习题课 人船模型
人船模型(习题)

▲如图所示,长为L、质量为M的船停在静水中,一个质量为 m的人(可视为质点)站在船的左端,在人从船头走到船尾的过 程中,船与人相对地的位移大小分别为多少?(忽略水对船的 阻力)
▲如图所示,质量为4㎏的平板车静止在光滑水平面上, 一质量为1㎏的玩具小车在1s内由静止从车的左端A点加速 运动到车的右端B点,AB间距0.2m,在这段时间内小车对 平板车的水平冲量大小为多少?
▲气球质量为200㎏,载有质量为50㎏的人,静止在空中 距地面20m的地方,气球下悬一根质量可忽略不汁的绳子, 此人想从气球上沿绳慢慢下滑至安全到达地面,则这根绳 至少多长?
▲如图所示,三角形木块A质量为M,置于光滑水平面上, 底边长a,在其顶部有一三角形小木块B质量为m,其底边 长b,若B从顶端由静止滑至底部,则木块后退的距离为
▲质量为m的平板小车静止在光滑的水平上,一个质量
为M的人立于小车的一端.当人从车的一端走向另一端的过
程中,下列说法中正确的是(
).
(A)人对小车压力的冲量,使小车与人沿同方向运动
(B)人对小车摩擦力的冲量,使小车产生与人运动方向相反
的动量
(C)人与小车的动量在任一时刻都大小相等而方向相反
(D)人与车的瞬时速度总是大小相等力向相反
高中物理反冲习题课 人船模型

人船模型与反冲运动知识目标一、人船模型1.若系统在整个过程中任意两时刻的总动量相等,则这一系统在全过程中的平均动量也必定守恒。
在此类问题中,凡涉及位移问题时,我们常用“系统平均动量守恒”予以解决。
如果系统是由两个物体组成的,合外力为零,且相互作用前均静止。
相互作用后运动,则由0=m 11v +m 22v 得推论0=m 1s 1+m 2s 2,但使用时要明确s 1、s 2必须是相对地面的位移。
2、人船模型的应用条件是:两个物体组成的系统(当有多个物体组成系统时,可以先转化为两个物体组成的系统)动量守恒,系统的合动量为零.二、反冲运动1、指在系统内力作用下,系统内一部分物体向某发生动量变化时,系统内其余部分物体向相反方向发生动量变化的现象2.研究反冲运动的目的是找反冲速度的规律,求反冲速度的关键是确定相互作用的物体系统和其中各物体对地的运动状态.教学过程规律方法1、人船模型及其应用【例1】如图所示,长为l 、质量为M 的小船停在静水中,一个质量为m 的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?解析:当人从船头走到船尾的过程中,人和船组成的系统在水平方向上不受力的作用,故系统水平方向动量守恒,设某时刻人对地的速度为v 2,船对地的速度为v 1,则mv 2-Mv 1=0,即v 2/v 1=M/m.在人从船头走到船尾的过程中每一时刻系统的动量均守恒,故mv 2t -Mv 1t=0,即ms 2-Ms 1=0,而s 1+s 2=L所以1,m s L M m =+2M s L M m=+【例2】载人气球原静止于高h 的高空,气球质量为M ,人的质量为m .若人沿绳梯滑至地面,则绳梯至少为多长?解析:气球和人原静止于空中,说明系统所受合力为零,故人下滑过程中系统动量守恒,人着地时,绳梯至少应触及地面,因为人下滑过程中,人和气球任意时刻的动量大小都相等,所以整个过程中系统平均动量守恒.若设绳梯长为l ,人沿绳梯滑至地面的时间为 t ,由图4—15可看出,气球对地移动的平均速度为(l -h )/t ,人对地移动的平均速度为-h/t (以向上为正方向).由动量守恒定律,有M (l -h )/t -m h/t=0.解得 l=M m M +h . 答案:Mm M +h 说明:(1)当问题符合动量守恒定律的条件,而又仅涉及位移而不涉及速度时,通常可用平均动量求解.(2)画出反映位移关系的草图,对求解此类题目会有很大的帮助.(3)解此类的题目,注意速度必须相对同一参照物.【例3】如图所示,一质量为m l 的半圆槽体A ,A 槽内外皆光滑,将A 置于光滑水平面上,槽半径为R.现有一质量为m 2的光滑小球B 由静止沿槽顶滑下,设A 和B 均为弹性体,且不计空气阻力,求槽体A 向一侧滑动的最大距离.解析:系统在水平方向上动量守恒,当小球运动到糟的最右端时,糟向左运动的最大距离设为s 1,则m 1s 1=m 2s 2,又因为s 1+s 2=2R,所以21122m s R m m =+ 思考:(1)在槽、小球运动的过程中,系统的动量守恒吗?(2)当小球运动到槽的最右端时,槽是否静止?小球能否运动到最高点?(3)s1+S2为什么等于2R,而不是πR?【例4】某人在一只静止的小船上练习射击,船、人连同枪(不包括子弹)及靶的总质量为M,枪内有n 颗子弹,每颗子弹的质量为m ,枪口到靶的距离为L ,子弹水平射出枪口相对于地的速度为v 0,在发射后一发子弹时,前一发子弹已射入靶中,在射完n 颗子弹时,小船后退的距离为()()()0;;;11mnl nml mnl A B C D M n m M nm M n m⋅⋅⋅⋅+-+++ 解析:设n 颗子弹发射的总时间为t,取n 颗子弹为整体,由动量守恒得nmv 0=Mv 1,即nmv 0t=Mv 1t;设子弹相对于地面移动的距离为s 1,小船后退的距离为s 2,则有: s 1=v 0t, s 2= v 1t;且s 1+s 2=L 解得:2nml s M nm=+.答案C【例5】如图所示,质量为m 、半径为R 的小球,放在半径为2R,质量为2m 的大空心球内.大球开始静止在光滑的水平面上,当小球从图示位置无初速度地沿大球壁滚到最低点时,大球移动的距离是多少?解析:设小球相对于地面移动的距离为s 1,大球相对于地面移动的距离为s 2.下落时间为t,则由动量守恒定律得12122;s s m m s s R t t =+=;解得213s R =【例6】如图所示,长20 m 的木板AB 的一端固定一竖立的木桩,木桩与木板的总质量为10kg ,将木板放在动摩擦因数为μ=0. 2的粗糙水平面上,一质量为40kg 的人从静止开始以a 1=4 m/s 2的加速度从B 端向A 端跑去,到达A 端后在极短时间内抱住木桩(木桩的粗细不计),求:(1)人刚到达A 端时木板移动的距离.(2)人抱住木桩后木板向哪个方向运动,移动的最大距离是多少?(g 取10 m/s 2)解析:(1)由于人与木板组成的系统在水平方向上受的合力不为零,故不遵守动量守恒.设人对地的位移为s 1,木板对地的速度为s 2,木板移动的加速度为a 2,人与木板的摩擦力为F,由牛顿定律得:F=Ma 1=160N;()22160500.210 6.0/10F M m g a m s m μ-+-⨯⨯===设人从B端运动到A端所用的时间为t,则s1=½a1t, s2=½a2t; s1+s2=20m由以上各式解得t=2.0s,s2=12m(2)解法一:设人运动到A端时速度为v1,木板移动的速度为v2,则v1=a1t=8.0m/s, v2=a2t=12.0m/s,由于人抱住木桩的时间极短,在水平方向系统动量守恒,取人的方向为正方向,则Mv1-mv2=(M+m)v,得v=4.0m/s.由此断定人抱住木桩后,木板将向左运动.由动能定理得(M+m)μgs=½(M+m)v2解得s=4.0m.解法二:对木板受力分析,木板受到地面的摩擦力向左,故产生向左的冲量,因此,人抱住木桩后,系统将向左运动.由系统动量定理得(M+m)μgt=(M+m)v,解得v=4.0m/s由动能定理得(M+m)μgs=½(M+m)v2解得s=4.0m.2、反冲运动的研究【例7】如图所示,在光滑水平面上质量为M的玩具炮.以射角α发射一颗质量为m的炮弹,炮弹离开炮口时的对地速度为v0。
人船模型解析版

人船模型一、模型建构1、人船问题:人船系统在相互作用下各自运动,运动过程中该系统所受到的合外力为零,即人和船组成的系统在运动过程中动量守恒。
2、两类问题第一类:直线运动的人船模型如图,质量为M 的船停在静止的水面上,船长为L ,一质量为m 的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离?设人在运动过程中,人和船相对于水面的速度分别为v 和u 由动量守恒定律得:mv Mu =由于人在走动过程中任意时刻人和船的速度v 和u 均满足上述关系mv M u =x t ν=,y u t=可得:mx My =x y L +=解得:M x L m M =+ my L m M=+第二类:曲线运动的人船模型如图所示,小球质量为m ,轨道质量为M ,半径为R ,将m 静止释放,不计阻力,分析结论.一、解题思路:1、确定系统动量守恒2、列平均速度动量守恒式3、列两物体位移关系式4、求解未知量 二、解题方法: 动量守恒定律 三、解题关键点: 1、确定哪个方向动量守恒 2、确定两物体位移关系 四、解题易错点位移关系运动到最低点,水平方向上动量守恒动量守恒:mv m=Mv M移动距离:mv m t=Mv M t即mx m =Mx M 位移之和:x m+x M =R联立解得:x m=Mm+M R,x M =mm+M R运动到另外一端最高点,水平方向上动量守恒动量守恒:mv m=Mv M移动距离:mv m t=Mv M t即mx m =Mx M位移之和:x m+x M =2R联立解得:x m=Mm+M·2R,x M =mm+M·2R.二、例题精析例1、气球质量200kg截有质量为50kg的人,静止在空中距地面20m 高的地方,气球下悬一质量不计的绳子,此人想从气球上沿绳慢慢下滑至地面,为安全到达地面,则这根绳至少多长?解题思路:1、确定系统动量守恒2、列平均速度动量守恒式3、列两物体位移关系式4、求解未知量解题思路:1、确定系统动量守恒2、列平均速度动量守恒式3、列两物体位移关系式4、求解未知量【解答】解:人与气球组成的系统竖直方向动量守恒由动量守恒得:m1v1﹣m2v2=0即:m1﹣m2=0绳子长度:L=s气球+s人解得:L=25m例2、如图所示,质量分别为m1和m2(m1>m2)的两个人分别站在静止于光滑水平面上的质量为M的小车的两端,小车长为L,当两人交换位置时,车将向哪个方向移动?移动多大距离?【解答】设当两人交换位置时,车将向右移动的距离为x。
反冲运动的模型——“人船”模型导学案习题

人与船作用模型的解读和拓展模型解读:人与船开始时都静止,突然人从一端走向另一端的过程中,船向相反方向运动,类似反冲,人停止,船也停止。
很多复杂难解的相互作用问题,都可以归结到人船模型上来,从而使问题轻松解决. 拓展1 人船作用的对地位移例1:如图1所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,求船和人对地面的位移各为多少?解析:以人和船组成的系统为研究对象,在水平方向不受外力作用,满足动量守恒.设某时刻人的速度为v 1,船的速度为v 2,取人行进的方向为正,则有:021=-Mv mv 上式换为平均速度仍然成立,即 021=-v M v m 两边同乘时间t ,021=-t v M t v m ,设人、船位移大小分别为s 1、s 2,则有,21Ms ms = ① 由图可以看出:L s s =+21 ② 由①②两式解得L m M m s +=1,L m M M s +=2 答案:L m M m s +=1,L mM Ms +=2点评:人船模型中的动力学规律:由于组成系统的两物体受到大小相同、方向相反的一对力,故两物体速度大小与质量成反比,方向相反。
这类问题的特点:两物体同时运动,同时停止。
人船模型中的动量与能量规律:由于系统不受外力作用,故而遵从动量守恒定律,又由于相互作用力做功,故系统或每个物体动能均发生变化:力对“人”做的功量度“人”动能的变化;力对“船”做的功量度“船”动能的变化。
拓展2 球和圆筒的作用例2.如图2所示,一质量为m l 的圆筒A ,圆筒内外皆光滑,将A 置于光滑水平面上,圆筒半径为R.现有一质量为m 2的光滑小球B (可视为质点),由静止从圆筒的水平直径处沿筒壁滑下,设A 和B 均为弹性体,且不计空气阻力,求圆筒向一侧滑动的最大距离.解析: 小球滑动过程圆筒先向左加速,再先向左减速,当小球运动到圆筒的最右端时, 如图3所示,圆筒向左运动的距离最大,小球和圆筒组成的系统可视为“人船模型”,在水平方向上动量守恒,设圆筒向左运动的最大距离为s 1, 此时小球向右运动的距离为s 2,由人船模型方程得: m 1s 1=m 2s 2 ① 又因为s 1+s 2=2R ② 由①②得 21212m m Rm s +=点评:本题以小球带动圆环为情景设置题目,考查对动量守恒条件的理解与灵活运用能力.小球和圆槽体作用过程,系统所受合外力并不为0,但在水平方向上系统不受外力,在水平方向上动量守恒.当小球运动到槽的最右端时,槽瞬间静止;有同学会因为对动量守恒理解不深刻,不能将“人船模型”迁移过来,感到无从求解,也有同学会误认为两个物体相对于地面移动的距离之和等于πR 而导致错误。
3.人船模型 专题练习-2020-2021学年高二物理人教版选修3-5《动量守恒定律》

人船模型1.人船模型两个原来静止的物体发生相互作用时,若所受外力的矢量和为0,则系统动量守恒。
在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比。
2.模型分析【问题】如图所示,长为L ,质量为m 船的小船停在静水中,一个质量为m 人的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人对地的位移各是多少? 【分析】由动量守恒定律,得 0=-人人船船v m v m由于在全过程动量都守恒,所以有0=-人人船船v m v m 同乘以时间t ,得 0=-t v m t v m 人人船船 即 由图知解得两物体位移分别为 ,3.模型特点(1)“人船模型”适用于由两物体组成的系统,当满足动量守恒条件(含某一方向动量守恒)时,若其中一个物体向某一方向运动,则另一物体在其作用力的作用下向相反方向运动。
)两物体满足动量守恒定律:m 1v 1-m 2v 2=0。
(2)运动特点:人动船动,人停船停,人快船快,人慢船慢;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1。
解题时要画出两物体的位移关系草图,找出各位移间的关系。
注意,公式v 1、v 2和x 一般都是相对地面的速度。
4.真题示例【2019·江苏卷】质量为M 的小孩站在质量为m 的滑板上,小孩和滑板均处于静止状态,忽略滑板与地面间的摩擦.小孩沿水平方向跃离滑板,离开滑板时的速度大小为v ,此时滑板的速度大小为( ) A .B .C .D .【答案】B【解析】设滑板的速度为,小孩和滑板动量守恒得:0mu Mv =-,解得:,故B 正5.例题精选【例题1】如图所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( ) A .mh M +m B .Mh M +mC .D . 【答案】C【解析】此题属“人船模型”问题。
6、动量守恒定律应用(二)(人船模型)

M
m s2 2R mM
4、 变“质点模型”为“刚体模型”
例4:题与例3相同,只是题中的小球不可 视为质点,其半径为r,则仍求滑块向右运 动的最大距离。
m s2 (2R - 2r) mM
5、 变“两体问题”为“多体问题” 某人在船上练习射击,人在船的一端,靶 在船的另一端,相距为L,人、船、枪、靶的 总质量为M,枪膛里另有质量为m的子弹n发。 当人把所有的子弹全部射入枪靶后(子弹打完 后留在靶中),船将会后退多远?
ms 1' M ( n 1 )ms2'
s1' s2' L
m s 2' L M nm
v1 v2 v2
v1
(4)第n 颗子弹从枪口打出至打入靶中的过程,
船运动的总距离是多少?
m s 2 s 2' s 2' ' L M nm
nm s总 ns2 L M nm
M
m
m s2 L mM
2、 变“水平运动”为“竖直运动” 如图,总质量为M的气球下端悬着质量为 m的人而静止于高度为h的空中,欲使人能沿 着绳安全着地,人下方的绳至少应为多长?
分析:和“人船模型”的原形相比,这一变例 除将“船”变为“气球”外,还将人和船沿水 平方向运动变为人和气球沿竖直方向运动。其 中的高度h相当于原形中人相对于地的移动的 距离S1,而所求的绳长L则相当于原形中人相 对于船通过的距离。于是不难求得此变例中所 求的绳长为:
V2
• 滑块向右运动距离最远时, M、m的速度是多大? 此时,m在槽内的什么位置?
mv 1 Mv 2
ms 1 Ms 2 s1 s2 2 R
S2 S1
动量守恒-人船模型

• 如右图所示,在光滑水平面上静置一辆小 车,小车上固定直杆横梁前端用细线悬挂 一小球。现缓缓将小球拉离竖直方向一定 角度并自由释放,此时小车仍处于静止状 态。当小球下摆后与固定在小车直杆上的 油泥相撞并粘在一起,则关于此后小车的 运动状态的描述,正确的是( ) • [A]仍保持静止状态; • [B]水平向右运动; • [C]水平向左运动; 油泥 • [D]上述情形都有可能。
规定木箱原来滑行的方向为正方向 对整个过程由动量守恒定律, mv =MV+m v箱对地= MV+ m( u+ V)
M=70kg m=20kg
注意 u= - 5m/s,代入数字得 V=20/9=2.2m/s 方向跟木箱原来滑行的方向相同
u=5m/s
例D、一个质量为M的运动员手里拿着一个质量为m 的物体,踏跳后以初速度v0与水平方向成α角向斜上 方跳出,当他跳到最高点时将物体以相对于运动员的 速度为u水平向后抛出。问:由于物体的抛出,使他 跳远的距离增加多少? 解: 跳到最高点时的水平速度为v0 cosα 抛出物体相对于地面的速度为 v物对地=u物对人+ v人对地= - u+ v 规定向前为正方向,在水平方向,由动量守恒定律 (M+m)v0 cosα=M v +m( v – u) v = v0 cosα+mu / (M+m) 平抛的时间 t=v0sinα/g ∴Δv = mu / (M+m)
分析与解:取人和小船为对象,它们所受合外力为零, 初动量 m人v人+m船v船=0 (均静止) 根据动量守恒定律 m人v人+m船v船= m人v/人+m船v/船 0= m人v/人 - m船v/船 则0= m人v/人t - m船v/船t
专题19 动量守恒定律(人船模型)-2019高考物理一轮复习专题详解(原卷版)

知识回顾“人船模型”类习题,是利用动量守恒定律解决位移问题的例子,在这类问题中,尽管人从船头走向船尾的具体运动形式未知,但人船系统在任何时刻动量都守恒,故可以用平均动量守恒来求解,则由 11220m v m v -=得:1122m s m s =使用时应明确:1s 、2s 必须是相对同一参照系的位移大小。
当符合动量守恒定律的条件,而又涉及位移而不涉及速度时,通常可用平均动量求解。
解此类题一定要画出反映位移关系的草图。
“人船模型”的问题针对的时初状态静止状态,所以当人在船上运动时,由于整个装置不受外力的作用,所以这个装置的重心不会动,并且用了平均速度代替瞬时速度,从而推导出来位移之间的关系式子。
例题分析【例1】 一质量为M ,长为s 0的船静止于水面上,一质量为m 的人站在船头,当人从船头走到船尾时,求船前进的位移s 的大小.(不计水的阻力)【例2】. 如图所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( )A .B .C .D .【例3】(2017年广东省三校五月模拟)某小组在探究反冲运动时,将质量为m 1的一个小液化瓶固定在质量为m 2的小船上,利用液化瓶向外喷射气体作为船的动力.现在整个装置静止放在平静的水面上,已知打开液化瓶后向外喷射气体的对地速度为v 1,如果在Δt 的时间内向后喷射的气体的质量为Δm ,忽略水的阻力,则(1)喷射出质量为Δm的液体后,小船的速度是多少?(2)喷射出Δm液体的过程中,小船所受气体的平均作用力的大小是多少?1 、如图所示,一个质量为m1=50 kg的人爬在一只大气球下方,气球下面有一根长绳.气球和长绳的总质量为m2=20 kg,长绳的下端刚好和水平面接触.当静止时人离地面的高度为h=5 m.如果这个人开始沿绳向下滑,忽略重力和空气阻力,当他滑到绳下端时,他离地面的高度是(可以把人看做质点)()A.5 m B.3.6 m C.2.6 m D.8 m2 、如图所示,质量为m的小球A系在长为l的轻绳一端,轻绳的另一端系在质量为M的小车支架的O 点.现用手将小球拉至水平,此时小车静止于光滑水平面上,放手让小球摆下与B处固定的橡皮泥碰击后粘在一起,则在此过程中小车的位移是()A.向右,大小为lB.向左,大小为lC.向右,大小为lD.向左,大小为l3 、如图所示,静止在光滑水平面上的小车质量为M,固定在小车上的杆用长为l的轻绳与质量为m的小球相连,将小球拉至水平右端后放手,则小车向右移动的最大距离为()A.B.C.D.4 、质量为m、半径为R的小球,放在半径为2R、质量为2m的大空心球壳内,如图所示,当小球从图示位置无初速度沿内壁滚到最低点时,大球移动的位移为()A.,方向水平向右B.,方向水平向左C.,方向水平向右D.,方向水平向左5 、(多选)如图所示,质量均为M的甲、乙两车静置在光滑的水平面上,两车相距为L.乙车上站立着一个质量为m的人,他通过一条轻绳拉甲车,甲、乙两车最后相接触,以下说法正确的是()A.甲、乙两车运动中速度之比为B.甲、乙两车运动中速度之比为C.甲车移动的距离为LD.乙车移动的距离为L6 、(多选)小车静止在光滑水平面上,站在车上的人练习打靶,靶装在车上的另一端,如图所示.已知车、人、枪和靶的总质量为M(不含子弹),每颗子弹质量为m,共n发,打靶时,枪口到靶的距离为d.若每发子弹打入靶中,就留在靶里,且待前一发打入靶中后,再打下一发.则以下说法中正确的是()A.待打完n发子弹后,小车将以一定的速度向右匀速运动B.待打完n发子弹后,小车应停在射击之前位置的右方C . 在每一发子弹的射击过程中,小车所发生的位移相同,大小均为D . 在每一发子弹的射击过程中,小车所发生的位移不相同 7 、(多选)小车AB 静置于光滑的水平面上,A 端固定一个轻质弹簧,B 端粘有橡皮泥,AB 车的质量为M 、长为L ,质量为m 的木块C 放在小车上,用细绳连接于小车的A 端并使弹簧压缩,开始时AB 与C 都处于静止状态,如图所示,当突然烧断细绳,弹簧被释放,使物体C 离开弹簧向B 端冲去,并跟B 端橡皮泥黏在一起,以下说法中正确的是( )A . 如果AB 车内表面光滑,整个系统任何时刻机械能都守恒B . 整个系统任何时刻动量都守恒C . 当木块对地运动速度大小为v 时,小车对地运动速度大小为vD . AB 车向左运动最大位移大于 8.(2017年高考·课标全国卷Ⅰ)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg·m/sB .5.7×102 kg·m/sC .6.0×102 kg·m/s D. 6.3×102 kg·m/s9.将静置在地面上,质量为M (含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )A.m M v 0B.M mv 0 C.M M -m v 0 D.m M -m v 010.(多选)(2017年长沙模拟)如图所示,在光滑水平面上停放着质量为m 、装有光滑弧形槽的小车,一质量也为m 的小球以水平初速度v 0沿槽口向小车滑去,到达某一高度后,小球又返回右端,则( )A .小球以后将向右做平抛运动B .小球将做自由落体运动C .此过程小球对小车做的功为mv 202D .小球在弧形槽内上升的最大高度为v 202g11.(多选)(2017年北京东城区模拟)两物体组成的系统总动量守恒,这个系统中( )A .一个物体增加的速度等于另一个物体减少的速度B .一物体受合力的冲量与另一物体所受合力的冲量相同C .两个物体的动量变化总是大小相等、方向相反D .系统总动量的变化为零12.(2017·课标全国Ⅰ)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg ·m/sB .5.7×102 kg ·m/sC .6.0×102 kg ·m/sD .6.3×102 kg ·m/s13.(2017·福州模拟)一质量为M 的航天器正以速度v 0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v 1,加速后航天器的速度大小v 2,则喷出气体的质量m 为( )A .m =v 2-v 1v 1MB .m =v 2v 2-v 1M C .m =v 2-v 0v 2+v 1M D .m =v 2-v 0v 2-v 1M 14.(2017·沈阳一模)在光滑的水平地面上放有一质量为M 带光滑14圆弧形槽的小车,一质量为m 的小铁块以速度v 0沿水平槽口滑去,如图所示,若M =m ,则铁块离开车时将( )A .向左平抛B .向右平抛C .自由落体D .无法判断15.如图所示,质量为M 的小车静止在光滑的水平面上,小车上AB 部分是半径为R 的四分之一光滑圆弧,BC 部分是粗糙的水平面.今把质量为m 的小物体从A 点由静止释放,m 与BC 部分间的动摩擦因数为μ,最终小物体与小车相对静止于B、C之间的D点,则B、D间的距离x随各量变化的情况是()A.其他量不变,R越大x越大B.其他量不变,μ越大x越大C.其他量不变,m越大x越大D.其他量不变,M越大x越大16.如图所示,将质量为M1、半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M2的物块.今让一质量为m的小球自左侧槽口A的正上方h高处从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是()A.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒B.小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统动量守恒C.小球离开C点以后,将做竖直上抛运动D.槽将不会再次与墙接触17、质量m=100 kg的小船静止在平静水面上,船两端载着m甲=40 kg、m乙=60 kg的游泳者,在同一水平线上甲向左、乙向右同时以相对于岸3 m/s的速度跃入水中,如图所示,水的阻力不计,则小船的运动速率和方向为()A.0.6 m/s,向左B.3 m/s,向左C.0.6 m/s,向右D.3 m/s,向右。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人船模型
人船模型中的平均动量守恒
船对岸的位移大小S 【说明】(1)人、船对岸的位移大小 1、S2关系式 说明】 )
m1 S1 = m2 S 2
与人船的运动性质无关; 与人船的运动性质无关; ,(常见 (2)人船模型的适用条件,必须是该系统总动量为零,(常见 )人船模型的适用条件,必须是该系统总动量为零,( 情况是系统内两个物体原来均处于静止状态), ),且在系统内两物 情况是系统内两个物体原来均处于静止状态),且在系统内两物 体发生相对运动的过程中,至少有一个方向( 体发生相对运动的过程中,至少有一个方向(如水平方向或竖直 方向)合外力为零,即该方向上动量守恒; 方向)合外力为零,即该方向上动量守恒; (3)必须注意位移与速度要相对同一参考系,即当人的位移是 )必须注意位移与速度要相对同一参考系, 对地位移时,船的位移也应是对地位移, 对地位移时,船的位移也应是对地位移,而且人和船的速度也应 是对地速度; 是对地速度; (4)因动量守恒定律公式中的速度是在动量守恒方向上的速度, )因动量守恒定律公式中的速度是在动量守恒方向上的速度, 故公式 m1 S1 = m2 S 2 中的S 也应是在动量守恒方向上的位移大小, 中的 1、S2也应是在动量守恒方向上的位移大小,而且这两个 位移一定方向相反。 位移一定方向相反。
b
SM
SM
Sm
M = L M +m
Sm
M = (2R ) S m M +m
m = (b - a) M +m M = (b - a) M +m
拓展 如图所示,质量为M,半径为R的光滑圆环静止在光滑水平 如图所示,质量为M 半径为R 面上, 的小滑块从与环心O 面上,有一质量为 m 的小滑块从与环心O等高处开始无初 速下滑到达最低点时,圆环发生的位移为多少? 速下滑到达最低点时,圆环发生的位移为多少? 解:滑块与圆环组成相互作用的 R-s 系统,水平方向动量守恒。 系统,水平方向动量守恒。虽均 做非匀速运动, 做非匀速运动,但可以用平均动 R 量的方法列出动量守恒表达式。 量的方法列出动量守恒表达式。 o 设题述过程所用时间为 t,圆环 的位移为s 的位移为s,则小滑块在水平方 向上对地的位移为( ),如图所示 如图所示. 向上对地的位移为(R-s),如图所示. 取圆环的运动方向为正, 取圆环的运动方向为正,由动量守恒定律得 (R - s ) 即 Ms=m(R-s) s = m R s 0 = M -m M +m t t
s
拓展 如图所示,三个形状不同,但质量均为M 如图所示,三个形状不同,但质量均为M的小车停在光 滑水平面上,小车上质量为m的滑块, 滑水平面上,小车上质量为m的滑块,由静止开始从一端 滑至另一端,求在此过程中, 滑至另一端,求在此过程中,小车和滑块对地的位移是多 少?
a
L
m = L M +m
R
SM m = (2R ) M +m
设在该过程中平板车对地位移为S 设在该过程中平板车对地位移为 1 电动小车对地位移为S ,电动小车对地位移为 2,根据平 均动量守恒
MS1=mS 2
①
S1
S2 a
b
S1 + S 2 + b = a ②
①②两式联立, ①②两式联立,解得 两式联立
m( a - b) S1 = M +m
人船模型变形 载人气球原来静止在空中, 例 载人气球原来静止在空中,与地面距离为 h ,已知人的质量为m ,气球质量(不含人的 已知人的质量为m 气球质量( 质量) 若人要沿轻绳梯返回地面, 质量)为M。若人要沿轻绳梯返回地面,则绳 梯的长度至少为多长? 梯的长度至少为多长? 取人和气球为对象, L 解:取人和气球为对象,系统开始静止且同 时开始运动,人下到地面时, 时开始运动,人下到地面时,人相对地的位 移为h 设气球对地位移L 移为h,设气球对地位移L,则根据推论有
h
ML=mh
m h 得L = M 因此绳的长度至少为L 因此绳的长度至少为L+h= (M+m)h M
地面
例 一个质量为M,底面边长为 b 的劈静止在光滑的水平面 一个质量为M 见左图, 上,见左图,有一质量为 m 的物块由斜面顶部无初速滑 到底部时,劈移动的距离是多少? 到底部时,劈移动的距离是多少? m
M
θ
解:劈和小球组成的系统不受外力,故水平方向动量守恒,且初始时两物均静止, 不受外力,故水平方向动量守恒,且初始时两物均静止, 故由推论知ms 其中s 对地的位移, 故由推论知ms1=Ms2,其中s1和s2是m和M对地的位移,由上 图很容易看出: =b- 代入上式得, )=Ms 图很容易看出:s1=b-s2代入上式得,m(b-s2)=Ms2, mb/(M+m) 发生的位移。 所以 s2=mb/(M+m)即为M发生的位移。
练习
如图所示,长为 质量为 质量为M的平板车停在光滑水平面 如图所示,长为a质量为 的平板车停在光滑水平面 一辆长为b质量为 质量为m的电动玩具小车停在平板车的 上,一辆长为 质量为 的电动玩具小车停在平板车的 左端,玩具小车起动后从平板车的左端运动到右端时, 左端,玩具小车起动后从平板车的左端运动到右端时, 求平板车对地发生的位移。 求平板车对地发生的位移。