混合偏导数的几何意义
偏导数的定义及其计算法

∴
RT R V p V T RT = = = 1 2 p R V T p pV V
例6
求下列各函数在指定点的偏导数:
xy x2 + y2 0
2
( x 2 + y 2 ≠ 0)
(1)f(x,y)=
在点O(0,0)处;
( x 2 + y 2 = 0)
π (2) z = sin( xy ) cos ( xy )在点P0 (0, )处; 2
= 2 x( x 2 + 2 y ) x 1
例4 求 r = x + y + z 的偏导数. 解:把y和z都看作常量,对x求导, 得
r 1 = 2x = x 2 x 2 + y 2 + z 2 x x2 + y2 + z 2
x = r
2
2
2
由于所给函数关于自变量是对称的,所以
r = y
r = z
= [ f ( x0 , y )]'| y = y
L
M
0
固定 x = x0 得交线 :
L: z = f ( x, y) x = x0 z = f ( x0 , y ) 即 x = x0
由一元函数导数的几何意义:
z y
x= x 0 x= y 0
= [ f ( x 0 , y )]' = tan β
z = x y ln x. y
∴
x y 1 1 y = yx + x ln x y ln x
= xy + xy = 2x y
= 2z
例3 解
z = ( x 2 + 2 y ) x , ( y > 0) z = ( x + 2 y)
多元函数与偏导数

多元函数与偏导数多元函数是数学中的一个重要概念,它是自变量具有多个分量的函数。
偏导数则是多元函数中的一种导数,用于衡量函数在各个分量上的变化率。
本文将探讨多元函数的基本概念、性质以及偏导数的定义、计算方法和应用。
1. 多元函数的基本概念多元函数是自变量具有多个分量的函数,一般形式为 f(x₁, x₂, ..., xₙ),其中x₁, x₂, ..., xₙ分别代表自变量的各个分量。
多元函数中的每个自变量都存在定义域和值域。
与一元函数类似,多元函数也具有图像和性质,如连续性、可微性等。
2. 偏导数的定义偏导数是多元函数中关于某一个自变量的导数。
在多元函数中,除了变化一个自变量外,其他自变量均视作常数。
对于二元函数 f(x, y)来说,偏导数可记作∂f/∂x 或 f₁,表示对 x 分量的偏导数;∂f/∂y 或 f₂,表示对 y 分量的偏导数。
对于n 元函数类似地,可分别计算各个分量的偏导数。
3. 偏导数的计算方法(1)对于一元函数来说,其导数的计算可以借助于极限的方法,即求取函数值在某一点的极限。
同样,对于多元函数的偏导数,也可以通过极限的方式求得。
(2)对于高阶偏导数,可以先计算一阶偏导数,然后再次应用偏导数定义计算二阶偏导数,以此类推。
(3)对于具有特定形式的多元函数,如幂函数、指数函数、三角函数等,可以根据函数特性直接计算偏导数。
4. 偏导数的性质(1)对称性:对于二阶连续可导的函数,偏导数的求导次序不影响结果,即∂²f/∂x∂y = ∂²f/∂y∂x。
(2)混合偏导数的存在性:如果 f(x, y) 在某一点处的混合偏导数∂²f/∂x∂y 与∂²f/∂y∂x 在该点处连续,那么它们相等,即∂²f/∂x∂y = ∂²f/∂y∂x。
(3)偏导数与连续性的关系:若多元函数在某一点处连续可导,那么其各个分量的偏导数存在且连续。
5. 偏导数的应用(1)极值问题:多元函数中的极值点可以通过求解偏导数为零的点得到。
第二节 偏导数

V k , T V, T P P k
从而
P V
V T
T P
kT V2
k P
V k
kT PV
1
.
2019年12月24日星期二
徐州工程学院数理学院
上页 下页 返回 结束
警告各位!
偏导数 z 是一个整体记号, 不能拆分. x
不能像一元函数那样将 z , z 看成是
2019年12月24日星期二
徐州工程学院数理学院
上页 下页 返回 结束
1997年研究生考题, 选择, 3分
f
(
x,
y)
x2
xy
y2
( x, y) (0,0)在点(0,0)处( C
).
0 ( x, y) (0,0)
A. 连续,偏导数存在;
B. 连续,偏导数不存在; C. 不连续,偏导数存在; D. 不连续,偏导数不存在.
x y
z 与 x , y 的商.
2019年12月24日星期二
徐州工程学院数理学院
上页 下页 返回 结束
例7 求 u e x xy2z3 的偏导数 .
解:
u e xxy2z3 (1 y2 ) ;
x
u e xxy2z3 2x y ; y
u e xxy2z3 (3z2 ) . z
函数有相应的增量 (称为关于x的偏增量), 即
x z f ( x0 x, y0 ) f ( x0 , y0 )
如果极限
lim x z lim f ( x0 x, y0 ) f ( x0 , y0 )
x0 x x0
偏导数知识点公式总结

偏导数知识点公式总结一、偏导数的概念1.1 偏导数的定义偏导数是多元函数对其中一个自变量的导数。
对于一个函数 $f(x_1, x_2, ..., x_n)$,它的偏导数 $\frac{\partial f}{\partial x_i}$ 表示在$x_i$方向上的变化率。
偏导数的定义可以表示为:$$\frac{\partial f}{\partial x_i} = \lim_{\Delta x_i \to 0} \frac{f(x_1, x_2, ..., x_i + \Delta x_i, ..., x_n) - f(x_1, x_2, ..., x_i, ..., x_n)}{\Delta x_i}$$1.2 偏导数的图示解释偏导数可以通过函数曲面的切线来解释。
对于函数 $z = f(x, y)$,在点$(x_0, y_0, z_0)$处的偏导数 $\frac{\partial f}{\partial x}$可以理解为曲面在$x$方向的斜率,即曲面在$x$方向上的变化率。
同样地,$\frac{\partial f}{\partial y}$表示曲面在$y$方向上的变化率。
这样的解释有助于我们更直观地理解偏导数的含义。
二、偏导数的性质2.1 对称性对于二元函数 $f(x, y)$,它的偏导数满足对称性,即$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$。
这一性质表明,在计算混合偏导数时,可以不必考虑自变量的顺序。
2.2 连续性在函数的定义域内,若偏导数存在且连续,则函数规定可微。
这一性质是偏导数与函数连续性的关系,对于函数的导数性质有着重要的影响。
2.3 性质总结:和与积对于函数 $u = u(x, y)$ 和 $v = v(x, y)$,它们的偏导数具有和与积的运算法则。
偏导数的物理几何意义

偏导数的物理几何意义一偏导数的定义在研究一元函数时.我们从研究函数的变化率引入了导数概念.对于多元函数同样需要讨论它的变化率.但多元函数的变化量不只一个,因变量与自变量的关系要比一元函数复杂的多.所以我们首先考虑多元函数关于其中一个自变量的变化率,以二元函数=为例,如果只有自变量变化,而自变量y固定(即看作常量),这时它就是的一元函数,这函数对x的导数,就称为二元函数z对于的偏导数,即有如下定义定义设函数z= 在点的某一邻域内有定义,当y固定在,而在处有增量时,相应的函数有增量- ,如果(1)存在,则称此极限为函数= 在点处对的偏导数,记做, , ,或例如,极限(1)可以表为=类似的,函数z= 在点处对的偏导数定义为记做, , 或如果函数= 在区域D内每一点( )处对的偏导数都存在,那么这个偏导数就是的函数,它就称为函数= 对自变量的偏导函数,记做, , ,或类似的,可以定义函数= 对自变量的偏导函数,记做, , ,或由偏导数的概念可知, 在点处对的偏导数显然就是偏导函数在点处的函数值,就像一元函数的导函数一样,以后在不至于混淆的地方也把偏导函数简称为偏导数.至于求= 的偏导数,并不需要用新的方法,因为这里只有一个自变量在变动,另外一个自变量看作是固定的,所以仍旧是一元函数的微分法问题,求时,只要把暂时看作常量而对求导;求时,则只要把暂时看作是常量,而对求导数.偏导数的概念还可以推广导二元以上的函数,例如三元函数在点( )处对的偏导数定义为=其中( )是函数的定义域的内点,它们的求法也仍旧是一元函数的微分法问题例求的偏导数解= ,=二偏导数的几何意义二元函数= 在点的偏导数的几何意义设为曲面= 上的一点,过点作平面,截此曲面得一曲线,此曲线在平面上的方程为= ,则导数,即偏导数,就是这曲线在点处的切线对轴的斜率.同样,偏导数的几何意义是曲面被平面所截得的曲线在点处的切线对的斜率三偏导数的几何意义我们知道,如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续.这是因为各偏导数存在只能保证点P沿着平行于坐标轴的方向趋于P 时,函数值趋于,但不能保证点P按任何方式趋于P 时,函数值都趋于.例如,函数= ={在点(0,0)对的偏导数为同样有但是我们在前面的学习中知道这函数在点(0,0)并不连续四二阶混合偏导数设函数= 在区域D内具有偏导数= , =那么在D内, 都是的函数.如果这里两个函数的偏导数也存在,则它们是函数= 的二阶偏导数,按照对变量求导次序的不同有下列四个二阶偏导数:,,其中第二,第三个偏导数称为混合偏导数例2 设,求, , ,,从例子中,我们看到两个二阶混合偏导数相等,即, =我们再看用maple作求的图形第一个图形为第二个图形为从图中我们看到两个连续的偏导函数,它们是相等的这不是偶然的,事实上我们有下述定理定理如果函数= 的两个二阶混合偏导数及在区域D里连续,那么在该区域内这两个二阶混合偏导数必定相等换句话说,二阶混合偏导数在连续的条件下与求导的次序无关。
偏导数的几何意义

偏导数得几何意义ﻫ实验目得:通过实验加深学生对偏导数定义得理解掌握偏导数得几何意义并从直观上理解二阶混合偏导数相等得条件ﻫ背景知识:一偏导数得定义在研究一元函数时、我们从研究函数得变化率引入了导数概念、对于多元函数同样需要讨论它得变化率、但多元函数得变化量不只一个,因变量与自变量得关系要比一元函数复杂得多、所以我们首先考虑多元函数关于其中一个自变量得变化率,以二元函数= 为例,如果只有自变量变化,而自变量y固定(即瞧作常量),这时它就就是得一元函数,这函数对x 得导数,就称为二元函数z对于得偏导数,即有如下定义定义设函数z= 在点得某一邻域内有定义,当y固定在,而在处有增量时,相应得函数有增量- ,如果(1)存在,则称此极限为函数=在点处对得偏导数,记做, ,,或例如,极限(1)可以表为=类似得,函数z=在点处对得偏导数定义为记做,,或如果函数= 在区域D内每一点( )处对得偏导数都存在,那么这个偏导数就就是得函数,它就称为函数= 对自变量得偏导函数,记做, ,,或类似得,可以定义函数= 对自变量得偏导函数,记做,,,或由偏导数得概念可知,在点处对得偏导数显然就就是偏导函数在点处得函数值,就像一元函数得导函数一样,以后在不至于混淆得地方也把偏导函数简称为偏导数、至于求=得偏导数,并不需要用新得方法,因为这里只有一个自变量在变动,另外一个自变量瞧作就是固定得,所以仍旧就是一元函数得微分法问题,求时,只要把暂时瞧作常量而对求导;求时,则只要把暂时瞧作就是常量,而对求导数、偏导数得概念还可以推广导二元以上得函数,例如三元函数在点()处对得偏导数定义为=其中()就是函数得定义域得内点,它们得求法也仍旧就是一元函数得微分法问题例求得偏导数解= ,=二偏导数得几何意义二元函数= 在点得偏导数得几何意义设为曲面= 上得一点,过点作平面,截此曲面得一曲线,此曲线在平面上得方程为= ,则导数,即偏导数,就就是这曲线在点处得切线对轴得斜率、同样,偏导数得几何意义就是曲面被平面所截得得曲线在点处得切线对得斜率三偏导数得几何意义我们知道,如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续、这就是因为各偏导数存在只能保证点P沿着平行于坐标轴得方向趋于P 时,函数值趋于,但不能保证点P按任何方式趋于P 时,函数值都趋于、例如,函数= ={在点(0,0)对得偏导数为同样有但就是我们在前面得学习中知道这函数在点(0,0)并不连续四二阶混合偏导数设函数= 在区域D内具有偏导数=, =那么在D内,都就是得函数、如果这里两个函数得偏导数也存在,则它们就是函数= 得二阶偏导数,按照对变量求导次序得不同有下列四个二阶偏导数:,,其中第二,第三个偏导数称为混合偏导数例2 设,求, ,,,从例子中,我们瞧到两个二阶混合偏导数相等,即,=我们再瞧用maple作求得图形第一个图形为第二个图形为从图中我们瞧到两个连续得偏导函数,它们就是相等得这不就是偶然得,事实上我们有下述定理定理如果函数=得两个二阶混合偏导数及在区域D里连续,那么在该区域内这两个二阶混合偏导数必定相等换句话说,二阶混合偏导数在连续得条件下与求导得次序无关。
偏导数的几何意义.doc

Ax偏导数的儿何意义实验目的:通过实验加深学生对偏导数定义的理解掌握偏导数的几何意义并从直观上理解二 阶混合偏导数相等的条件背景知识:一偏导数的定义在研究一无函数吐我们从研究函数的变化率引入了导数概念.对于多元函数同样需要讨论 它的变化率.但多元函数的变化量不只一个,因变量与自变最的关系要比一元函数复杂的多. 所以我们首先考虑多元函数关于其中一-个自变量的变化率,以二元函数z= /(了疗)为例, 如果只有自变量工变化,而自变量y 固定(即看作常量),这时它就是X 的一元函数,这函数 对X 的导数,就称为二元函数Z 对于才的偏导数,即有如下定义定义设函数z= *')在点的某一•邻域内有定义,当y 固定在V 。
,而工在工。
处有增量• A*时,相应的函数有增量/(x 0 4-Ax,^) _ /(x 0,^0)f(x 0 +Ax,y 0)-f(x 0,y 0) lim ---------------------------------如果 Ax (1)存在,则称此极限为函数z=在点”°疗°)处对汗的偏导数,记做例如,极限(1)可以表为 f(x 0 +Ax,y 0)-f(x 0,y 0) hgy°)蚣。
类似的,函数z= ,(兀、)在点(冲疗°)处对歹的偏导数定义为尚 栈尚九(%必)dzlim 敏T O Rxo,Vo +Ay)・地,dz记做分5 X■命如果函数2= 了3疗)在区域D内每一点(&')处对工的偏导数都存在,那么这个偏导数就是工溜的函数,它就称为函数Z = /(工1)对自变量式的偏导函数,记做 & 堂凯瓦,气或九(")类似的,可以定义函数z= /(兀力对自变量W的偏导函数,记做dz山偏导数的概念可知,/3'力在点(如儿)处对工的偏导数九成。
/)显然就是偏导函数九3',)在点成°疗°)处的函数值,就像-•元函数的导函数-•样,以后在不至于混淆的地方也把偏导函数简称为偏导数.至于求z=的偏导数,并不需要用新的方法,因为这里只有一个自变量在变动,另外dz一个自变量看作是固定的,所以仍旧是一元函数的微分法问题,求欲时,只要把*暂时看作常最而对工求导;求莎时,则只要把式智时看作是常量,而对V求导数.偏导数的概念还可以推广导二元以上的函数,例如三元函数〃 = /(兀MZ)在点(、,yz)处对式的偏导数定义为岫Rx +Ax, y ,z)・Rx ,y ,z)九(X'V’z) = A XT O A X其中(X'W'Z)是函数〃 = /3,V,z)的定义域的内点,它们的求法也仍旧是一元函数的微分法问题例求z = / sin 2y的偏导数dz解瓦=2xsin 2〉,dzdy _ 2/COS2〉二偏导数的几何意义二元函数z= '3,)在点3o,Wo)的偏导数的几何意义疗° J3o,〉o)) u o77*(工疗)[心r、』y-y^\耳口设为曲面z = J、…上的一点,过°点作平面/ 气截此曲面得•曲线,此曲线在平面^=^0上的方程为Z = /(X,%),则导数小/3'")"・命即偏导数兀(%必),就是这曲线在"。
偏导数的平方和二阶偏导数

偏导数的平方和二阶偏导数偏导数的平方和二阶偏导数在微积分学中,偏导数是非常基础的概念之一。
偏导数是指多元函数在某个点上关于其中一个变量的导数。
在实际应用中,偏导数也有很重要的作用。
在本篇文章中,我想结合实际例子来谈谈偏导数的平方和二阶偏导数的概念。
一、偏导数的概念多元函数有多个自变量,偏导数是指将其中一个自变量视为常量,对其他自变量求导的结果。
例如,对于函数 $f(x,y)$,$x$ 的偏导数指$\frac{\partial f}{\partial x}$,$y$ 的偏导数指 $\frac{\partial f}{\partialy}$。
偏导数的计算需要满足一些条件,比如函数在该点连续。
偏导数就像普通的导数一样,具有几何意义。
在实际应用中,它的物理意义更为明显。
二、偏导数的平方和偏导数的平方和在实际应用中有很重要的作用。
比如,在机器学习中,会用到梯度下降算法,而该算法中就需要用到偏导数的平方和。
对于函数 $f(x,y)$,偏导数的平方和指 $\left(\frac{\partial f}{\partialx}\right)^2+\left(\frac{\partial f}{\partial y}\right)^2$。
为什么要用到偏导数的平方和呢?在训练模型过程中,需要通过不断地调整模型的参数来达到最佳效果。
梯度下降算法就是一种最小化误差的方式。
偏导数的平方和可以帮助计算出误差函数的梯度,从而找到下一个最优解。
三、二阶偏导数除了一阶偏导数,还存在二阶偏导数。
二阶偏导数是指关于两个自变量的导数。
对于函数 $f(x,y)$,二阶偏导数的定义为:$$\frac{\partial^2f}{\partial x^2},\frac{\partial^2f}{\partial y^2},\frac{\partial^2f}{\partial x\partial y},\frac{\partial^2f}{\partial y\partial x}$$其中,$\frac{\partial^2f}{\partial x^2}$ 和 $\frac{\partial^2f}{\partialy^2}$ 分别表示函数在 $x$,$y$ 方向的曲率,$\frac{\partial^2f}{\partial x\partial y}$ 和 $\frac{\partial^2f}{\partialy\partial x}$ 则表示函数在 $x$,$y$ 方向的交叉变化(也叫混合偏导数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混合偏导数的几何意义
混合偏导数的几何意义是描述一个多元函数在某个点处的曲率情况。
具体来说,偏导数描述了函数在某一方向上的坡度,而混合偏导数则描述了函数在多个方向上的坡度组合对函数值的影响。
如果混合偏导数为正,表示函数在该点处具有向上的凸度,如果为负,则表示函数在该点处具有向下的凹度。
而当混合偏导数为0时,表示函数在该点处呈现临界状态,既不凸也不凹。
因此,混合偏导数可以帮助我们更加直观地理解多元函数的曲率情况,从而有助于我们优化和求解实际问题。