第五章-图像预处理
视觉检测技术-习题参考答案

视觉检测技术-习题答案1-1 何为计算机视觉?能够解释图像,实现类似人类视觉系统理解外部世界的机器系统称为计算机视觉或机器视觉。
1-2计算机视觉能够完成的四种基本任务是什么?尺寸和表面特征的检测;目标的识别和定位。
1-3制约计算机视觉技术应用水平的两大基础是什么?1)包括数字图像处理的视觉理论和算法;2)微电子技术1-4计算机视觉和视觉检测是什么关系?(无标准答案,根据自己的理解进行归纳、概括即可。
)以检测为目的的计算机视觉应用称为视觉检测。
视觉检测是计算机视觉内容的一部分。
第二章习题(人类视觉)2-1 做一个简单实验。
将视轴与观测书页的法线平行,给出高清晰观察区域的尺度范围。
2-2 人类视觉系统由几部分组成?各部分的功能是什么?三个部分:眼球、神经传输系统及大脑的视觉中枢;各部分作用是:光学成像、影象摄取或采集、影象信号的传输、影象信号、信息处理。
2-3 分别举出一个证明视觉空间分辨率和时间分辨率的实例。
并解释视觉区域时间分辨率不同的生理机制(生物物理原因)。
2-4 两种感受野的什么特性有利于检测影像的边缘?2-5 何为马赫带?其形成的生物学基础是什么?2-6 在夜间观赏烟火时,观察到得什么现象可以用视觉动态响应特性进行解释。
2-7 一粉笔沿轴向快速从眼前掠过留下的是什么影像,为什么?第三章习题(图象的基本知识)3-1 物体表面上某一点(小区域)的灰度(或亮度)与那些因素或分量有关?是什么关系?-语言陈述,列写公式3-2 伪彩色图象处理的目的是什么?为什么该处理方法可以实现这样一个目的?-从人类视觉对灰度和彩色的分辩能力谈起――。
3-3 假彩色图像处理的目的和任务是什么?概括:1)降低人类对对彩色区域的分辩难度;2)开展人类视觉的光谱范围。
3-4 请给出灰度直方图的两种应用。
①用于判断图像量化是否恰当。
②用于确定图像二值化的阈值。
③用于区域分割和面积计算。
3-5 黑白图像、普通灰度图像的灰度取值范围是多少?彩色图像中一个象素的颜色需要用多少个bit来表示?――每两个F表示一种基色,――24位,-3-6 结合三相CCD电荷包转移过程图,补充画出在满足t2<t2.5<t3的t2.5时刻的电荷转移示意图。
第五章遥感图像处理§5—1遥感信息数据的种类及其传输-遥感技术基础

凡是既记录电磁波的振幅,又记录位相的胶片都称为遥感波带片。合 成孔径侧视雷达直接获得的就是一种波带片。 在合成孔径侧视雷达系统中,设有一位相稳定的参考波束,每一地面 点的雷达回波与参考波束同时记录在胶片上,实质上,胶片记录的就是两 者的干涉图。用这种方式就能将回波振幅与位相同时记录下来,经激光再 现,便能获得可供解译的雷达图像。 二、遥感磁带的种类 模拟磁带是一种暂时记录工具,它记录的是一种模拟电压曲线,再经 电光转换变成光信号。以扫描方式记录在胶片上,模拟磁带可多次重复使 用,记录并传递大量信息,使星载传感器结构简化,轻便。 2 .数字磁带 探测系统输出的电压信号,经过模数转换器 (A / D) ,对电压曲线分段 读数,然后记录在磁带上,即为数字磁带 (digital tape) 。它又可分为两种: (1) 高密度数字磁带 (HDDT) : 指采用并行记录格式,每英寸记录 10 4 位以上二进制数据的磁带。这 种磁带不能直接输入计算机,需经过磁带转换机处理。 (2) 计算机兼容磁带 (CCT) 指每英寸记录 800 位或 1600 位二进制数据 的磁带。记录密度远远低于 HDDT 。 三、遥感信息数据传输 空中的遥感设备能否将传感器所获取的信息数据适时传送到地面,是 衡量一项遥感计划成败的标准。航空遥感都是直接回收胶卷或磁带,传输 方面不存在什么问题,这里只针对航天遥感而言。 星载传感器的信息数据返回地面的方式有两种,一种是由卫星按地面 指令弹射出资料舱,然后在空中或海上打捞回收;但更多的是通过无线电 信道将信息数据传输到地面,叫视频传输。由于地面站接收范围有限,故 后者又有实时传输和非实时 ( 延时 ) 传输之分。非实时传输是在星上磁带机
[0 ,A] 称为灰度区间,通常将 f(x ,y) = 0 定为黑色 ,f(x ,y)=A 定为白色, 所有中间值都是由黑连续地变为白时的灰度等级。由此可见,所谓光学图 像就是人眼可观察的图像,其基本特点是:它的灰度 ( 或彩色 ) 在像幅几何 空间 ( 二维 ) 和图像灰度空间 ( 第三维 ) 上的分布都是连续的无间断的。 如果我们将一幅光学图像在像幅空间和灰度空间上离散化,即将 其划 分为 M*N 的空间格网,并将在每一格网上量测的平均灰度值数字化,如 图 5 — 5 所示,则我们可得到一个由离散化的坐标和灰度值组成的 M*N 数 字矩阵:
图像处理流程

图像处理流程图像处理是数字图像处理的一种形式,旨在改善或增强图像的质量,使得图像更加清晰、更鲜明,或者从图像中提取出特定的信息。
图像处理的流程一般包括以下几个步骤:1. 图像获取:首先需要采集图像,可以通过摄像机、扫描仪等设备来获取图像,或者从存储介质中读取图像文件。
2. 图像预处理:在进行下一步处理之前,需要对图像进行预处理。
预处理的目的主要是去除图像中的噪声,使得图像更加清晰。
常用的预处理方法包括平滑滤波、去噪、去除伪影等。
3. 图像增强:图像增强是指通过一系列的算法和方法来改善图像的质量,使得图像更容易被观察和分析。
常见的图像增强方法包括灰度变换、直方图均衡化、空间滤波等。
4. 图像分割:图像分割是将图像中的物体或区域分离开来,通常是根据图像的某些特征进行分割。
图像分割常用的方法包括阈值分割、边缘检测、区域生长等。
5. 特征提取:特征提取是从图像中提取出具有代表性的特征信息,用于描述图像的内容。
常见的特征包括纹理特征、形状特征、颜色特征等。
特征提取可以利用图像处理算法和机器学习方法来实现。
6. 物体识别和分类:特征提取之后,可以利用分类算法进行物体的识别和分类。
分类的目的是将图像中的物体归类到不同的类别中,可以通过统计、机器学习等方法来实现。
7. 结果评估和应用:最后,需要对处理结果进行评估,并根据具体的需求进行应用。
评估可以根据图像质量、识别准确率等指标来进行。
根据应用需求,可以将处理结果用于图像检索、图像分类、图像匹配等领域。
总之,图像处理流程涵盖了图像获取、预处理、增强、分割、特征提取、识别和分类等多个步骤,通过一系列的算法和方法来改善图像的质量和信息提取。
图像处理在计算机视觉、图像识别、医学影像等领域具有广泛的应用。
图像处理技术原理与应用介绍

图像处理技术原理与应用介绍第一章:图像处理技术概述图像处理技术是计算机视觉领域中的一个重要分支,通过数字化处理来改善或者增强图像的质量、提取有用的信息。
这些信息可以用于医学图像诊断、安防监控、自动驾驶等领域。
图像处理技术的原理是将图像数据转换为数字信号,并应用各种算法和方法进行处理。
第二章:图像获取与采集技术图像的获取与采集是图像处理的第一步,包括摄影、扫描、摄像、雷达等方式。
在数字相机中,光经过镜头进入感光元件,通过光电转换将光信号转换为电信号。
扫描技术通过移动的感光元件逐行采集图像,如CCD和CMOS传感器。
雷达技术利用电磁波回波来获得图像信息,适用于远程目标探测等场景。
第三章:图像预处理技术图像预处理是图像处理流程中的重要环节,旨在提取和增强图像中有用信息,去除噪声和不必要的细节。
常用的预处理技术包括灰度变换、图像平滑、图像增强和边缘检测等。
灰度变换在图像中引入了灰度级别的变化,用于增强图像对比度和亮度。
图像平滑通过低通滤波器来去除图像中的高频噪声。
图像增强技术则用于增强图像的细节和边缘。
边缘检测技术可以检测出图像中物体之间的边界。
第四章:图像分割与特征提取图像分割是指将图像划分为不同的区域或对象,常用的算法包括阈值分割、区域生长、边缘检测等。
阈值分割通过设定一个阈值,将图像中灰度值高于或低于该阈值的像素归为同一类。
区域生长是一种通过像素之间的相似性将相邻像素合并的方法。
边缘检测通过检测图像中的灰度级别变化来找到物体之间的边界。
特征提取是在图像分割的基础上,提取出图像中的有用属性,如纹理、形状、颜色等,用于后续的图像识别和分类。
第五章:图像压缩与编码图像压缩是通过减少图像中的冗余信息来减小图像的存储空间和传输带宽。
常见的图像压缩算法有无损压缩和有损压缩。
无损压缩通过对图像数据进行编码和解码来保证图像的完整性,如Huffman编码和LZW编码。
有损压缩则通过舍弃一部分信息来减小图像的大小,如JPEG和JPEG2000。
生物医学工程中的图像处理技术方法总结

生物医学工程中的图像处理技术方法总结生物医学工程是一门综合学科,通过应用工程技术和生物医学的原理,致力于发展用于诊断、监测和治疗的医疗设备和技术。
其中,图像处理技术在生物医学工程中扮演着重要的角色。
本文将对生物医学工程中常用的图像处理技术方法进行总结。
1. 图像预处理图像预处理是指在进行后续处理之前,对原始图像进行降噪、增强和几何校正等操作。
其中,降噪是常用的预处理步骤,包括中值滤波、高斯滤波和小波去噪等方法。
增强可以通过直方图均衡化、对比度增强和锐化等技术来改善图像的质量。
几何校正主要涉及到图像的旋转、缩放和校正等操作,用于纠正图像中的畸变。
2. 图像分割图像分割是将图像划分为具有相似特征的区域的过程。
在生物医学工程中,图像分割常用于提取感兴趣的区域,如病灶、组织器官等。
传统的图像分割方法包括阈值分割、边缘检测和区域生长等。
近年来,基于机器学习和深度学习的图像分割方法也得到了广泛应用,如基于像素级分类的卷积神经网络(CNN)和全卷积网络(FCN)等。
3. 特征提取特征提取是从图像中提取与目标有关的信息的过程。
在生物医学工程中,特征提取可用于识别病理特征、分析组织结构等。
传统的特征提取方法包括形态学处理、纹理特征提取和形状描述等。
近年来,基于深度学习的特征提取方法也取得了重大突破,如卷积神经网络的卷积层提取图像特征,并通过全连接层进行分类或回归。
4. 图像配准图像配准是将多幅图像根据一个参考图像进行对齐的过程。
在生物医学工程中,图像配准可用于融合多模态图像、纠正运动伪影等。
常用的图像配准方法包括基于特征的配准、基于相似度度量的配准和基于变换模型的配准等。
其中,基于特征的配准方法利用特征点或特征描述子进行匹配和对齐;基于相似度度量的配准方法通过最小化图像间的差异度量来实现对齐;基于变换模型的配准方法通过拟合变换模型实现对齐。
5. 目标检测与识别目标检测与识别是在图像中寻找和识别特定目标的过程。
在生物医学工程中,目标检测与识别广泛应用于医学影像分析、肿瘤检测、细胞分析等领域。
《图像预处理》课件

图像预处理的未 来发展
深度学习在图像预处理中的应用
深度学习技术在图像预处理中 的应用越来越广泛
深度学习技术可以提高图像预 处理的效率和准确性
深度学习技术可以处理复杂的 图像预处理任务
深度学习技术在图像预处理中 的应用前景广阔
自动化和智能化的发展趋势
深度学习技术的 应用:提高图像 预处理的自动化 程度,实现智能
后处理:对图像进行平滑 处理、锐化处理等操作, 以提高图像的视觉效果
图像预换为灰度图像的过程 灰度化处理的目的是减少图像的颜色信息,提高图像的亮度和对比度 灰度化处理的方法包括:平均值法、加权平均法、最大值法、最小值法等 灰度化处理后的图像可以用于后续的图像处理和识别任务
化处理
边缘计算技术的 应用:提高图像 预处理的效率, 降低对网络带宽 和计算资源的需
求
云计算技术的 应用:实现大 规模图像预处 理任务的快速
处理和存储
5G技术的应用: 提高图像预处 理的速度和稳 定性,实现实 时处理和传输
跨领域的应用拓展
医学领域:用 于医学影像分 析,辅助医生
诊断疾病
安防领域:用 于人脸识别、 安防监控等, 提高安全防范
遥感图像去噪:去除遥感图像 中的噪声,提高图像清晰度
机器视觉应用
自动驾驶:识别道路、行人、车辆等 工业检测:检测产品质量、缺陷等 安防监控:人脸识别、行为识别等 医疗影像:疾病诊断、手术导航等
图像识别系统
车牌识别:用于交通管理、停车场管理等场景 人脸识别:用于身份验证、门禁系统等场景 物体识别:用于智能监控、智能机器人等场景 文字识别:用于文档数字化、信息检索等场景
图像尺寸调整
目的:改变图 像的大小和比
例
方法:缩放、 裁剪、旋转等
5遥感数字图像处理-第五章

☞ 邻域处理
针对一个像元点周围一个小邻域的所有像元而进行,输出 值大小除与像元点在原图像中的灰度值大小有关,还决定于它 邻近像元点灰度值大小。如卷积运算、中值滤波、滑动平均等。
②
图像增强的分类
点处理
点处理
邻域处理
邻域处理
2. 遥感图像的对比度增强
对比度增强的基本原理
人眼对图像的识别主要是基于图像中不同像元的亮度(灰度、
差别为有选择的滑动平均是一种带门限值的滑 动平均处理。
④
有选择的局部平均法
有选择的局部平均法实现步骤:
1. 2. 3. 4. 给定一个判定阈值T 计算模板窗口内像元DN值的均值X 计算窗口中心目标像元的DN值与X的绝对差值D 比较D与T的大小
如D>T,则窗口中心像元输出DN值等于X
如D<T,则窗口中心像元DN值保持不变 优点:边缘信息损失减少,减轻输出图像的模糊效应。
中值滤波是一种非线性变换。其优势在于可在平滑的基 础上较大程度地防止边缘模糊。
③
中值滤波
中值滤波窗口可选用模板的不同形式:
○ ○ ○ ○ ○ ○ ○ ○ ○ 方形窗口:对线性噪声抑制效果好
○ ○ ○ ○ ○ 十字形窗口:对点性噪声抑制效果好
④
有选择的局部平均法
有选择的局部平均法—其实质为一种滑动平均平滑法。与滑动平均法的
其中,x—原始图像的亮度值
X—线性扩展增强后的亮度值
②
非线性扩展
Ⅱ 对数变换法
X d
c a b x
②
非线性扩展
Ⅲ 三角函数扩展
假定原始图像的灰度范围是(a,b),将原始图像灰度范围扩展为 (c,d),其中c < a,d > b,其正切函数计算公式为:
图像预处理—图像平滑(数字图像处理课件)

4
项目五
下图给出了两种从图像阵列中选取邻域的方法。图(a)的方法是一个点的邻域,定义为 以该点为中心的一个圆的内部或边界上的点的集合。图中选取点的灰度值就是圆周上4个像素灰 度值的平均值。
图(b)是选择圆的边界上的点和在圆内的点为S的集合。
项目五
1.2空域低通滤波
将空间域模板用于图像处理通常称为空间滤波,而空间域模板称为空间滤 波器。空间域滤波按线性的和非线性特点有:线性、非线性平滑滤波器。
线性平滑滤波器包括邻域平均法(均值滤波器)、非线性平滑滤波器有中 值滤波器。
1
项目五
(1)邻域平均法
邻域平均法是简单的空域处理方法。这种方法的基本思想是用几个像素灰度
15
项目五
空间域滤波原理基础
用3×3的模板进行空间滤波的示意图
N
R
ki si k0 s0 k1s1 k8 s8
i0
16
项目五
例:空域中利用模板求卷积和相关计算 例如,假设图像矩阵为A,卷积核为h。如图3.4.4所示。
17
项目五
空域中利用模板求卷积
计算得出输出像素A(2,4)的卷积值为
1
8
15 2 9 4
A(2,4)
7
14
16 7
5
3
13
20
22 6
1
8
=575
18
10
项目五
• 1.1滤波原理与分类
空间域的三种滤波器剖面示意图
11
项目五
• 1.2 空间域滤波
空域滤波是在图像空间借助模板进行邻域操作完成的,空域滤波按线性的和非线性特点有: (1)基于傅里叶变换分析的线性滤波器; (2)直接对邻域进行操作的非线性空间滤波器。 空域滤波器根据功能主要分成平滑滤波和锐化滤波。 平滑滤波可用低通滤波实现。 平滑的目的: (1)消除噪声,(2)去除太小的细节或将目标内的小间断连按起来实现模糊。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章图像预处理一般情况下,成像系统获取的图像(即原始图像)由于受到种种条件限制和随机干扰,往往不能在视觉系统中直接使用,必须在视觉的早期阶段对原始图像进行灰度校正、噪声过滤等图像预处理.对机器视觉系统来说,所用的图像预处理方法并不考虑图像降质原因,只将图像中感兴趣的特征有选择地突出,衰减其不需要的特征,故预处理后的输出图像并不需要去逼近原图像.这类图像预处理方法统称为图像增强.图像增强技术主要有两种方法:空间域法和频率域法.空间域方法主要是在空间域内对图像象素直接运算处理.频率域方法就是在图像的某种变换域对图像的变换值进行运算,如先对图像进行傅里叶变换,再对图像的频谱进行某种计算(如滤波等),最后将计算后的图像逆变换到空间域.本章首先讨论直方图修正方法,然后介绍各种滤波技术,其中对高斯平滑滤波器将作比较深入的讨论。
5.1直方图修正许多图像的灰度值是非均匀分布的,其中灰度值集中在一个小区间内的图像是很常见的(图5.2(a)所示的对比度很弱的图像).直方图均衡化是一种通过重新均匀地分布各灰度值来增强图像对比度的方法.经过直方图均衡化的图像对二值化阈值选取十分有利. 一般来说,直方图修正能提高图像的主观质量,因此在处理艺术图像时非常有用。
直方图修正的一个简单例子是图像尺度变换:把在灰度区间[a,b]内的象素点映射到[z1,z2]区间.一般情况下,由于曝光不充分,原始图像灰度区间[a,b]常为空间[z1,z2]的子空间,此时,将原区间内的象素点z映射成新区间内象素点z’的函数表示为上述函数的曲线形状见图5.1(a).上述映射关系实际上将[a,b]区间扩展到区间[z1,z2]上,使曝光不充分的图像黑的更黑,白的更白。
如果图像的大多数象素灰度值分布在区间[a, b],则可以使用图5.1(b)所示的映射函数若要突出图像中具有某些灰度值物体的细节,而又不牺牲其它灰度上的细节,可以采用分段灰度变换,使需要的细节灰度值区间得到拉伸,不需要的细节得到压缩,以增强对比度,如图5.1(c)所示.当然也可以采用连续平滑函数进行灰度变换,见图5.1(d).这一方法存在的问题是,当直方图被延伸后,所得到的新直方图并不均匀,也就是说,各灰度值所对应的象素数并不相等.因此,更好的方法应该是既能扩展直方图,又能使直方图真正地呈现均匀性。
如果预先设定灰度值分布,那么就可以用下面的方法:假定p1是原直方图中在灰度级z1上的象素点的数目,q1是要得到的直方图在灰度级A上的象素点的数目.从原直方图的左边起,找到灰度值k1,便得下一区间象素值z k1,……z k2-1被映射到灰度级z2上.重复这一过程直到原始图像的所有灰度值都得到处理,这一方法的处理结果示于图5.2中.在那里,原始图像对比度很弱,原因是灰度值分布在一小区间内.直方图均衡化通过映射灰度值来逼近均匀分布,从而改善了对比度.但是这一方法在均衡化后的直方图中仍然留下了间隙,除非输入图像中具有同一灰度级的象素点在输出图中被延伸至几个灰度级。
如果直方图被延伸,则在原始图像中具有相同灰度值的象素点在新的图像中可能会被延伸成不同的灰度值.最简便的方法就是为相同灰度值的每一个象素点分配一个随机的输出值.为了把象素点均匀地分布在n个输出值q k,q k+1,…,q k+n-1的范围内,假定使用一个随机数发生器,其产生的随机数均匀地分布在[0,1)内.输出的象素点标号可以由随机数r通过计算公式k+[n×r]得到.换句话说,对每一次决策,抽出一个随机数,乘以区间内的输出值数目n后四舍五入取整,最后将这一偏移量加到最低标号k上。
5.2图像线性运算5.2.1线性系统许多图像处理系统都可以用一个线性系统作为模型:对于线性系统,当系统输入是一个中心在原点的脉冲(x,y)时,输出g(x,y)就是系统的脉冲响应.此外,如果系统响应与输入脉冲的中心位置无关,则该系统称为空间不变系统。
如果f(x,y)和h(x,y)表示图像,则卷积就变成了对象素点的加权计算,脉冲响应g [i,j]就是一个卷积模板.对图像中每一象素点[i,j],输出响应值h(x,y)是通过平移卷积模板到象素点[i,j]处,计算模板与象素点[i,j]邻域加权得到的,其中各加权值对应卷积模板的各对应值.图5.3是模板为3 x 3的示意图.卷积是线性运算,因为对任何常量a1和a2都成立.换句话说,和的卷积等于卷积的和,尺度变换后的图像卷积等于卷积后作相应的尺度变换.卷积是空间不变算子,因为在整幅图像中都使用相同的权重系数.但空间可变系统则在图像的不同部分要求不同的滤波权重因子,因此这种运算无法用卷积来表示。
图像域的卷积对应于频率域的乘积,因此,对于图像域中非常费时的大滤波器卷积,若使用快速傅里叶变换(fast fourier tranaform,FFT),可以大大地提髙计算效率.FFT是许多图像处理应用领域里十分重要的方法.但是在机器视觉中,由于大多数算法是非线性的或空间可变的,因此不能使用傅里叶变换方法.对于视觉模型为线性的、空间不变的系统,由于滤波尺度很小,使用快速傅里叶变换几乎得不到什么益处.因此,在视觉预处理阶段,通常使用线性滤波器(如平滑滤波器等)来完成图像时域卷积。
5.3线性滤波器图像常被强度随机信号(也称为噪声)所污染.一些常见的噪声有椒盐(Salt & Pepper) 噪声、脉冲噪声、高斯噪声等.椒盐噪声含有随机出现的黑白亮度值.而脉冲噪声则只含有随机的白强度值(正脉冲噪声)或黑强度值(负脉冲噪声).与前两者不同,高斯噪声含有亮度服从高斯或正态分布的噪声(如图5.4所示).高斯噪声是许多传感器噪声的很好模型,例如摄像机的电子干扰噪声。
线性平滑滤波器去除高斯噪声的效果很好,且在大多数情况下,对其它类型的噪声也有很好的效果.线性滤波器使用连续窗函数内象素加权和来实现滤波.特別典型的是,同一模式的权重因子可以作用在每一个窗口内,也就意味着线性滤波器是空间不变的,这样就可以使用卷积模板来实现滤波.如果图像的不同部分使用不同的滤波权重因子,且仍然可以用滤波器完成加权运算,那么线性滤波器就是空间可变的.任何不是象素加权运算的滤波器都属于非线性滤波器.非线性滤波器也可以是空间不变的,也就是说,在图像的任何位置上可以进行相同的运算而不考虑图像位置或空间的变化.5.4节中所提出的中值滤波器就是空间不变的非线性滤波器.下面主要介绍两种线性滤波器,均值滤波器和高斯滤波器。
5.3.1均值滤波器最简单的线性滤波器是局部均值运算,即每一个象素值用其局部邻域内所有值的均值置换其中,M是邻域N内的象素点总数.例如,在象素点[i,j]处取3×3邻域,得到该方程与方程(5.6)对比,对于卷积模板中的每一点[i,j],有g [i,j]= 1/9,那么方程(5.6) 就退化成方程(5.10)所示的局部均值运算.这一结果表明,均值滤波器可以通过卷积模板的等权值卷积运算来实现(见图5.5).实际上,许多图像处理运算都可以通过卷积来实现,邻域N的大小控制着滤波程度,对应大卷积模板的大尺度邻域会加大滤波程度.作为去除大噪声的代价,大尺度滤波器也会导致图像细节的损失.不同尺度下均值滤波的结果见图5.6.在设计线性平滑滤波器时,选择滤波权值应使得滤波器只有一个峰值,称之为主瓣,并且在水平和垂直方向上是对称的.一个典型的3×3平滑滤波器的权值模板如下:线性平滑滤波器去除了高频成分和图像中的锐化细节,例如:会把阶跃变化平滑成渐近变化,从而牺牲了精确定位的能力。
空间可变滤波器能调节权值,使得在相对比较均匀的图像区域上加大平滑量,而在尖锐变化的图像区域上减小平滑量。
5.3.2 高斯平滑滤波器高斯平滑滤波器是一类根据高斯函数的形状来选择权值的线性平滑滤波器,高斯平滑滤波器对去除服从正态分布的噪声是很有效的,一维零均值高斯函数为其中,高斯分布参数a决定了高斯滤波器的宽度,对图像处理来说,常用二维零均值离散高斯函数作平滑滤波器,这种函数的图形如图5.7所示,函数表达式为高斯函数具有五个重要的性质,这些性质使得它在早期图像处理中特别有用,这些性质表明,高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用。
高斯函数具有五个十分重要的性质,它们是:①二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的,一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑,旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向。
②髙斯函数是单值函数.这表明,高斯滤波器用象素邻域的加权均值来代替该点的象素值,而每一邻域象素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的象素点仍然有很大作用,则平滑运算会使图像失真。
③离斯函数的傅里叶变换频谱是单瓣的.正如下面所示,这一性质是髙斯函数傅里叶变换等于髙斯函数本身这一事实的直接推论.图像常被不希望的髙频信号所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.髙斯函数傅里叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号。
④离斯滤波器宽度(决定着平滑程度)是由参数a表征的,而且和平滑程度的关系是非常简单的,a越大,髙斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数a;,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷。
⑤由于髙斯函数的可分离性,大离斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维离斯函数进行卷积,然后将卷积结果与方向垂直的相同一维髙斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长。
下面详细解释这些性质.1.旋转对称性把高斯函数从直角坐标变换到极坐标,则可以清楚地看到高斯函数的旋转对称特性. 二维高斯函数为它不依赖于极角θ自然也就旋转对称了.如果要求在某一特定的方向上加大平滑量,则应用旋转非对称高斯函数也是可能的.旋转非对称髙斯函数的表达式[Wozencraft 1965], 它们被用于通讯频道的概率统计分析中。
2.傅里叶变换性质高斯函数有一个十分有趣的性质,即它的傅里叶变换也是一个髙斯函数.由于髙斯函数的傅里叶变换是一个实函数,所以其傅里叶变换前后的幅值不一样,髙斯函数的傅里叶变换通过下式计算高斯函数是偶函数,而正弦函数是奇函数,因此第二个积分式的值必然等于零,从而整个傅里叶变换可简化为3.高斯函数的可分离性髙斯函数的可分离性很容易表示为花括弧里的和式是输人图像f[i,j]与一维水平高斯函数的卷积.这一和式的结果是一个二维图像,该图像在水平方向上被模糊化.将该图像作为输人与相同的一维垂直髙斯函数进行卷积,使得图像在垂直方向上也被模糊化.由于卷积是服从结合律和交换律的,因此卷积次序可以颠倒,即可以先进行垂直卷积,将其结果作为输人再进行水平卷积.图5.9是高斯函数卷积可分离性示意图。