简支梁固有频率及振型函数

合集下载

钢筋混凝土简支梁固有频率的数值计算

钢筋混凝土简支梁固有频率的数值计算
本 文通过振型函数 导 出了求解 梁横 向振 动 固有 频率 的微 分
∑ ( c wt 曰stf m ) A o m+ n y( ms i ) o
申 函 , 数‘ 日 无 而 定 振 特 , 寸 关确的型性 间 方 ,基 组, 理 的 础 推 了动力试筋, 土 固 为 , 各 振 可得 : 应 频 ,y ,: c 曰 y 程在 于 合 论 基 上 导 完 钢验 凝 梁 有 (求 (型 对 的 率取 ( )(o s ) 梁 整 混 实 了相关 )告 4 As i ∞ n 频 率的计算公式 通过对 实 际简支 梁进行 证 代入式 )

5 ・ 2
第3 7卷 第 2 8期 2011年 10月
山 西 建 筑
S HANXI ARC I Hr ECI ' URE
V0 _ 7 N . 8 l3 o 2 Oc . 2 1 t 01
文章编 号 :0 9 6 2 (0 )8 0 5 —2 10 — 8 5 2 1 2 —0 20 1,Fra bibliotek, ,
由于 ( 和 ( 在任何截面都相等 则式 ( ) 四阶常 系 ) ) 6为 距 无限小的 d x两横 向截面截取一微 段 , y ,) ( f , x 数齐次线性微分方程 求 出其通解 后根据 边界条件 得 出积 分常数 设 ( f , ,) M( , t 和 Q( ,) ) x t分别表示梁的 截面处在 t 时刻 的挠度 、 角 、 转 弯矩和 的关系 从而可求 出固有频率 ∞。
剪力。它们必须满足 以下微分关系 : :

: )l ,, (tE
:(t ) ,
令 √
,由 (可 出 通 为 则 式6 求 其 解 : )
{ -) - Q, _ ( p A

固支梁各阶固有频率及振型测量

固支梁各阶固有频率及振型测量

固支梁各阶固有频率及振型测量
一、实验目的:
1. 熟悉梁的固有频率测量原理及振型形状;
2. 用共振法确定固支梁的各阶固有频率和振型。

二、实验仪器设备及安装示意图:
1. 计算机
2. YE6230T3动态数据采集系统
3. 功率函数发生器
4. 机械振动实验台
5. 加速度传感器激光位移传感器电涡流传感器自选
6. 激振器
三、实验过程:
四、实验结果及分析:
1、前三阶固有频率测量结果
2、各测点实测振幅(单位:)1,175;
3、各测点振幅换算值
4、绘出固支梁前三阶振型图一阶振型图
二阶振型图三阶振型图
多自由度系统各阶固有频率及主振型的测量一、实验目的
二、实验设备及安装示意图
三、实验结果与分析
1、不同张力下各阶固有频率的理论计算值与实测值
2、绘出观察到的三自由度系统振型曲线。

3、将理论计算出的各阶固有频率、理论振型与实测固有频率、实测振型相比较,是否一致? 产生误差的原因在哪里?。

简支梁固有频率与固有振型的实验室测量与理论分析

简支梁固有频率与固有振型的实验室测量与理论分析
Ex e i e a si e ho s a d p rm nt lTe tng M t d n The e c lAna y i f S mpl a or t a i l sso i e Be m wih Na u a e ue y a n r n b a o t t r Fr q nc nd I he e t Vi r t n l i
Ab ta t i l b a wh c i h r s —e t n a d c n iu u tu t r s u u l s d a n a ay i to f h i rt n p e s r c :S mp e e m ih w t t e c o s s ci n o t o ssr cu e,i s al u e sa n l ss o l e vb ai h - h o n y ot o n me o .D n mi a a y i o i l e m t h p l a in o e r t a n lssa d e p r n a si g meh d ,c n g t au o nn y a c n l ss fsmp eb a wi te a p i t f h o e i l ay i n x e me t l e t t o s a e t — h c o t c a i t n n rl r q e c v b ain a l u ea d c t a d mp n fte c n iu u t cu e o a ay et en t rl r q e c v b ain,a l a e u n y, i r t mpi d n r i l a i g o o t o ss u tr .T n z h au a e u n y, i rt f o t i c h n r l f o mpi — t d n rt a a i gc n a od s mp t ei ir t n whc e d e f r e t a g ot e f me o k tc n a s e c ei — u e a d c i ld mp n a v i y ah t vb ai , ih l a st t ut s ma e t a w r .I a lor a h t i c c o oh h d h r h n t nin t v i i rt n tr wi h a u a e u n y a d ih r n ir t n o e smp e b a wi r s -e t n,w i h ofr d a e t o a od v b ai .Sa t t te n t r f q e c n n ee t b ai ft i l e m t co ss ci o o h l r v o h h o h c f e e u eu t o o s r o rr s a c i r t n o o l ae r me o k s flme h d t tt u e e r h o v b ai f mp i td f a f o c c a w r. Ke r s:smpe b a w t r s —e t n i r t n au a  ̄e u n y;i h r n i r t n mo e;d mp n a i y wo d i l e m i co s s ci ;v b ai ;n t r l q e c h o o n e e t b ai d v o a ig rt o

振动力学(梁的横向振动)

振动力学(梁的横向振动)

l l
sinh l cos l
C1
ch
x
C
sin
x
sh
x
sin l sh l ch l cos l
(cos
x
ch
x)
【例3】求左端固定、右端用刚度为k的弹簧支承的 均匀梁弯曲振动的频率方程。
解:左端的边界条件为挠度和转角为0
Φ(0) 0,Φ(0) 0
解:左端的边界条件为挠度和转角为0
Φ(0) 0,Φ(0) 0
取微段梁dx,截 面上的弯矩与剪力为 M和Q,其正负号的 规定和材料力学一样。
则微段梁dx沿z方向的运动方程为:
Q
Q
Q x
dx
fdx
Adx
2u t 2

Q x
A
2u t 2
f
利用材料力学中的关系
Q M x
M EI 2u x2
得到梁的弯曲振动方程
2 x2
EI
2u
x2
A
2u t 2
EI (C1 3 cos l C2 3 sin l C3 3 ch l C4 3 sh l)
右端的边界条件:弯矩为0,剪力等于弹性力
Φ(l) 0
Q dM EIq d 3Φ
dx
dx3
qkΦ(l)
xl
Φ(l) 0
Q
dM dx
EIq
d 3Φ dx3
qkΦ(l)
xl
代入特征方程的解
Φ(x) C1 sin x C2 cos x C3 sh x C4 ch x
以及
Φ(x) C1 cos x C2 sin x C4 sh x C3 ch x
EI ,
A
C sin

简支梁固有频率及振型函数

简支梁固有频率及振型函数

简支梁横向振动的固有频率及振型函数的推导一.等截面细直梁的横向振动取梁未变形是的轴线方向为X 轴(向右为正),取对称面内与x 轴垂直的方向为y 轴(向上为正)。

梁在横向振动时,其挠曲线随时间而变化,可表示为y=y(x,t) (1)除了理想弹性体与微幅振动的假设外,我们还假设梁的长度与截面高度之比是相当大的(大于10)。

故可以采用材料力学中的梁弯曲的简化理论。

根据这一理论,在我们采用的坐标系中,梁挠曲线的微分方程可以表示为:22y EI M x ∂=∂(2) 其中,E 是弹性模量,I 是截面惯性矩,EI 为梁的弯曲刚度,M 代表x 截面处的弯矩。

挂怒弯矩的正负,规定为左截面上顺时针方向为正,右截面逆时针方向为正。

关于剪力Q 的正负,规定为左截面向上为正,右截面向下为正。

至于分布载荷集度q 的正向则规定与y 轴相同。

在这些规定下,有:M QQ q x x ∂∂==∂∂, (3)于是,对方程(2)求偏导,可得:222222(EI )(EI )y M y Q Q q x x x x x x ∂∂∂∂∂∂====∂∂∂∂∂∂, (4)考虑到等截面细直梁的EI 是常量,就有:3434y yEI Q EI q x x ∂∂==∂∂, (5)方程(5)就是在等截面梁在集度为q 的分部李作用下的挠曲微分方程。

应用达朗贝尔原理,在梁上加以分布得惯性力,其集度为22yq t ρ∂=-∂ (6)其中ρ代表梁单位长度的质量。

假设阻尼的影响可以忽略不计,那么梁在自由振动中的载荷就仅仅是分布的惯性力。

将式(6)代入(5),即得到等截面梁自由弯曲振动微分方程:4242y yEI x t ρ∂∂=--∂∂ (7)其中2/a EI ρ=。

为求解上述偏微分方程(7),采用分离变量法。

假设方程的解为:y(x,t)=X(x)Y(t)(8)将式(8)代入(7),得:224241Y a d XY tX dx ∂=-∂ (9) 上式左端仅依赖于t,而右端仅依赖于x ,因此要使对于任何x,t 上式均成立,必须二者均等于一个常数。

简支梁自振频率测量(正弦扫频法)实验报告

简支梁自振频率测量(正弦扫频法)实验报告

实验2简支梁自振频率测量(正弦扫频法)一、实验目的以简支梁为例,了解和掌握机械振动系统幅频特性曲线的测量方法以如何由幅频特性曲线得到系统的固有频率,了解常用简单振动测试仪器的使用方法。

二、实验内容及原理简支梁系统在周期干扰力作用下,以干扰力的频率作受迫振动。

振幅随着振动频率的改变而变化。

由此,通过改变干扰力(激振力)的频率,以其为横坐标,以振幅B为纵坐标,得到的曲线即为幅频特性曲线。

依据共振法测试简支梁的一阶、二阶固有频率,原理同实验三。

用跳沙法观察简支梁一阶、二阶振型。

测试简支梁的振型,根据简支梁的长度,划分若干个单元格,依次标号。

将信号发生器的频率调整到一阶固有频率处,观察简支梁的振动情况,在该频率下,分别测试每个单元的振幅。

依据测得的振幅,通过归一化,绘出简支梁的一阶振型。

三、实验仪器及设备机械振动综合实验装置(安装简支梁)1套激振器及功率放大器1套加速度传感器1只电荷放大器1台信号发生器1台数据采集仪1台信号分析软件1套计算机1台四、实验方法及步骤1.将激振器通过顶杆连接到简支梁上(注意确保顶杆与激振器的中心线在一直线上),激振点位于简支梁中心偏左50mm处(已有安装螺孔),将信号发生器输出端连接到功率放大器的输入端,并将功率放大器与激振器相连接。

2.用双面胶纸(或传感器磁座)将加速度传感器粘贴在简支梁上(中心偏左50mm)并与电荷放大器连接,将电荷放大器输出端分别与数据采集仪输入端连接。

3.将信号发生器和功率放大器的幅值旋钮调至最小,打开所有仪器电源。

设置信号发生器输出频率为10Hz,调节信号发生器的幅值旋钮使其输出电压为2V。

调节功率放大器的幅值旋钮,逐渐增大其输出功率直至简支梁有明显的振动(用眼观察或用手触摸)。

4.将信号发生器输出频率由低向高逐步调节,观察简支梁的振动情况,若振动过大则减小功率放大器的输出功率。

5.保持功率放大器的输出功率恒定,将信号发生器的频率重新由抵向高逐步调节,记录调整频率的变化情况,采集各个调整频率下响应信号振动幅值对应的电压数据。

机械振动学中的固有频率与振型分析

机械振动学中的固有频率与振型分析

机械振动学中的固有频率与振型分析机械振动学是研究机械系统在受到外界激励作用下产生振动现象的一门学科。

在机械系统中,固有频率与振型分析是非常重要的内容,可以用来描述系统的动态特性和振动行为。

本文将介绍机械振动学中固有频率与振型分析的基本概念和应用。

一、固有频率固有频率是指机械系统在没有外界激励下自由振动的频率。

对于一个简单的振动系统,其固有频率可以通过运动方程的解析解求得。

固有频率是系统的固有特性之一,可以用来描述系统的动态响应特性和结构的刚度、质量、阻尼等参数。

在实际工程应用中,固有频率的计算对于系统结构设计和振动控制至关重要。

通过对系统的固有频率进行分析,可以避免共振现象的发生,减小系统动态响应,提高系统的稳定性和可靠性。

二、振型分析振型分析是指对机械系统的振动模式和振动幅值进行分析和描述。

振型是指系统在特定频率下的振动模式,可以通过振动实验和有限元分析等方法得到。

振型分析可以提供系统的模态形式和振动幅值信息,有助于分析系统的受力情况和结构设计。

振型分析在工程实践中具有广泛的应用,可以用于评估系统的结构健康状况、辅助设计优化和振动控制。

通过对系统的振型进行分析,可以找到系统的薄弱环节和潜在问题,及时进行改进和优化,提高系统的性能和可靠性。

三、结语固有频率与振型分析是机械振动学中重要的内容,对于机械系统的设计和性能评估具有重要意义。

通过对系统的固有频率和振型进行分析,可以优化系统的结构设计,降低系统的动态响应,提高系统的稳定性和可靠性。

希望本文的介绍能够帮助读者更好地理解机械振动学中固有频率与振型分析的相关知识。

双简支梁固有频率及振型测量

双简支梁固有频率及振型测量

《振动测试实验》实验报告∗南京航空航天大学机械结构力学及控制国家重点实验室二○一一年∗注:实验报告完成后请以附件形式发送至:wt78@邮件主题请写明:《振动测试实验报告》,姓名,学号,分班号(三班或四班)一、实验目的•测量双简支梁的固有频率和振型。

•理解多自由度系统振型的物理概念。

•掌握多自由度系统固有频率和振型的简单测量方法。

二、实验原理图简支梁固有频率和振型测试原理图三、实验过程1、将功率放大器“输出调节”旋至最小,“信号选择”置“外接”。

打开各设备电源。

2、进入“双简支梁固有频率与振型测量”实验操作界面,使信号发生器的输出频率约为 30Hz,输出电压约为 1V 。

调节功率放的“输出调节”,逐渐增大其输出功率直至质量块有明显的振动(观察并用手触摸)。

3、将信号发生器输出频率由低向高逐步调节,同时观察李萨育图形。

当李萨育图为稳定的正椭圆时,信号发生器的频率读数即为第一阶固有频率。

继续将信号发生器的频率向高逐步调节,测出第二阶、第三阶固有频率。

4、再将信号发生器调到第一阶固有频率值,保持功率放大器的输出功率恒定(即:不再改变信号发生器的输出电压和功率放大器的输出功率),保持“参考”传感器的位置不变。

将“测量”传感器从双简支梁的右端等距跑点,依次记下“测量”传感器在各个位置时的测量点与参考点传感器输出电压之比(即“测量点/参考点”的显示值)及其正负号。

将其归一化即可得到第一阶振型,填“振型数据”表格。

点击“振型图”或“振型动画”检验振型数据。

四、实验数据与分析1、列出固有频率。

双简支梁的3个阶段的固有频率分别为:一阶: 36.7Hz二阶: 136.5Hz三阶: 326.6Hz一阶振型图二阶振型图3、测量双简单支梁振型时,改变“测量”传感器位置后,李萨育图形出现非正椭圆,解释原因,如何避免?答:测量双简单支梁振型时,改变“测量”传感器位置后,由于传感器有一定的质量,改变传感器位置也就改变了系统的质量分布,必然引起其固有频率的变化,在李萨育图形上表现出呈非正椭圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简支梁横向振动的固有频率及振型函数的推导
一.等截面细直梁的横向振动
取梁未变形是的轴线方向为X 轴(向右为正),取对称面内与x 轴垂直的方向为y 轴(向上为正)。

梁在横向振动时,其挠曲线随时间而变化,可表示为
y=y(x,t) (1)
除了理想弹性体与微幅振动的假设外,我们还假设梁的长度与截面高度之比是相当大的(大于10)。

故可以采用材料力学中的梁弯曲的简化理论。

根据这一理论,在我们采用的坐标系中,梁挠曲线的微分方程可以表示为:
22y
EI M x ∂=∂
(2)
其中,E 是弹性模量,I 是截面惯性矩,EI 为梁的弯曲刚度,M 代表x 截面处的弯矩。

挂怒弯矩的正负,规定为左截面上顺时针方向为正,右截面逆时针方向为正。

关于剪力Q 的正负,规定为左截面向上为正,右截面向下为正。

至于分布载荷集度q 的正向则规定与y 轴相同。

在这些规定下,有:
M Q
Q q x x
∂∂==∂∂, (3)
于是,对方程(2)求偏导,可得:
222222(EI )(EI )y M y Q
Q q x x x x x x ∂∂∂∂∂∂====∂∂∂∂∂∂, (4)
考虑到等截面细直梁的EI 是常量,就有:
3434y y
EI Q EI q x x ∂∂==∂∂, (5)
方程(5)就是在等截面梁在集度为q 的分部李作用下的挠曲微分方程。

应用达朗贝尔原理,在梁上加以分布得惯性力,其集度为
22
y
q t ρ∂=-∂ (6)
其中ρ代表梁单位长度的质量。

假设阻尼的影响可以忽略不计,那么梁在自由振动中的载荷就仅仅是分布的惯性力。

将式(6)代入(5),即得到等截面梁自由弯曲振动微分方程:
4242y y
EI x t ρ∂∂=--∂∂ (7)
其中2
/a EI ρ=。

为求解上述偏微分方程(7),采用分离变量法。

假设方程的解为:
y(x,t)=X(x)Y(t)
(8)
将式(8)代入(7),得:
22424
1Y a d X Y t
X dx ∂=-∂ (9)
上式左端仅依赖于t,而右端仅依赖于x ,因此要使对于任何x,t 上式均成立,必须二者均等于一个常数。

将这一常数记为-p 2.
于是有:
22
2
0Y p Y t
∂+=∂ (10)
442
4
0,/d X X p a dx
ββ-== (11)
方程(10)的通解为:
Y (t )=Asinpt+Bcospt (12) 其中,A,B 为积分常数。

方程(11) 的通解为:
1234(x)cos sin X C ch x C sh x C x C x ββββ=+++
(13)
二.简支梁的固有振型和固有频率
简支梁的边界条件为:
X (0)=0,X ’’(0)=0.
X (l )=0,X ’’(l)=0
所以有:1230C C C ===
特征方程为:
sin 0l β=
由此得特征值为:,1,2,i i l l
π
β=
=⋅⋅⋅ 与此相应的固有频率为
(i )1,2,i p l π==⋅⋅⋅ 而对应的振型函数为
(x)sin sin
,1,2,i i i X x x l l π
β===⋅⋅⋅
王舒雅,25。

相关文档
最新文档