;
∴当5<t <7时,⊙P 上有且只有2个点到y 轴的距离为2;
综上,1<t <3或5<t <7,
10.答案为:(3,4)或(2,4)或(6﹣2,4).
11.答案为:(2,4),(3,4),(8,4).
12.答案为:1;
13.答案为:228 ;
14.答案为:AB .
15.答案为:(﹣1,﹣1).
16.。

相关文档
最新文档