飞思卡尔智能车 电磁组 技术报告
智能车电磁组比赛技术报告

第七届“飞思卡尔”杯全国大学生智能汽车竞赛电磁组技术报告学校:河南理工大学队伍名称:志成队参赛队员:杨宗保黄号凯毛学宇指导教师:张新良摘要本文介绍了基于MC9S12XS128控制器的直立小车的设计方案。
目的是仿照两轮自平衡电动车的行进模式,让车模以两个后轮驱动进行直立行走。
I目录第一章绪论 (7)第二章原理分析 (10)2.1直立行走任务分解 (10)2.2车模平衡控制 (10)2.2车模角度和角速度测量 (15)2.3 车模速度控制 (22)2.4 车模方向控制 (27)2.5车模直立行走控制算法总图 (29)第三章电路设计 (31)3.1 整体电路框图 (31)3.2 XS128介绍与单片机最小系统 (32)3.3 倾角传感器电路 (37)3.4 电机驱动电路 (39)3.5 速度传感器电路 (40)3.6 电磁线检测电路 (41)3.7 电源模块 (43)第四章、机械设计 (43)4.1 车模简化改装 (43)4.2 传感器安装 (46)第五章程序设计 (49)5.1 相关模块初始化 (49)II5.2 软件功能与框架 (54)5.3 主要算法及其实现 (56)5.3.1 算法框图与控制函数关系 (56)5.4 参数整定 (62)5.4.1角度参数整定 (62)5.4.2速度参数整定 (63)5.4.3补偿时间常数整定 (63)III图表索引图1- 1 电磁组规定的C车车模 (7)图1- 2 电磁组车模运行状态 (7)图1- 3 车模控制任务 (8)图1- 4 车模制作调试流程图 (9)图 2- 1保持木棒直立的反馈控制 (11)图 2- 2通过车轮运动保持车模平衡 (11)图 2- 3车模简化成倒立的单摆 (12)图 2- 4普通单摆受力分析 (12)图 2- 5在车轮上的参照系中车模受力分析 (13)图 2- 6 电机在不同电压下的速度变化线 (15)图 2- 7 加速度传感器原理 (16)图 2- 8 MMA7260三轴加速度传感器 (16)图 2- 9 车模运动引起加速度信号波动 (17)图 2- 10 车模运动引起加速度 Z轴信号变化 (18)图 2- 11 角速度传感器及参考放大电路 (19)图 2- 12 角速度积分得到角度 (19)图 2- 13 角速度积分漂移现象 (20)图 2- 14 通过重力加速度来矫正陀螺仪的角度漂移 (20)图 2- 15 角度控制框图 (21)图 2- 16电机速度检测 (22)图 2- 17车模倾角给定 (23)图 2- 18 车模倾角控制分析 (24)图 2- 19车模运动速度控制简化模型 (25)IV图 2- 20 车模角度和速度控制框图 (26)图 2- 21改进后的速度和角度控制方案 (27)图 2- 22检测道路中心电磁线方式 (28)图 2- 23车模方向控制算法 (29)图 2- 24 车模运动控制总框图 (30)图 3- 1直立车模控制电路整体框图 (32)表格1 XS128端口说明 (32)图 3- 2 XS128LQFP封装引脚图 (34)图 3- 3最小系统板(112针脚) (35)图 3- 4系统板与下载器BDM的连接图 (36)图 3- 5 V3.0系统板112原理图 (37)图 3- 6 陀螺仪加速度计模块 (38)图 3- 7 陀螺仪加速度计二合一模块实物图 (38)图 3- 8 电机驱动模块实物图 (39)图 3- 9 电机驱动原理图 (40)图 3- 10速度传感器电路 (41)图 3- 11 LM386引脚图 (42)图 3- 12 LM386典型应用电路 (42)图 3- 13 传感器电路图 (43)图 3- 14 电源模块原理图 (43)图 4- 1 完整的 C型车模底盘 (44)图 4- 2 简化后的 C型车模底盘 (44)图 4- 3 使用热熔胶固定电机支架与车模底盘 (45)图 4- 4 去掉后轮之后的车模底盘 (46)V图 4- 5使用复合胶水固定光电编码盘 (47)图 4- 6固定好的光电码盘和光电检测管 (47)图 4- 7电磁传感器支架 (48)图 4- 8 陀螺仪加速度计安装示意图 (49)图 5- 1 主程序框架 (55)图 5- 2中断服务程序 (55)图 5- 3 算法框图中与控制相关的软件函数 (56)图 5- 4 控制函数调用与参数传递关系 (57)VI7第一章 绪论本次全国大学生智能汽车竞赛电磁组要求采用飞思卡尔半导体公司的 8 位、16 位处理器(单核)作为唯一的微控制器,采用C 型车模。
智能车电磁组 电子科技大学 ZEUS技术报告 电磁组

智能汽车竞赛
技术报告
学校:电子科技大学
队伍名称:ZEUS
参赛队员:罗江波
严长国
严高俊
带队教师:田雨
关于技术报告和研究论文使用授权的说明
本人完全了解第七届“飞思卡尔”杯全国大学生智能汽车邀请赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。
(式三)
式二减式三得
(式四)
由此,第k个采样时刻实际控制量为 ,为方便书写,写为
(式五)
其中,
由上可知,利用三个历史数据,递推使用,即可完成PID控制量。框图如右图所示:
4.2.2模糊控制
一般控制系统包含了五个主要部分,即:定义变量、模糊化、知识库、逻辑判断及反模糊化,底下将就每一部分做简单的说明:
3.1
以MCF2259为核心的单片机最小系统是本智能车的核心。
图3.1.1主板电路
3.2
传感器是电磁组小车最重要的模块之一,能够对变化的磁场信号作出灵敏的检测,对道路状况的检测起着至关重要的
图3.2.1
传感器的排布,直接影响了对磁场的敏感程度。
直导线磁场分布交叉导线磁场分布
图3.2.2赛道磁场分布
时域表达式为 (式一)
在单片机中,我们仅能对数字信号处理,即数字PID控制。将上式离散化,得 (式二)
A.位置式PID算法
直接利用上述离散化公式计算,框图如右图所示。由于积分项(Pi)是将所有采集值偏差相加,在
一段时间后会很浪费单片机资源。对其稍加改进,
飞思卡尔智能车技术报告

第六届“飞思卡尔”杯全国大学生智能汽车邀请赛技术报告学校:队伍名称:参赛队员:带队教师:关于技术报告和研究论文使用授权的说明本人完全了解第六届“飞思卡尔”杯全国大学生智能汽车邀请赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。
参赛队员签名:带队教师签名:日期:摘要随着现代科技的飞速发展,人们对智能化的要求已越来越高,而智能化在汽车相关产业上的应用最典型的例子就是汽车电子行业,汽车的电子化程度则被看作是衡量现代汽车水平的重要标志。
同时,汽车生产商推出越来越智能的汽车,来满足各种各样的市场需求。
本文以第六届全国大学生智能车竞赛为背景,主要介绍了智能车控制系统的机械及硬软件结构和开发流程。
机械硬件方面,采用组委会规定的标准 A 车模,以飞思卡尔半导体公司生产的80管脚16 位单片机MC9S12XS128MAA 为控制核心,其他功能模块进行辅助,包括:摄像头数据采集模块、电源管理模块、电机驱动模块、测速模块以及无线调试模块等,来完成智能车的硬件设计。
软件方面,我们在CodeWarrior IDE 开发环境中进行系统编程,使用增量式PD 算法控制舵机,使用位置式PID 算法控制电机,从而达到控制小车自主行驶的目的。
另外文章对滤波去噪算法,黑线提取算法,起止线识别等也进行了介绍。
关键字:智能车摄像头图像处理简单算法闭环控制无线调试第一章引言飞思卡尔公司作为全球最大的汽车电子半导体供应商,一直致力于为汽车电子系统提供全范围应用的单片机、模拟器件和传感器等器件产品和解决方案。
飞思卡尔公司在汽车电子的半导体器件市场拥有领先的地位并不断赢得客户的认可和信任。
其中在8 位、16 位及32 位汽车微控制器的市场占有率居于全球第一。
飞思卡尔公司生产的S12 是一个非常成功的芯片系列,在全球以及中国范围内被广泛应用于各种汽车电子应用中。
第五届飞思卡尔智能车大赛华中科技大学电磁组技术报告

第五届飞思卡尔杯全国大学生智能汽车竞赛技 术 报 告学校:华中科技大学队伍名称:华中科技大学五队参赛队员:方华启张江汉诸金良带队教师:何顶新罗惠关于技术报告和研究论文使用授权的说明本人完全了解第五届全国大学生“飞思卡尔”杯智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。
参赛队员签名:带队教师签名:日期:目录第1章引言 (1)1.1 概述 (1)1.2 全文安排 (2)第2章电路设计 (3)2.1 电路系统框图 (3)2.2 电源部分 (4)2.3 电机驱动部分 (5)2.4 电磁传感器 (6)第3章机械设计 (8)3.1 车体结构和主要参数及其调整 (8)3.2 舵机的固定 (10)3.3 传感器的固定 (11)3.4 编码器的固定 (11)第4章软件设计 (12)4.1 程序整体框架 (12)4.2 前台系统 (13)4.3 后台系统 (13)4.4 软件详细设计 (14)第5章调试 (15)第6章全文总结 (16)6.1 智能车主要技术参数 (16)6.2 不足与改进 (16)6.3 致谢与总结 (17)I参考文献 (18)附录A 源代码 (18)II第1章引言第1章引言教育部为了加强大学生实践、创新能力和团队精神的培养,在已举办全国大学生数学建模、电子设计、机械设计、结构设计等4大竞赛的基础上,委托教育部高等学校自动化专业教学指导分委员会主办每年一度的全国大学生智能汽车竞赛(教高司函[2005]201号文)[1]。
为响应教育部的号召,本校积极组队参加第五届“飞思卡尔”杯全国大学生智能汽车竞赛。
从2009 年12 月开始着手进行准备,历时近8 个月,经过设计理念的不断进步,制作精度的不断提高,经历 2 代智能车硬件平台及相关算法的改进,最终设计出一套完整的智能车开发、调试平台。
飞思卡尔智能车技术报告

第六届“飞思卡尔”杯全国大学生智能汽车邀请赛技术报告学校:队伍名称:参赛队员:带队教师:关于技术报告和研究论文使用授权的说明本人完全了解第六届“飞思卡尔”杯全国大学生智能汽车邀请赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。
参赛队员签名:带队教师签名:日期:摘要随着现代科技的飞速发展,人们对智能化的要求已越来越高,而智能化在汽车相关产业上的应用最典型的例子就是汽车电子行业,汽车的电子化程度则被看作是衡量现代汽车水平的重要标志。
同时,汽车生产商推出越来越智能的汽车,来满足各种各样的市场需求。
本文以第六届全国大学生智能车竞赛为背景,主要介绍了智能车控制系统的机械及硬软件结构和开发流程。
机械硬件方面,采用组委会规定的标准 A 车模,以飞思卡尔半导体公司生产的80管脚16 位单片机MC9S12XS128MAA 为控制核心,其他功能模块进行辅助,包括:摄像头数据采集模块、电源管理模块、电机驱动模块、测速模块以及无线调试模块等,来完成智能车的硬件设计。
软件方面,我们在CodeWarrior IDE 开发环境中进行系统编程,使用增量式PD 算法控制舵机,使用位置式PID 算法控制电机,从而达到控制小车自主行驶的目的。
另外文章对滤波去噪算法,黑线提取算法,起止线识别等也进行了介绍。
关键字:智能车摄像头图像处理简单算法闭环控制无线调试第一章引言飞思卡尔公司作为全球最大的汽车电子半导体供应商,一直致力于为汽车电子系统提供全范围应用的单片机、模拟器件和传感器等器件产品和解决方案。
飞思卡尔公司在汽车电子的半导体器件市场拥有领先的地位并不断赢得客户的认可和信任。
其中在8 位、16 位及32 位汽车微控制器的市场占有率居于全球第一。
飞思卡尔公司生产的S12 是一个非常成功的芯片系列,在全球以及中国范围内被广泛应用于各种汽车电子应用中。
第六届飞思卡尔北京科技大学-电磁二队技术报告

参赛队员签名: 带队教师签名: 日期:
引言
这份技术报告中,我们小组通过对小车设计制作整体思路、电路、算法、 调试、车辆参数的介绍,详尽地阐述了我们的思想和创意,具体表现在电路的 创新设计,以及算法方面的独特想法,而对单片机具体参数的调试也让我们付 出了艰辛的劳动。这份报告凝聚着我们的心血和智慧,是我们共同努力后的成 果。 在准备比赛的过程中,我们小组成员涉猎控制、模式识别、传感技术、汽 车电子、电气、计算机、机械等多个学科,这次磨练对我们的知识融合和实践 动手能力的培养有极大的推动作用,在此要感谢清华大学,感谢他们将这项很 有意义的科技竞赛引入中国;也感谢北京科技大学相关学院对此次比赛的关注, 我们的成果离不开学校的大力支持及指导老师悉心的教导;还要感谢的是和我 们一起协作的队员们,协助,互促,共勉使我们能够走到今天。
-1-
第六届全国大学生智能汽车邀请赛技术报告
目录
引言 ...................................................................................................... - 1 目录 ...................................................................................................... - 2 第一章方案设计 .................................................................................... - 5 1.1 系统总体方案的设计 ........................................................................ - 5 1.2 系统总体方案设计图 ........................................................................ - 6 第二章智能车机械结构调整与优化 ........................................................ - 7 2.1 智能车车体机械建模 ........................................................................ - 7 2.2 智能车前轮定位的调整 .................................................................... - 8 2.2.1 主销后倾角 ............................................................................ - 8 2.2.2 主销内倾角 ............................................................................ - 8 2.2.3 车轮外倾角 ............................................................................ - 9 2.2.4 前轮前束 ................................................................................ - 9 2.3 智能车转向机构调整优化 .............................................................. - 10 2.4 智能车后轮减速齿轮机构调整 ...................................................... - 11 2.5 其它机械结构的调整 ...................................................................... - 12 第三章电路设计说明 ........................................................................... - 13 3.1 主控板和驱动板的硬件设计 ......................................................... - 13 3.1.1 电源管理模块 ...................................................................... - 13 3.1.2 电机驱动模块 ...................................................................... - 14 3.1.3 数模转换模块 ...................................................................... - 14 3.1.4 单片机及其他电路部分设计 .............................................. - 15 -2-
飞思卡尔智能车电磁组分区算法介绍

飞思卡尔智能车电磁组分区算法介绍写在之前的话:1、⽬前我是⼀名在校学⽣,这也是我第⼀次写博客,不周之处,请多谅解;2、此算法并⾮原创,借鉴⾃⼭东德州学院第⼋届⽩杨队(PS:个⼈看法,对于⼀些⼈把别⼈的开源东西改头换⾯⼀下就说是⾃⼰的原创⾏为⼗分鄙视);3、对于此算法的理解和说明并⾮纸上谈兵,算法已经被我运⽤到了⼩车⽐赛中并取得好的成绩(具体就不多说了,⽐赛时车莫名其妙坏了,⽐赛前调试的速度绝对能进国赛,⽐较遗憾),总之这算法是我尝试过的最好的算法;4、这⼀次所介绍的只是路径算法和⼀些知识普及,后⾯有时间会介绍其余部分算法及许多好的思路(舵机电机控制思路(不只是简单的PID),双车策略);5、希望对于这⽅⾯有涉及的⼈能与我联系并交流或指出不⾜之处。
---------------------------------------------------------------分割线-----------------------------------------------------------------------------⼀、没有这⽅⾯了解的可以看看 飞思卡尔智能车分为三组:摄像头、光电、电磁,我做的是电磁车,三种车队区别在于传感器的不同,所以获得路径信息的⽅法也不⼀样,摄像头和光电识别的是赛道上的⿊线(⽩底赛道),⽽电磁车则是检测埋在赛道下的通⼊100mh电流的漆包线,摄像头和光电采⽤的是摄像头和ccd作为传感器,电磁则是⽤电感放在漆包线周围,则电感上就会产⽣感应电动势,且感应电动势的⼤⼩于通过线圈回路的磁通量成正⽐,⼜因为漆包线周围的磁感应强度不同,因此不同位置的电感的感应电动势就不同,因此就可以去确定电感位置;因此在车⼦前⾯设置了50cm的前瞻,电感布局如下(怎么发不了图⽚):分为两排,前排3个,编号0,1,2(前期还加了两个竖直电感⽤来帮助过直⾓弯,后来改为了⼋字电感);后排2个,编号3,4;现在车⼦获得了不同位置的感应电动势的⼤⼩了,但这些值是不能处理的:1、感应电动势太微弱;2、是模拟信号,信号太微弱就放⼤它;这就涉及到模拟电路的知识了,就不多说了(因为要把这讲完到PCB绘制的篇幅就⾜够写另开⼀号专门写这些⽅⾯来(PS:题外话(我的题外话⽐较多)):放⼤部分外围你设计的再好也抵不过⼀个更好的芯⽚,有两个例⼦,⼀个是我⾃⼰的:之前⽤的是NE5532,但是效果不理想,加了好多什么滤波,补偿,都⽤上,没⽤,软件⾥处理后⾯再说,后来⼀狠⼼换了AD620,感觉像是春天来了,因为它是仪⽤放⼤器,还有就是贵。
智能车电磁组-德州学院-极速终结者技术报告

第七届“飞思卡尔”杯全国大学生智能汽车竞赛技术报告学校:德州学院队伍名称:极速终结者参赛队员:卢瑞剑高祥朱振阳带队教师:姚俊红关于技术报告和研究论文授权的使用说明本人完全了解第六届“飞思卡尔”杯全国大学生智能汽车竞赛关于保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。
参赛队员签名:卢瑞剑带队教师签名:姚俊红日期:2012.8.14摘要本文为第七届飞思卡尔智能车电磁组直立车模的设计说明。
本智能车采用大赛组委会统一提供的C型车模,以Freescale 16位单片机MC9S12XS128 作为系统控制处理器,以CodeWarrior IDE 5.0为开发平台。
整个智能车系统的设计与实现包括车模的机械结构调整、传感器电路的设计及位置安装、控制算法和策略优化、系统调试等多个方面。
通过对比不同方案的优缺点,并结仿真平台进行了大量底层和上层测试,最终确定了现有的系统结构和各项控制参数。
系统硬件上包括核心控制模块,电源模块,传感器模块,电机驱动模块,软件设计方案为在深入分析研究大赛组委会给出的直立参考方案后,在一定程度上大胆创新,形成自己独特的方案,从而提高了车模的行驶速度和稳定性。
在智能车调试过程中,使用上位机利用无线通信技术对智能车的状态进行实时监视,有效提高了调试的效率。
实验结果表明,我们的智能车系统设计方案稳定可行,机械结构与控制算法经过长时间的调试均达到优化的状态,本文将详细叙述本智能车控制系统的各个模块的设计原理,设计目标,设计方法与过程,以及其所发挥的作用。
关键字:MC9S12XS128,上位机,无线通信目录摘要 (III)第一章引言 (1)1.1 研究背景................................... 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
//#define K10
//#define Kp 1;//PID的//#define Kd 1;
#include <hidef.h>
#include <stdio.h>
#include <math.h>
#include <MC9S12XS128.h>
3.1.3
考虑到适当增加力臂来提高舵机的灵敏度和为了赛车布局的的紧凑,采取了如图3.2所示的安装方法。
图3.2舵机安装结构
3.1.4
采用接插件与焊接结合的方式连接传感器、主控板、编码器、电机驱动电路、电机、赛道起始检测等单元,既考虑可靠性,又兼顾结构调整与安装的便利性。具体安装结构如图3.3所示,
图3.3主控板安装结构
[6]卓晴.基于磁场检测的寻线小车传感器布局研究[J].清华大学.2009
[7]杨延玲.载流直导线的电磁场特性分析[J].山东师范大学.2007
[8]王毅敏.马丽英等.一种改进的数字PID控制算法及其在励磁系统中的应用电网技术[J].1998
[9]高金源,夏洁.计算机控制系统[M].清华大学出版社.2007
本校积极组队参加第六届“飞思卡尔”杯全国大学生智能汽车竞赛。从2010年底着手准备,历时半年多,经过不断试验设计,最终设计出较为完整的智能赛车。在赛区比赛中获得了较好的综合性能和成绩。
在本次比赛中,采用大赛组委会统一提供的竞赛车模,采用飞思卡尔16位微控制器MC9S12XS128作为核心控制单元,构思控制方案及系统设计,进行包括机械结构的调整与优化,硬件的设计与组装、软件控制算法的编写与改进等过程(小车上的具体方案模块有传感器信号采集处理、控制算法及执行、动力电机驱动、转向舵机控制等)从而实现小车智能化的识别道路,最终实现智能化竞速。
电磁传感器是赛车循迹的前提,采用图4.1电路,由谐振回路,放大电路和倍压整流电路三部分组成,电路如下图所示。
图4.1电磁传感器电路
4.2
主板承担着整部赛车各类电源的提供以及信号采集控制任务,主要由各类电源电路和单片机系统与接口电路组成。我们没有将传感器和传感器电路设置在主板上。否则,将大量消耗狭小的底盘安装空间,使得主板面积过小元件信号线过度密集导致抗干扰性能变差,不利于系统的可靠性,电路图与PCB图分别如图4.2、4.3所示。
第六届“飞思卡尔”杯全国大学生智能车竞赛技术报告
学校:
队伍名称:
参赛队员:
带队教师:
关于技术报告和研究论文使用授权的说明
本人完全了解第六届全国大学生“飞思卡尔”杯智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。
参赛队员签名:
带队教师签名:
日期:
第一章
全国大学生智能汽车竞赛是全国高等教育司委托高等学校自动化专业教学指导分委会主办,旨在培养创新精神、协作精神,提高工程实践能力的科技活
动。该竞赛是以迅猛发展的汽车电子为背景,涵盖了控制、模式识别、传感技
术、电子、电气、计算机、机械等多个学科交叉的科技创意性比赛。
本技术报告主要对小车的整体设计思路,硬件与软件设计与优化,机械结构的安装以及赛车的调试操作等过程作简要的说明。
第二章
2.1
赛车是以检测通以20KHz、100mA的导线的电磁场为基础,通过单片机处理采集到的磁感应电压信号,实现对赛车的转向控制,进而识别赛道达到路径寻迹的目的。
根据电磁寻迹的设计方案,赛车整体包括以下四大模块:1.单片机控制模块2.电磁传感器模块3.电机驱动模块4.电源管理模块等,除此之外系统还有一些外部设备,例如编码器测速、舵机控制转向、直流电机驱动车体,干簧管起跑线识别等。
3.1.5
采用干簧管作为赛道起始线检测元件,如图3.4,采用两两并联,在实际比赛时,与比赛用的起始线磁铁水平宽度相比,我们的赛车干簧管的安装宽度较大,如此考虑,可以增大检测的范围,好处是可以有效地防止车子临近终点时因跑偏太多而导致不能检测到起跑线不能停车的情况的发生。
图3.4赛道起始线检测干簧管部位
3
驱动模块采用英飞凌半桥MOS驱动电路BTS7960构成H全桥驱动电路,由于车模电机自身的空载电流很大,导致工作时电流偏大,但赛车实际运行中,快速加减速十分频繁,易导致芯片过热,为提高可靠性,采用了双H全桥并联分流驱动,运行稳定。安装结构如图3.5所示。
图3.5电机驱动电路的安装
3.1.7
轴编码器用于电机测速,是电机闭环控制的关键检测反馈元件。采用每转500线的编码器通过齿轮传动安装,固定于赛车尾部。安装部位结构如图图3.6所示。
电机PID的具体代码可参见本文附录所附的源程序清单。
第六章
使用CodeWarrior Development Studio for HCS12(X) V4.7作为程序编写、编译、下载、调试工具。在调试中,建议使用无线模块进行赛车运行的实时在线电机速度与舵机角度监视。实现了闭环控制参数的完全在线调试验证,极大改进了调试效果,提高了解决问题的效率。
舵机PD的具体代码可参见本文附录所附的源程序清单。
5.3
速度采用PID控制,PID控制控制直观,技术可靠,对被控对象的模型适应性强。
位置式PID算式连续控制系统中的PID控制规律是:
其中 是偏差信号为零时的控制作用,是控制量的基准。利用外接矩形法进行数值积分,一阶后向差分进行数值微分,当选定采样周期为T时,可得如下位置式PID的离散差分方程:
系统总体结构如图2.1所示。
图2.1系统结构图
第三章
3.1
机械结构部分工作主要包含传感器的安装、前轮注销倾向的调节、舵机的安装、主控板得连接与固定,干簧管的安装、驱动模块的安装、编码器的安装以及后轮差速的调整等。
3.
传感器采用的是6个磁场检测电感一致字匀布的布局安装,如图3.1所示。
传感器伸出车体一定的距离以获得相应的前瞻性。
图3.6轴编码器的安装
3.1.8
车在转弯时后轮的速度会不同,再不打滑的情况下,存在差速。在后轮不打滑的情况下,差速越松,转向效果越好,但是太松的差速会影响驱动力的提供。实际中在赛道上调整到比较平衡的值就可以了。在差速和摩擦轴承中适当加点油保持良好的轮滑,也可以一定程度上改善差速的性能。
第四章
4.1
图4.2主控板电路图
图4.3主控板PCB图
4.3
电机驱动电路的功率问题比较重要,驱动的好坏将会影响电机速度的PID调节,本次比赛的B车模电机空载损耗很大,空载电流可达到2安培以上,考虑赛道运行机械负载与加速的加速度负载等,依据常规经验粗略推断,电机电流至少可达十几安培以上,对于低压小型电机,如此的电流损耗是较为惊人的。驱动电路必须能够驱动如此大的电机电流且必须拥有较为完善的过流、超温保护等功能有效防止驱动电路的损坏。比较分立原件和集成芯片的优劣之后我们选择了英飞凌半桥BTS7960构成全桥以实现正反转以及能耗制动。
#include <stdlib.h>
intad[8]={0};
float a=0,b=0,y1=0,y2=0;
unsigned int *p=ad,*pold4=0,*pold5=0,admax=0;
int stop=0;
int nowspeed=0, setspeed=0;
unsigned char LEDflag=1,admaxnum=0;
[2]卓晴.黄开胜.邵贝贝.学做智能车――挑战“飞思卡尔”杯.北京:北京航空航天大学出版社,2007.3.
[3]李仕伯.马旭.卓晴.《基于磁场检测的寻线小车传感器布局研究》,清华大学,2009.12
[4]竞赛组秘书处.《路径检测设计参考方案》.2010.1
[5]竞赛组秘书处技术组.《20KHz电源参考设计方案》
第七章
车模重量
1.4kg
车模几何尺寸(长/宽/高)
460/240/69(mm)
总电容量
约669.51微法
传感器个数
电磁传感器×6;编码器×1;
干簧管×4
电机个数
舵机×1;电机×1
芯片个数
MC9S12XS128×1;电机驱动×1;
赛道位置检测精度
5mm
赛道检测频率
100次/秒
总功率
12W
第八章
在这四个月的赛车设计制作中我们的收获与体会都相当的多,在运用了现有的理论基础之上,再通过课外的拓展,将理论应用于实际,在这过程中充分锻炼了我们的动手能力、项目统筹安排的能力、解决问题的态度与技巧,以及与队友的团结合作等等。
static float ek[3]={0};
//#include "PBset.h"
#include "SCI.h"
[10]第五届北京交通大学电磁二队的技术报告.2010
[11]第五届哈尔滨工程大学电磁组—极品飞车三号队的技术报告.2010
[12]第五届清华大学三角洲电磁队的技术报告.2010
附
源代码
(1)main.c文件代码
#define MotorMax 14000
#define MotorMin10
#define NMAX 3//使用3个电感拟合
计算机控制时,常采用增量式PID算法。计算每周期的PID输出增量,在于前一周期的输出相加,得出最终的PID控制输出。增量式PID算法的每周期的PID输出增量计算算法如下:
每周期的PID输出增量反映了第k和第k-1周期输出之间的增量。算式的结果可正可负的。利用增量算式控制执行机构,执行机构每次只增加一个增量,因此执行机构起了一个累加的作用。对于整个系统来说,位置和增量式两种算式并无本质区别,但增量式有不少优点:算式只与最近几次采样值有关,不易引起误差累积;误动作影响小,易于加逻辑保护;增量算法在实际控制中应用得比位置式更为广泛。