MATLAB 线性规划
用MATLAB优化工具箱解线性规划

用MATLAB优化工具箱解线性规划线性规划是运筹学中的一个研究对象,它通常是以线性方程组的形式来描述数学模型,极大(或极小)化线性函数,同时满足一定的线性限制条件。
而MATLAB是一种十分流行的数学计算软件,其优化工具箱提供了一些功能强大的优化算法,可以用来解决一些复杂的优化问题,包括线性规划问题。
一、线性规划问题的定义线性规划问题的一般形式可以描述为:$min/max$ $c^Tx$$subject$ $to$:$Ax \le b$$x \ge 0$其中,$c^Tx$是一个线性函数,称为线性目标函数,$A$是一个$m\times n$的系数矩阵,$b$是一个$m\times1$的列向量,$x$是一个$n\times1$的列向量,是待求解的变量,我们称之为决策变量。
$x_j$表示变量$x$的第$j$个分量,$m$和$n$分别是限制条件数目和变量数目。
$Ax \le b$是一个线性等式系统,约束了$x$的取值范围,$x \ge0$要求$x$的分量非负,这被称为非负约束条件。
二、使用MATLAB函数求解线性规划问题MATLAB中的优化工具箱提供了一些函数,可以用来求解线性规划问题,其中最常用的函数是“linprog”。
linprog函数是求解线性规划问题的标准函数,在使用之前需要做一些准备工作:(1)确定目标函数和约束条件:目标函数和约束条件应该以线性方程组的形式表达。
(2)将方程组转换为标准形式:标准形式是指将约束条件转换为$Ax \le b$的形式,且决策变量的非负约束被包含在这个矩阵中。
(3)定义参数:包括目标函数和约束条件中的系数矩阵和向量。
(4)运行函数:使用linprog函数求解。
下面是linprog函数的语法格式:[x,fval,exitflag,output,lambda]=linprog(f,A,b,Aeq,beq,lb,ub,x 0,options)linprog函数的参数解释如下:(1)f:目标函数的系数向量。
Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题Matlab是一种强大的数值计算和科学计算软件,可以用于求解各种数学问题,包括线性规划和整数规划问题。
本文将详细介绍如何使用Matlab来求解线性规划和整数规划问题。
一、线性规划问题的求解线性规划是一种优化问题,旨在找到一组变量的最佳值,以使线性目标函数在一组线性约束条件下最大或者最小化。
下面以一个简单的线性规划问题为例来说明如何使用Matlab求解。
假设有以下线性规划问题:最大化目标函数:Z = 3x + 5y约束条件:2x + y ≤ 10x + 3y ≤ 15x, y ≥ 01. 创建线性规划模型在Matlab中,可以使用linprog函数来创建线性规划模型。
首先,定义目标函数的系数向量c和不等式约束条件的系数矩阵A以及不等式约束条件的右侧常数向量b。
c = [-3; -5];A = [2, 1; 1, 3];b = [10; 15];2. 求解线性规划问题然后,使用linprog函数求解线性规划问题。
该函数的输入参数为目标函数的系数向量c、不等式约束条件的系数矩阵A、不等式约束条件的右侧常数向量b以及变量的下界和上界。
lb = [0; 0];ub = [];[x, fval, exitflag] = linprog(c, A, b, [], [], lb, ub);其中,x是最优解向量,fval是最优解对应的目标函数值,exitflag是求解器的退出标志。
3. 结果分析最后,打印出最优解向量x和最优解对应的目标函数值fval。
disp('最优解向量x:');disp(x);disp('最优解对应的目标函数值fval:');disp(fval);二、整数规划问题的求解整数规划是一种优化问题,与线性规划类似,但是变量的取值限制为整数。
Matlab提供了intlinprog函数来求解整数规划问题。
下面以一个简单的整数规划问题为例来说明如何使用Matlab求解。
Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题线性规划是一种数学优化问题,通过线性函数的最大化或者最小化来实现目标函数的优化。
整数规划是线性规划的一种特殊情况,其中变量被限制为整数值。
在Matlab中,我们可以使用优化工具箱中的函数来求解线性规划和整数规划问题。
下面将详细介绍如何使用Matlab来求解这些问题。
1. 线性规划问题的求解首先,我们需要定义线性规划问题的目标函数、约束条件和变量范围。
然后,我们可以使用linprog函数来求解线性规划问题。
例如,考虑以下线性规划问题:目标函数:最大化 2x1 + 3x2约束条件:x1 + x2 <= 10x1 - x2 >= 2x1, x2 >= 0在Matlab中,可以按照以下步骤求解该线性规划问题:1. 定义目标函数的系数向量c和约束矩阵A,以及约束条件的右侧向量b。
c = [2; 3];A = [1, 1; -1, 1];b = [10; -2];2. 定义变量的上下界向量lb和ub。
lb = [0; 0];ub = [];3. 使用linprog函数求解线性规划问题。
[x, fval] = linprog(-c, A, b, [], [], lb, ub);运行以上代码后,可以得到最优解x和目标函数的最优值fval。
2. 整数规划问题的求解对于整数规划问题,我们可以使用intlinprog函数来求解。
与线性规划问题类似,我们需要定义整数规划问题的目标函数、约束条件和变量范围。
然后,使用intlinprog函数求解整数规划问题。
例如,考虑以下整数规划问题:目标函数:最小化 3x1 + 4x2约束条件:2x1 + 5x2 >= 10x1, x2为非负整数在Matlab中,可以按照以下步骤求解该整数规划问题:1. 定义目标函数的系数向量f和约束矩阵A,以及约束条件的右侧向量b。
f = [3; 4];A = [-2, -5];b = [-10];2. 定义变量的整数约束向量intcon。
MATLAB优化工具箱--线性规划-非线性规划

linprog输入参数说明: f, A, b, Aeq, beq lb,ub 边界设置 说明: 如果x(i)无边界,则 lb(i) = -inf, ub(i) = inf
6
linprog 输出参数说明: x 决策变量取值 fval 目标函数最优值
exitflag > 0 成功找到最优解 0 达到最大迭代次数也没有找到最优解 < 0 该线性规划问题不可行或者linprog计
10
fmincon函数求解形如下面的有约束非线性规 划模型
一般形式:
min f ( X ) s.t. AX b
Aeq X beq l X u c(X ) 0 ceq ( X ) 0
Matlab求解有约束非线性最小化 1.约束中可以有等式约束 2.可以含线性、非线性约束均可
数学实验
输入参数语法:
例子:某农场种植两种作物A、B,需要甲、乙两种化肥。种植 每亩作物A和作物B分别需用的化肥数,可得利润及农场现有化
肥数量如下表所示:
问在现有条件下,如何安排种植,才能使利润最大?
作物
每亩所需化肥 (百公斤)
现有化肥
AB (百公斤)
化肥
甲
23
100) 6 4
数学实验
例题建模
[x,fval,exitflag,output,lambda]=fmincon(fun,x0,...)
数学实验
输入参数的几点说明
模型中如果没有A,b,Aeq,beq,lb,ub的限制,则以空矩阵[ ]作为 参数传入; nonlcon:如果包含非线性等式或不等式约束,则将这些函数
编写为一个Matlab函数, nonlcon就是定义这些函数的程序文件名;
3
运用Matlab进行线性规划求解

线性规划线性规划是处理线性目标函数和线性约束的一种较为成熟的方法,目前已经广泛应用于军事、经济、工业、农业、教育、商业和社会科学等许多方面。
8.2.1 基本数学原理线性规划问题的标准形式是:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥=+++=+++=++++++=0,,,min 21221122222121112121112211n m n mn m m n n n n n n x x x b x a x a x a b x a x a x a b x a x a x a x c x c x c z ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ 或⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥===∑∑==n j x m i b x a x c z j n j i j ij n j jj ,,2,1,0,,2,1,min 11ΛΛ写成矩阵形式为:⎪⎩⎪⎨⎧≥==O X b AX CX z min线性规划的标准形式要求使目标函数最小化,约束条件取等式,变量b 非负。
不符合这几个条件的线性模型可以转化成标准形式。
MATLAB 采用投影法求解线性规划问题,该方法是单纯形法的变种。
8.2.2 有关函数介绍在MATLAB 工具箱中,可用linprog 函数求解线性规划问题。
linprog 函数的调用格式如下:●x=linprog(f,A,b):求解问题minf'*x ,约束条件为A*x<=b 。
●x=linprog(f,A,b,Aeq,beq):求解上面的问题,但增加等式约束,即Aeq*x=beq 。
若没有不等式约束,则令A=[ ],b=[ ]。
●x=linprog(f,A,b,Aeq,beq,lb,ub):定义设计x 的下界lb 和上界ub ,使得x 始终在该范围内。
若没有等式约束,令Aeq=[ ],beq=[ ]。
●x=linprog(f,A,b,Aeq,beq,lb,ub,x0):设置初值为x0。
该选项只适用于中型问题,默认时大型算法将忽略初值。
matlab线性规划

matlab线性规划线性规划(Linear Programming)是运筹学中的一种优化问题,指的是在一定的约束条件下,寻找一个线性函数的最优值。
该方法被广泛运用于经济学、管理学、工程学等各个领域。
在MATLAB中,我们可以使用线性规划工具箱来进行线性规划问题的求解。
在MATLAB中,线性规划问题可以通过函数linprog来求解。
linprog函数的一般形式如下:x = linprog(f, A, b, Aeq, beq, lb, ub)其中f是目标函数的系数矩阵,A和b是约束条件Ax ≤ b的系数矩阵和右侧向量,Aeq和beq是等式约束条件Aeqx = beq的系数矩阵和右侧向量,lb和ub是变量的下界和上界向量。
解x是一个n维向量,即最优解。
下面举一个简单的例子来说明如何使用MATLAB求解线性规划问题:假设我们有如下线性规划问题:最大化目标函数 f = [3, 4] * x约束条件为:A = [1, 1; 2, 1; -1, 2]b = [5; 8; 2]lb = [0; 0]ub = []我们可以使用linprog函数来求解:f = [-3, -4]; % 目标函数系数矩阵A = [1, 1; 2, 1; -1, 2]; % 不等式约束条件系数矩阵b = [5; 8; 2]; % 不等式约束条件右侧向量lb = [0; 0]; % 变量的下界向量ub = []; % 变量的上界向量x = linprog(f, A, b, [], [], lb, ub)最终得到的解x为[2; 3],即最优解为x1 = 2,x2 = 3,最优值为f(x) = 17。
通过MATLAB的线性规划工具箱,我们可以方便地求解各种线性规划问题。
无论是简单的二维问题还是更加复杂的高维问题,都可以通过MATLAB轻松求解。
matlab求解线性规划

matlab求解线性规划MATLAB是一个强大的工具,可以用于求解线性规划问题。
线性规划是一种最优化问题,目标是在满足一系列线性约束条件下,找到一个使目标函数取得最大或最小值的解。
在MATLAB中,可以使用线性规划工具箱来求解线性规划问题。
线性规划工具箱提供了一些函数,如linprog,intlinprog和quadprog,这些函数可以用于求解线性规划问题。
解线性规划问题的一般步骤如下:1. 定义目标函数。
目标函数是要优化的函数,可以是线性函数。
例如,如果我们要最小化一个函数f(x)=c1x1+c2x2+...+cnxn,则可以将目标函数表示为向量c=[c1,c2,...,cn]的内积与向量x=[x1,x2,...,xn]。
2. 定义约束条件。
约束条件是对决策变量的限制条件。
一般情况下,约束条件可以表示为Ax<=b,其中A是一个矩阵,x是决策变量向量,b是一个向量。
例如,如果我们有两个约束条件2x1+x2<=10和x1+3x2<=12,则可以将约束条件表示为矩阵A=[2,1;1,3]和向量b=[10;12]。
3. 调用线性规划函数。
在MATLAB中,可以使用linprog函数来求解线性规划问题。
linprog函数有几个输入参数,包括目标函数系数向量c,约束条件矩阵A和向量b,以及可选参数lb和ub。
参数lb和ub是可选参数,用于指定决策变量的下界和上界。
例如,要求解上述线性规划问题,可以调用linprog函数如下:x = linprog(c, A, b)函数linprog返回一个向量x,其中包含目标函数取得最小值时的决策变量的取值。
4. 分析结果。
一旦线性规划问题被求解,我们可以通过检查目标函数的值和决策变量的取值来分析结果。
例如,目标函数的值就是目标函数取得最小值时的值,其中决策变量的取值可以用x变量表示。
总结而言,MATLAB是一个功能强大的工具,可以用于求解线性规划问题。
matlab学习笔记之求解线性规划问题和二次型问题

matlab学习笔记之求解线性规划问题和⼆次型问题⼀、线性规划问题 已知⽬标函数和约束条件均为线性函数,求⽬标函数的最⼩值(最优值)问题。
1.求解⽅式:⽤linprog函数求解2.linprog函数使⽤形式: x=linprog(f,A,b) x=linprog(f,A,b,Aeq,beq) x=linprog(f,A,b,Aeq,beq,lb,ub) x=linprog(f,A,b,Aeq,beq,lb,ub,x0) x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options) [x,fval]=linprog(…) [x, fval, exitflag]=linprog(…) [x, fval, exitflag, output]=linprog(…) [x, fval, exitflag, output, lambda]=linprog(…)3.介绍⼀种最常⽤的: [x,fval,exitflag,output,lambda] = linprog(f,A,b,Aep,beq,lb,ub);其中,f是⽬标函数系数矩阵;A和b是不等式约束条件的参数;Aeq和beq是等式约束条件的参数;lb和ub为x取值的取值范围。
lambda.ineqlin—不等式约束A,b lambda.eqlin—等式约束Aep,bep lambda.upper—上界条件ub lambda.lower—下界条件lb4.实例:⽬标函数:f(x) = –5x1 – 4x2 –6x3,约束条件: x1 – x2 + x3 ≤ 20 3x1 + 2x2 + 4x3 ≤ 42 3x1 + 2x2 ≤ 30 0 ≤ x1, 0 ≤ x2, 0 ≤ x3Matlab程序:>> f = [-5; -4; -6]; A = [1 -11; 324; 320]; b = [20; 42; 30]; lb = zeros(3,1);>> [x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);>> xx =0.000015.00003.0000>> fvalfval =-78.0000⼆、⼆次型规划问题 理解完线性规划问题再来学习⼆次型规划问题就简单得多了,可以相似类⽐。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数,故被称为线性规划问题。
总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最
小的问题。
在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往
也是困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我
xi
| , vi
=
|
xi
| −xi 2
就可以满足上面的条件。
这样,记 u = [u1 L un ]T , v = [v1 L vn ]T ,从而我们可以把上面的问题
变成
n
∑ min (ui + vi ) i =1
⎧A(u − v) ≤ b s. t. ⎩⎨u, v ≥ 0
例5
min{max
xi
yi
|εi
max z = 2x1 + 3x2 − 5x3
s.t. x1 + x2 + x3 = 7
2x1 − 5x2 + x3 ≥ 10
x1 + 3x2 + x3 ≤ 12
x1, x2 , x3 ≥ 0
-3-
解 (i)编写 M 文件 c=[2;3;-5]; a=[-2,5,-1;1,3,1]; b=[-10;12]; aeq=[1,1,1]; beq=7; x=linprog(-c,a,b,aeq,beq,zeros(3,1)) value=c'*x
(1)可行域 R 可能会出现多种情况。R 可能是空集也可能是非空集合,当 R 非空 时,它必定是若干个半平面的交集(除非遇到空间维数的退化)。R 既可能是有界区域,
也可能是无界区域。
(2)在 R 非空时,线性规划既可以存在有限最优解,也可以不存在有限最优解(其
目标函数值无界)。
-2-
(3)若线性规划存在有限最优解,则必可找到具有最优目标函数值的可行域 R 的
(ii)将M文件存盘,并命名为example1.m。 (iii)在Matlab指令窗运行example1即可得所求结果。 例3 求解线性规划问题
min z = 2x1 + 3x2 + x3
⎪⎨⎧3x1x1++42xx2 2+≥26x3 ≥ 8 ⎪⎩x1, x2 , x3 ≥ 0
解 编写Matlab程序如下:
|}
其中 ε i = xi − yi 。
对于这个问题,如果我们取
x0
=
max yi
|εi
| ,这样,上面的问题就变换成
-4-
min x0
s. t. x1 − y1 ≤ x0 ,L, xn − yn ≤ x0
此即我们通常的线性规划问题。
§2 运输问题(产销平衡)
例 6 某商品有 m 个产地、 n 个销地,各产地的产量分别为 a1,L, am ,各销地的 需求量分别为 b1,L, bn 。若该商品由 i 产地运到 j 销地的单位运价为 cij ,问应该如何调
1,其余元素均为 0;可以用1,L, n 中的一个置换表示。
问题中的变量只能取 0 或 1,从而是一个 0-1 规划问题。一般的 0-1 规划问题求解 极为困难。但指派问题并不难解,其约束方程组的系数矩阵十分特殊(被称为全单位模
矩阵,其各阶非零子式均为 ± 1),其非负可行解的分量只能取 0 或 1,故约束 xij = 0或1
十分直观。为此,我们将采用另一途径来定义它。
定义 1 称 n 维空间中的区域 R 为一凸集,若 ∀x1, x2 ∈ R 及 ∀λ ∈ (0,1) ,有
λx1 + (1 − λ)x2 ∈ R 。
定义 2 设 R 为 n 维空间中的一个凸集, R 中的点 x 被称为 R 的一个极点,若不
存在 x1、x2 ∈ R 及 λ ∈ (0,1) ,使得 x = λx1 + (1 − λ)x2 。
问题的系数矩阵。
引入变量 xij ,若分配 i 干 j 工作,则取 xij = 1,否则取 xij = 0 。上述指派问题的
数学模型为
nn
∑ ∑ min
cij xij
i =1 j =1
n
∑ s.t.
xij = 1
j =1
-5-
n
∑ xij = 1
i =1
xij = 0 或1
上述指派问题的可行解可以用一个矩阵表示,其每行每列均有且只有一个元素为
一元素都加上或减去同一个数,得到一个新矩阵 B = (bij ) ,则以 C 或 B 为系数矩阵的
指派问题具有相同的最优指派。
例 8 求解指派问题,其系数矩阵为
⎡16 15 19 22⎤ C = ⎢⎢17 21 19 18⎥⎥
定义 1 说明凸集中任意两点的连线必在此凸集中;而定义 2 说明,若 x 是凸集 R 的一个极点,则 x 不能位于 R 中任意两点的连线上。不难证明,多胞形必为凸集。同 样也不难证明,二维空间中可行域 R 的顶点均为 R 的极点( R 也没有其它的极点)。
1.5 求解线性规划的 Matlab 解法 单纯形法是求解线性规划问题的最常用、最有效的算法之一。这里我们就不介绍
一般线性规划问题的(数学)标准型为
n
∑ max z = c j x j
(3)
j =1
∑ ⎧
⎪
n
aij x j = bi
i = 1,2,L, m
s.t. ⎨ j=1
(4)
⎪⎩x j ≥ 0 j = 1,2,L, n
可行解 满足约束条件(4)的解 x = ( x1, x2,L, xn ) ,称为线性规划问题的可行解,
康托洛维奇和希奇柯克两人独立地提出,简称康—希表上作业法)。
§3 指派问题 3.1 指派问题的数学模型
例 7 拟分配 n 人去干 n 项工作,每人干且仅干一项工作,若分配第 i 人去干第 j
项工作,需花费 cij 单位时间,问应如何分配工作才能使工人花费的总时间最少?
容易看出,要给出一个指派问题的实例,只需给出矩阵 C = (cij ) , C 被称为指派
们建立有效模型的关键之一。
1.2 线性规划的 Matlab 标准形式
线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以
是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性
规划的标准形式为
min cT x x
⎧Ax ≤ b
s.t.
⎪ ⎨
Aeq
⋅
x
=
beq
⎪⎩lb ≤ x ≤ ub
其中 c 和 x 为 n 维列向量, A 、 Aeq 为适当维数的矩阵, b 、 beq 为适当维数的列向
量。
-1-
例如线性规划
max cT x s.t. Ax ≥ b x
的 Matlab 标准型为
min − cT x s.t. − Ax ≤ −b x
1.3 线性规划问题的解的概念
s. t. Ax ≤ b
其中 x = [x1 L xn ]T , A 和 b 为相应维数的矩阵和向量。
要把上面的问题变换成线性规划问题,只要注意到事实:对任意的 xi ,存在
ui , vi > 0 满足
xi = ui − vi , | xi |= ui + vi
事实上,我们只要取 ui
=
xi + | 2
“顶点”。
上述论断可以推广到一般的线性规划问题,区别只在于空间的维数。在一般的 n 维
n
∑ 空间中,满足一线性等式 ai xi = b 的点集被称为一个超平面,而满足一线性不等式
i =1
n
n
∑ ∑ ai xi ≤ b(或 ai xi ≥ b )的点集被称为一个半空间(其中 (a1,L, an ) 为一 n 维行
单纯形法,有兴趣的读者可以参看其它线性规划书籍。下面我们介绍线性规划的 Matlab 解法。
Matlab 中线性规划的标准型为
min cT x x
⎧Ax ≤ b
s.t.
⎪ ⎨
Aeq
⋅
x
=
beq
⎪⎩lb ≤ x ≤ ub
基本函数形式为 linprog(c,A,b),它的返回值是向量 x为 xij ≥ 0 而不改变其解。此时,指派问题被转化为一个特殊的运输问题,其中
m = n , ai = bj = 1 。
3.2 求解指派问题的匈牙利算法 由于指派问题的特殊性,又存在着由匈牙利数学家 Konig 提出的更为简便的解法
—匈牙利算法。算法主要依据以下事实:如果系数矩阵 C = (cij ) 一行(或一列)中每
几台,才能使总利润最大?
上述问题的数学模型:设该厂生产 x1 台甲机床和 x2 乙机床时总利润最大,则 x1, x2
应满足
(目标函数) max z = 4x1 + 3x2
(1)
⎧2x1 + x2 ≤ 10
s.t.(约束条件)
⎪⎪ ⎨ ⎪
x1 x2
+ ≤
x2 7
≤
8
⎪⎩x1, x2 ≥ 0
(2)
这里变量 x1, x2 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式
c=[2;3;1];
a=[1,4,2;3,2,0];
b=[8;6];
[x,y]=linprog(c,-a,-b,[],[],zeros(3,1))
1.6 可以转化为线性规划的问题
很多看起来不是线性规划的问题也可以通过变换变成线性规划的问题来解决。如:
例4 规划问题为
min | x1 | + | x2 | +L+ | xn |