数字逻辑电路实验

合集下载

数字逻辑实验报告实验

数字逻辑实验报告实验

一、实验目的1. 理解数字逻辑的基本概念和基本原理。

2. 掌握数字逻辑电路的基本分析方法,如真值表、逻辑表达式等。

3. 熟悉常用数字逻辑门电路的功能和应用。

4. 提高数字电路实验技能,培养动手能力和团队协作精神。

二、实验原理数字逻辑电路是现代电子技术的基础,它主要研究如何用数字逻辑门电路实现各种逻辑功能。

数字逻辑电路的基本元件包括与门、或门、非门、异或门等,这些元件可以通过组合和连接实现复杂的逻辑功能。

1. 与门:当所有输入端都为高电平时,输出端才为高电平。

2. 或门:当至少有一个输入端为高电平时,输出端为高电平。

3. 非门:将输入端的高电平变为低电平,低电平变为高电平。

4. 异或门:当输入端两个高电平或两个低电平时,输出端为低电平,否则输出端为高电平。

三、实验内容1. 实验一:基本逻辑门电路的识别与测试(1)认识实验仪器:数字电路实验箱、逻辑笔、示波器等。

(2)识别与测试与门、或门、非门、异或门。

(3)观察并记录实验现象,分析实验结果。

2. 实验二:组合逻辑电路的设计与分析(1)设计一个简单的组合逻辑电路,如加法器、减法器等。

(2)根据真值表列出输入输出关系,画出逻辑电路图。

(3)利用逻辑门电路搭建电路,进行实验验证。

(4)观察并记录实验现象,分析实验结果。

3. 实验三:时序逻辑电路的设计与分析(1)设计一个简单的时序逻辑电路,如触发器、计数器等。

(2)根据电路功能,列出状态表和状态方程。

(3)利用触发器搭建电路,进行实验验证。

(4)观察并记录实验现象,分析实验结果。

四、实验步骤1. 实验一:(1)打开实验箱,检查各电路元件是否完好。

(2)根据电路图连接实验电路,包括与门、或门、非门、异或门等。

(3)使用逻辑笔和示波器测试各逻辑门电路的输出,观察并记录实验现象。

2. 实验二:(1)根据实验要求,设计组合逻辑电路。

(2)列出真值表,画出逻辑电路图。

(3)根据逻辑电路图连接实验电路,包括所需逻辑门电路等。

《数字逻辑》实验组合逻辑电路实验

《数字逻辑》实验组合逻辑电路实验

《数字逻辑》实验组合逻辑电路实验组合逻辑电路实验一一、实验目的1、熟悉半加器、全加器的实验原理,学习电路的连接;2、了解基本74LS系列器件(74LS04、00、32)的性能;3、对实验结果进行分析,得到更为优化的实验方案。

二、实验内容1、按照实验原理图连接电路。

2、实验仪器:74LS系列的芯片、导线。

实验箱内的左侧提供了插放芯片的地方,右侧有控制运行方式的开关KC0、KC1及KC2。

其中KC1用来选择实验序号。

序号为0时,手动进行。

自动运行时按加、减选择所做实验的序号。

试验箱内有分别用于手动和自动实验的输入的控制开关Kn和Sn。

3、三、实验原理实验原理图如下:四、实验结果及分析1、将实验结果填入表1-11-1 表2、实验结果分析由实验结果可得半加和:Hi=Ai⊕Bi 进位:Ci=AiBi则直接可以用异或门和与门来实现半加器,减少门的个数和级数,提高实验效率。

实验二全加器一、实验目的1、掌握全加器的实验原理,用简单的与、或非门来实现全加器的功能。

2、分析实验结果,得到全加器的全加和和进位的逻辑表达式,根据表达式用78LS138和与、或、非门来实现全加器。

二、实验内容同半加器的实验,先采用手动方式,再用自动方式。

用自动方式时选实验序号2。

三、实验原理四、实验结果及其分析表1-2 2、实验结果分析从表1-2中的实验结果可以得到:Si=AiBiCi?1+AiBiCi?1+AiBiCi-1=Ai?Bi?Ci-1Ci=AiBi+AiCi-1+BiCi-1故Si=?m(1,2,4,7) Ci=?m(3,5,6,7)因此可用三—八译码器74LS138和与非门实现全加器,逻辑电路图如下:实验三三—八译码器与八—三编码器一、实验目的1、进一步了解译码器与编码器的工作原理,理解译码和编码是相反的过程。

2、在连接电路时,注意译码器74LS138和编码器74LS148使能端的有效级,知道两者的区别。

3、通过实验理解74LS148是优先权编码器。

数字逻辑综合设计实验报告

数字逻辑综合设计实验报告

数字逻辑综合设计实验报告本次数字逻辑综合设计实验旨在通过集成数字电路设计的各项技能,实现课程中所学的数字逻辑电路的设计和应用。

本文将从实验流程、实验过程和实验结果三个方面进行详细阐述。

一、实验流程1.确定实验内容和目的。

2.设计电路,包括逻辑门、时序电路和其他数字电路。

3.将电路图转化为器件链路图。

4.验证器件是否可以直接连接,确定器件安装方式。

5.安装器件,焊接电路板。

6.进行测试和调试,确认电路是否可以正常工作。

7.完成实验报告并提交。

二、实验过程1.确定实验内容和目的本次实验的内容是建立一个多功能的数字电路,实现数字电路的常见功能,包括计数器、时序控制器等。

本次实验的目的是通过对数字电路设计的综合应用,提高学生对数字电路设计的实践能力。

2.设计电路在确定实验内容和目的之后,我们需要对电路进行设计。

为了实现功能的复杂性,我们设计了一个包含多个逻辑门、计数器和其他数字电路的复杂电路。

3.将电路图转化为器件链路图在完成电路设计后,我们需要将电路图转化为器件链路图。

我们需要根据电路设计中使用的器件类型和数量来确定器件链路图。

在转化过程中,我们需要考虑器件之间的连接方式、信号传输、电源连接等因素。

4.验证器件是否可以直接连接,确定器件安装方式对于电路板的安装和器件之间的连接问题,我们需要进行仔细的测试和验证。

只有当所有器件都可以无误地连接到电路板上并正常工作时,我们才能确定最佳的器件安装方式。

5.安装器件,焊接电路板完成以上所有的测试和验证后,我们可以开始完成电路板的安装。

在安装过程中,我们需要仔细按照器件链路图和设计图来进行布线和连接。

最后,我们需要进行焊接,确保连接性能和电路板的可靠性。

6.进行测试和调试,确认电路是否可以正常工作完成器件安装和焊接后,我们需要进行测试和调试。

我们需要检查每个部分的性能和功能,以确保电路可以正常工作。

如果我们发现任何错误或问题,我们需要进行进一步的调试和修复。

7.完成实验报告并提交。

哈工大数字逻辑电路与系统实验报告

哈工大数字逻辑电路与系统实验报告

哈工大数字逻辑电路与系统实验报告引言本实验旨在通过对数字逻辑电路与系统的学习与实践,加深对数字逻辑电路原理和应用的理解,掌握数字逻辑电路实验的设计与调试方法。

本报告将详细介绍实验步骤、实验结果以及实验心得体会。

实验目的1.掌握基本的数字逻辑电路设计方法;2.熟悉数字逻辑电路的布线和调试方法;3.学会使用EDA软件进行数字逻辑电路的仿真和验证。

实验器材•FPGA开发板•EDA软件实验过程实验一:逻辑门的基本控制本实验采用FPGA开发板进行实验,以下是逻辑门的基本控制步骤:1.打开EDA软件,新建工程;2.选择FPGA开发板型号,并进行相应配置;3.在原理图设计界面上,依次放置与门、或门、非门和异或门,并连接输入输出引脚;4.面向测试向量实现逻辑门的控制和数据输入;5.运行仿真并进行调试。

实验二:数字逻辑电路实现本实验以4位全加器为例,进行数字逻辑电路的实现,以下是实验步骤:1.打开EDA软件,新建工程;2.选择FPGA开发板型号,并进行相应配置;3.在原理图设计界面上,放置输入引脚、逻辑门和输出引脚,并进行连接;4.根据全加器的真值表,设置输入信号,实现加法运算;5.运行仿真并进行调试。

实验三:数字逻辑电路的串联与并联本实验旨在通过对数字逻辑电路的串联与并联实现,加深对逻辑门的理解与应用。

以下是实验步骤:1.打开EDA软件,新建工程;2.选择FPGA开发板型号,并进行相应配置;3.在原理图设计界面上,放置多个逻辑门,并设置输入输出引脚;4.进行逻辑门的串联与并联连接;5.根据逻辑门的真值表,设置输入信号,进行运算;6.运行仿真并进行调试。

实验结果经过实验测试,实验结果如下:1.实验一:逻辑门的基本控制–与门的功能得到实现;–或门的功能得到实现;–非门的功能得到实现;–异或门的功能得到实现。

2.实验二:数字逻辑电路实现–4位全加器的功能得到实现;–正确进行了加法运算。

3.实验三:数字逻辑电路的串联与并联–逻辑门的串联与并联功能得到实现;–通过逻辑门的串联与并联,实现了复杂的逻辑运算。

数字逻辑电路实验教案

数字逻辑电路实验教案

绪论数字逻辑电路是高等学校计算机科学技术专业中的一门主要的技术基础课程,它是为培养计算机科学技术专业人才的需要而设置的,它为计算机组成原理、微型机与其应用等后续课程打下牢固的硬件基础。

数字逻辑电路是一门理论性和实践性均较强的专业基础课,实验是数字逻辑电路课程中极其重要的实践环节。

通过数字逻辑电路实验可以使学生真正掌握本课程的基本知识和基本理论,加强对课本知识的理解,有利于培养各方面的能力;有利于实践技能的提高;有利于严谨的科学作风的形成。

一、常用电子仪器的使用1、示波器2、THD—4型数字电路实验箱3、万用表二、实验课的程序1.实验预习由于实验课的时间有限,因此,每次实验前要作好预习,写好预习报告。

预习的要求:a.理解实验原理,包括所用元器件的功能。

b.粗略了解实验具体过程。

c.根据实验要求,画好实验线路与数据表格。

2.实验操作每次测量后,应立即将数据记录下来,并由实验老师签字。

实验操作一般步骤:(1)在连接实验线路之前,必须保证“数字电路实验箱”所有电源关闭;(2)按所画的实验线路图连接实验线路,所用短路线必须事先用万用表检查,以减少故障点;(3)实验线路连接完成后,必须仔细检查实验线路,以保证实验线路连接无误;(4)实验线路连接正确后,接通电源,进行具体实验。

(5)如变动实验线路,必须从(1)重新进行。

故障检查方法与处理:(1)检查元器件的接入电源是否正确;(2)使实验线路处于静态,用万用表“直流电压挡”,从输入级向输出级逐级检查逻辑电平,确定故障点;(3)关闭“数字电路实验箱”电源,用万用表“欧姆挡”,检查实验线路连接是否正确,确定故障点;(4)关闭“数字电路实验箱”电源,按实验操作一般步骤(2)(3)(4)将故障排除。

3.实验报告写实验报告应有如下项目:(1)实验目的(2)实验内容(3)实验设备与元器件(4)实验元器件引脚图(5)实验步骤、实验线路与实验记录等(6)实验结果与故障处理分析、讨论和体会等(7)“思考题”要求同学在完成基本实验内容的前提下去做,并将实验内容、实验所用器件、线路、结果与分析等做副页附在实验报告最后,其副页由实验老师签字确认。

数字逻辑电路实验报告

数字逻辑电路实验报告

数字逻辑电路实验报告数字逻辑电路实验报告引言:数字逻辑电路是现代电子科技中的重要组成部分,它广泛应用于计算机、通信、控制系统等领域。

本实验旨在通过实际操作,加深对数字逻辑电路原理的理解,并通过实验结果验证其正确性和可靠性。

实验一:基本逻辑门的实验在本实验中,我们首先学习了数字逻辑电路的基本组成部分——逻辑门。

逻辑门是数字电路的基本构建单元,它能够根据输入信号的逻辑关系,产生相应的输出信号。

我们通过实验验证了与门、或门、非门、异或门的工作原理和真值表。

以与门为例,当且仅当所有输入信号都为高电平时,与门的输出信号才为高电平。

实验中,我们通过连接开关和LED灯,观察了与门的输出变化。

实验结果与预期相符,验证了与门的正确性。

实验二:多位加法器的设计与实验在本实验中,我们学习了多位加法器的设计和实现。

多位加法器是一种能够对多位二进制数进行加法运算的数字逻辑电路。

我们通过实验设计了一个4位全加器,它能够对两个4位二进制数进行相加,并给出正确的进位和和结果。

实验中,我们使用逻辑门和触发器等元件,按照电路图进行布线和连接。

通过输入不同的二进制数,观察了加法器的输出结果。

实验结果表明,多位加法器能够正确地进行二进制数相加,验证了其可靠性。

实验三:时序电路的实验在本实验中,我们学习了时序电路的设计和实验。

时序电路是一种能够根据输入信号的时间顺序产生相应输出信号的数字逻辑电路。

我们通过实验设计了一个简单的时序电路,它能够产生一个周期性的脉冲信号。

实验中,我们使用计数器和触发器等元件,按照电路图进行布线和连接。

通过改变计数器的计数值,观察了脉冲信号的频率和周期。

实验结果表明,时序电路能够按照设计要求产生周期性的脉冲信号,验证了其正确性。

实验四:存储器的设计与实验在本实验中,我们学习了存储器的设计和实现。

存储器是一种能够存储和读取数据的数字逻辑电路,它在计算机系统中起到重要的作用。

我们通过实验设计了一个简单的存储器,它能够存储和读取一个4位二进制数。

数字逻辑实验报告

数字逻辑实验报告

数字逻辑实验报告数字逻辑实验报告引言数字逻辑是计算机科学中的重要基础知识,通过对数字信号的处理和转换,实现了计算机的高效运算和各种复杂功能。

本实验旨在通过实际操作,加深对数字逻辑电路的理解和应用。

实验一:二进制加法器设计与实现在这个实验中,我们需要设计一个二进制加法器,实现两个二进制数的加法运算。

通过对二进制数的逐位相加,我们可以得到正确的结果。

首先,我们需要将两个二进制数输入到加法器中,然后通过逻辑门的组合,实现逐位相加的操作。

最后,将得到的结果输出。

实验二:数字比较器的应用在这个实验中,我们将学习数字比较器的应用。

数字比较器可以比较两个数字的大小,并输出比较结果。

通过使用数字比较器,我们可以实现各种判断和选择的功能。

比如,在一个电子秤中,通过将待测物品的重量与设定的标准重量进行比较,可以判断物品是否符合要求。

实验三:多路选择器的设计与实现在这个实验中,我们需要设计一个多路选择器,实现多个输入信号中的一路信号的选择输出。

通过使用多路选择器,我们可以实现多种条件下的信号选择,从而实现复杂的逻辑控制。

比如,在一个多功能遥控器中,通过选择不同的按钮,可以控制不同的家电设备。

实验四:时序电路的设计与实现在这个实验中,我们将学习时序电路的设计与实现。

时序电路是数字逻辑电路中的一种重要类型,通过控制时钟信号的输入和输出,实现对数据的存储和处理。

比如,在计数器中,通过时序电路的设计,可以实现对数字的逐位计数和显示。

实验五:状态机的设计与实现在这个实验中,我们将学习状态机的设计与实现。

状态机是一种特殊的时序电路,通过对输入信号和当前状态的判断,实现对输出信号和下一个状态的控制。

状态机广泛应用于各种自动控制系统中,比如电梯控制系统、交通信号灯控制系统等。

实验六:逻辑门电路的优化与设计在这个实验中,我们将学习逻辑门电路的优化与设计。

通过对逻辑门电路的布局和连接方式进行优化,可以减少电路的复杂性和功耗,提高电路的性能和可靠性。

数字逻辑电路实验报告

数字逻辑电路实验报告

数字逻辑电路实验报告指导老师:班级:学号:姓名:时间:第一次试验一、实验名称:组合逻辑电路设计1二、试验目的:掌握组合逻辑电路的功能测试。

1、验证半加器和全加器的逻辑功能。

2、、学会二进制数的运算规律。

3、试验所用的器件和组件:三、74LS00 3片,型号二输入四“与非”门组件74LS20 1片,型号四输入二“与非”门组件74LS86 1片,型号二输入四“异或”门组件实验设计方案及逻辑图:四、/全减法器,如图所示:1、设计一位全加时做减法运时做加法运算,当M=1M决定的,当M=0 电路做加法还是做减法是由SCin分别为加数、被加数和低位来的进位,、B和算。

当作为全加法器时输入信号A分别为被减数,减数Cin、B和为和数,Co为向上的进位;当作为全减法时输入信号A 为向上位的借位。

S为差,Co和低位来的借位,1)输入/(输出观察表如下:(2)求逻辑函数的最简表达式函数S的卡诺图如下:函数Co的卡诺如下:化简后函数S的最简表达式为:Co的最简表达式为:2(3)逻辑电路图如下所示:、舍入与检测电路的设计:2F1码,用所给定的集成电路组件设计一个多输出逻辑电路,该电路的输入为8421为奇偶检测输出信号。

当电路检测到输入的代码大于或F2为“四舍五入”输出信号,的个数为奇数时,电路。

当输入代码中含1F1=1;等于5是,电路的输出其他情况F1=0 F2=0。

该电路的框图如图所示:的输出F2=1,其他情况输出观察表如下:(输入/0 1 0 0 1 01 0 1 0 0 11 1 1 0 0 01 0 1 1 1 11 0 0 1 0 11 0 1 0 0 11 0 0 1 1 01 1 1 0 1 11 0 1 1 0 011111求逻辑函数的最简表达式(2)的卡诺如下:函数F1 F2函数的卡诺图如下:的最简表达式为:化简后函数F2 的最简表达式为:F1)逻辑电路图如下所示;(3课后思考题五、化简包含无关条件的逻辑函数时应注意什么?1、答:当采用最小项之和表达式描述一个包含无关条件的逻辑问题时,函数表达式中,并不影响函数的实际逻辑功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 数电实验仪器的使用及门电路逻辑功能的测试1.1.1 实验目的(1)掌握数字电路实验仪器的使用方法。

(2)掌握门电路逻辑功能的测试方法。

1.1.2 实验设备双踪示波器一台数字电路实验箱一台万用表一块集成芯片:74LS00、74LS201.1.3 实验原理图1.1是TTL系列74LS00(四2输入端与非门)的引脚排列图。

Y A B其逻辑表达式为:=⋅图1.2是TTL系列74LS20(双4输入端与非门)的引脚排列图。

Y A B C D其逻辑表达式为:=⋅⋅⋅与非门的输入中任一个为低电平“0”时,输出便为高电平“1”。

只有当所有输入都为高电平“1”时,输出才为低电平“0”。

对于TTL逻辑电路,输入端如果悬空可看作逻辑“1”,但为防止干扰信号引入,一般不悬空。

对于MOS逻辑电路,输入端绝对不允许悬空,因为MOS电路输入阻抗很高,受外界电磁场干扰的影响大,悬空会破坏正常的逻辑功能,因此使用时一定要注意。

一般把多余的输入端接高电平或者和一个有用输入端连在一起。

1.1.4 实验内容及步骤(1)测量逻辑开关及电平指示功能用导线把一个数据开关的输出端与一个电平指示的输入端相连接,将数据开关置“0”位,电平指示灯应该不亮。

将数据开关置“1”位,电平指示灯应该亮。

以此类推,检测所有的数据开关及电平指示功能是否正常。

(2)检测脉冲信号源给示波器输入脉冲信号,调节频率旋钮,可观察到脉冲信号的波形。

改变脉冲信号的频率,示波器上的波形也应随之发生变化。

(3)检测译码显示器用导线将四个数据开关分别与一位译码显示器的四个输入端相连接,按8421码进位规律拨动数据开关,可观察到译码显示器上显示0~9十个数字。

(4)与非门逻辑功能测试①逻辑功能测试将芯片74LS20中一个4输入与非门的四个输入端A、B、C、D分别与四个数据开关相连接,输出端Y与一个电平指示相连接。

电平指示的灯亮为1,灯不亮为0。

根据表1.1中输入的不同状态组合,分别测出输出端的相应状态,并将结果填入表中。

表1.2②与非门对脉冲信号的反相传输及控制功能的测试将芯片74LS00中一个2输入与非门的A输入端接频率为1kHz脉冲信号,B输入端接数据开关,输出端Y接示波器。

用双踪示波器同时观察A输入端的脉冲波形和输出端Y的波形,并注意两者之间的关系。

按表1.2中的不同输入方式测试,将结果填入表中。

1.1.5 预习要求与思考题(1)阅读实验原理、内容及步骤。

(2)了解集成芯片引脚的排列规律。

(3)TTL集成电路使用的电源电压是多少?(4)TTL与非门输入端悬空相当于输入什么电平?为什么?(5)如何处理各种门电路的多余输入端。

1.1.6 实验报告及要求(1)画出规范的测试电路图及各个表格。

2(2)记录测试所得数据,并对结果进行分析。

(3)简述实验中遇到的问题及解决方法。

31.2 TTL集电极开路门和三态门1.2.1 实验目的(1)了解负载电阻R L对集电极开路门工作状态的影响。

(2)掌握集电极开路门的使用方法。

(3)掌握三态门的逻辑功能及使用方法。

1.2.2 实验设备双踪示波器一台数字电路实验箱一台万用表一块集成芯片:74LS03、74LS125、74LS04、74LS00、电阻、发光二极管等。

1.2.3 实验原理(1)集电极开路门(OC门)在数字系统中,有时需要把两个或者两个以上门电路的输出端连接起来,去完成一定的逻辑功能。

但普通TTL门电路的输出端是不允许直接连接的,因为它们的输出部分是推拉式电路。

集电极开路门就是将推拉式输出改为三极管集电极开路输出的特殊TTL门电路。

图1.3是集成芯片的引脚图。

OC门共用一个集电极负载电阻R L和电源V CC,从而可将n个OC门的输出端并联使用,并使n个OC门的输出相与(称为线与),而完成与或非的逻辑功能,如图1.4所示,显然,n个OC门的输出端连接在一起,只要其中有一个OC门的输出端为“0”,Y就为“0”。

只有n个OC门的输出均为“1”时,YY图1.3 74LS03引脚排列图图1.4(2)三态门(TSL门)45三态门也是一种能实现线与连接的门电路。

它除了通常的高电平和低电平两种输出状态外,还有第三种输出状态—高阻态。

处于高阻态时,电路与负载之间相当于开路。

图1.5 三态门逻辑符号 图1.6 三态门逻辑符号 图1.5表示控制端(又称使能端)EN =1时,三态门处于正常工作状态,实现.Y A B =的功能;EN =0时为禁止工作状态,Y 输出呈高阻状态。

图1.6表示控制端0EN =时,三态门处于正常工作状态,实现.Y A B =的功能;1EN =时为禁止工作状态,Y 输出呈高阻状态。

图1.7是74LS125(4总线缓冲器)的引脚图。

当0EN =时,Y =A ;当1EN =时,Y 呈高阻状态。

1.2.4实验内容及步骤(1)验证OC 门的线与功能如图1.8所示,将1A 、1B 、2A 、2B 分别接数据开关,当发光二极管发光时,Y 点处于低电平,状态为0;当发光二极管不发光时,Y 点处于高电平,状态为1。

A AB A6图1.8按表1.3中不同的输入状态组合输入信号,观察Y 点的状态,并记录在表中。

表1.4(2)三态门逻辑功能测试在74LS125中任选一个三态门,A 、EN 端分别接数据开关,Y 接电平指示,测试其功能,将结果填入表1.4中。

(3)选通电路用两个三态门和一个非门(见图1.9)组成一个选通电路,如图1.10所示。

1A 、1EN 、2A 分别接数据开关,Y接电平指示。

按表1.5中的不同状态输入,同时观察Y 的状态并填入表中。

根据结果分析选通电路的工作原理。

图1.9 74LS04引脚图图1.10(4)单向总线传输如图1.11所示,1 A 接脉冲信号,2 A 接数据开关并置“0”,3 A 、1EN 、2EN 、3EN 分别接数据开关并均置“1”。

然后按表1.6中的不同状态输入(分别将一个使能端置“0”),Y7同时观察Y 的状态并填入表中。

表1.5图1.111.2.5 预习要求与思考题(1)掌握集成芯片引脚的排列规律。

(2)理解OC 门、三态门的逻辑功能。

(3)OC 门、三态门各有哪些特点?(4)多个三态门输出端并联使用时,为什么不能同时有两个或两个以上三态门的控制端处在使能状态?应如何避免?1.2.6 实验报告及要求(1)画出各实验电路图及相关表格。

(2)记录和处理所得测试数据,并对结果进行分析。

(3)简述实验中遇到的问题及解决方法。

1.3 数据选择器和译码器1.3.1 实验目的(1)掌握MSI数据选择器的逻辑功能及其使用方法。

(2)掌握MSI译码器的逻辑功能及其使用方法。

1.3.2 实验设备数字电路实验箱一台万用表一块集成芯片:74LS153、74LS151、74LS138。

1.3.3 实验原理中规模集成电路(MSI)是一种具有专门功能的集成功能件。

我们可借助于器件手册提供的功能表和引脚排列图,在明确各引脚(特别是各控制输入端)的功能和作用后,即可正确的使用这些器件。

在使用MSI集成功能件时,器件的各控制输入端应严格按照选用的逻辑要求接入电路,决不允许悬空处理。

(1)数据选择器在数字信号的传送过程中,有时需要从若干个数字信号中将其中任一个需要的信号挑选出来,这就要用到数据选择器(又叫多路选择器或多路开关)。

其基本功能是:在选择信号的控制下,从多路输入数据中选择一路数据作为输出。

数据选择是数据分配的逆过程,功能恰好相反。

图1.12是双4选1数据选择器74LS153的引脚图。

其中D0、D1、D2、D3是4个数据输入端,Y为输出端,ST是使能端。

当ST=0时器件使能,当ST=1时,Y=0。

A0、A1是两4选1数据选择器的公用地址控制输入端,当ST=0时,通过A0、A1的四种状态来控制D0~D3 4个数据哪一个被选中并送到输出端Y。

图1.12 74LS153引脚图图1.13 74LS151引脚图图1.13是8选1数据选择器74LS151的引脚图。

其中D 0~D 7是8个数据输入端,Y、Y8是输出端,ST是使能端,A0、A1、A2是地址控制输入端。

当ST=0时,通过A2、A1、A0的八种状态来控制D 0 ~ D 7 8个数据哪一个被选中并送到输出端。

(2)译码器译码器是一个多输入、多输出的组合逻辑器件,可用于代码的转换、终端的数字显示、数据分配及组合控制信号等等。

译码器可分为:变量译码器(又称二进制译码器),用以表示输入变量的状态。

如3线-8线、4线-16线译码器等;代码变换译码器,用于一个数据的不同代码之间的相互转换。

如4线-10线译码器等;显示译码器,用来将数字或文字、符号的代码译成数字、文字、符号的电路。

如BCD 码-十进制译码器等。

图1.14是3线-8线译码器74LS138的引脚图,其中A0、A1、A2是地址控制输入端,Y0~Y7是译码输出端,ST A、ST B、ST C是使能端,当ST A=1、ST B+ST C=0时,器件使能。

由A2A1A0状态控制的输出端有信号输出(为0),其他所有输出端均无信号输出(全为1)。

当ST A =0、ST B+ST C=×(任意状态)时或者ST A =×、ST B+ST C=1时,译码器被禁止,所有输出端同时为1。

图1.14 74LS138引脚图如果利用二进制译码器使能端中的一个作为输入数据信息的输入端,该译码器就成了一个数据分配器(又称多路分配器)。

1.3.4 实验内容及步骤(1)测试4选1数据选择器74LS153的逻辑功能参照图1.12,将4选1数据选择器的D0、D1、D2、D3、A0、A1、ST分别接数据开关,Y接电平指示,按表1.7的各种输入状态进行测试,将输出Y的状态填入表中。

(2)测试8选1数据选择器74LS151的逻辑功能参照图1.13,按表1.8进行测试,结果填入表中。

(3)测试3线-8线译码器74LS138的逻辑功能参照图1.14,按表1.9进行测试,结果填入表中。

9表1.7 74LS153功能表表1.8 74LS151功能表表1.9 74LS138功能表(4)数据选择器和译码器的应用如图1.15所示,用数据选择器和译码器组成一个信号传输电路。

①按图接好电路,测试并说明电路的功能。

②分析电路的工作原理。

10③在D 7、D 6、…、D 0端加信号,变化A 2 A 1 A 0,观察Y 7、Y 6、Y 5、…、Y 0的状态。

74LS151 74LS138数据选择器 译码器图 1.151.3.5 预习要求与思考题(1)阅读实验原理、内容及步骤。

(2)理解地址控制输入端、使能端的作用。

(3)MSI 器件的各控制输入端能否悬空?为什么? (4) 如何用两个4选1数据选择器和一个或门、一个非门构成一个8选1数据选择器? 1.3.6 实验报告及要求(1)画出有关实验电路图和表格。

相关文档
最新文档