国内外电力牵引传动与控制技术的现状与发展

国内外电力牵引传动与控制技术的现状与发展
国内外电力牵引传动与控制技术的现状与发展

国内外电力牵引传动与控制技术的现状与发展

交通设备1003班叶文斌宋文强卢志文康杨

摘要:

始于上世纪70年代初的交流电传动技术已经从晶闸管技术发展到GTO技术。交流电传动技术的不断成熟,使其真正成为所有新机车动车的标准。在最近几年中实现了IGBT取代GTO晶闸管的重要技术转型。作为最新进步,该技术转型现在还涵盖了大功率应用范围。德国铁路公司新型的BR189 四电流制电力机车最早将该项革新技术应用于极限功率范围。我国电力牵引技术在不断引进和消化吸收国外先进技术的同时,自主创新,也取得了长足的进步。

关键词:电力牵引传动晶闸管 GTO技术 IGBT技术 IGCT技术直直传动交

直传动交直交传动

Abstract:

Starting at beginning of the seventies of the last century the three-phase ac drive technology was developed from Thyristor Technology to GTO technology .With its high maturity three-phase ac drive technology has become the standard for practically all new vehicles .During the last years the replacement of GTO-Thyristors by IGBTs (insulated gate bipolar transistor) was carried out as another important technology change. Now as the last step this technology change also covers the high power applications. The new class 189 four-systems locomotive of German Rail (DB AG) forms the leading application for this innovation in the high power range. Electric traction technologies in China continue to introduce and absorb advanced foreign technology, independent innovation, have also made great progress.

Key words:Electric traction drive thyristor GTO technology IGBT technology IGCT technology DC-DC drive technology AC-DC drive technology AC-DC-AC drive technology

引言

铁道牵引电传动技术是牵引动力设备的核心技术,其发展目标一直是致力于改善机车牵引和电制动性能,提高运用可靠性和能源的有效利用率,减少对环境的影响,降低运营成本,更好地满足铁路运输市场的需求。自上世纪50年代末,我国第1台干线电力机车问世至今,我国机车电传动技术随着电力电子和功率电力电子器件技术的发展和应用,经历了从第1代SS 1型电力机车的低压侧调压开关调幅式的有级调压调速技术,到第2代的SS3型电力机车调压开关分级与级间晶闸管相控平滑调压相结合的调压调速技术,再到第3代的SS4~SS9型电力机车的多段桥晶闸管相控无级平滑调压调速技术,直到全新一代的“和谐”型交流传动机车的跨越式发展历程。电传动技术与功率电力电子器件技术紧密相关。一代功率电力电子器件,产生一代牵引设备。只有在GTO、IGBT等全控型大功率电力电子器件及先进的控制技术出现后,才真正确立了现代交流传动技术的优势,使机车电传动技术发生了根本变革,由直流传动向交流传动转变。

国外技术发展

现代电力电子技术的迅猛发展,新型电力电子器件不断问世为交流传动奠定

了坚实的物质基础。控制理论(交流传动系统的重要武器)的逐步完善大大提高了交流传动系统性能,现代信息技术日新月异的发展为控制系统技术的进步提供了保障。交流电机自身无可争辩的优势是拓展交流传动系统的良好基础。在机车车辆行业交流传动的优越性得到了充分的现。在历经技术准备期( 1970~1979 年) 技术成熟期( 1980~1987 年) 品质提升期( 1988 年后)之后,西方发达国家已将牵引动力转向交流传动。

1、从晶闸管到GTO技术

BBC公司创建了当今用异步电动机作为理想牵引电动机的交流传动技术的基础,用逆变器(W R )和对电网友好的、可再生制动的四象限变流器(4QS)(位于直流电压中间直流环节旁)向牵引电动机供电。1980年,采用该技术的BR120型试验机车投入运行。1987年,BBC公司供应了首批60台这种机车。随后应用该技术的有丹麦国家铁路(DSB)的EA3000 型电力机车和德国联邦铁路的部分ICE 1 系列电动车组。当时自换向和脉动的变流器(4QS和WR)需使用“快速”或高频晶闸管、强迫换向用的辅助整流阀和振荡电路。起初可供使用的快速晶闸管反向电压只有1400V,为了控制当时采用的2800V中间直流环节电压(避免用并联电路),必须串联4 只元件以致变流器结构较复杂。

80年代,微处理器承担了越来越多的电子控制任务,尽管功能增多,但体积却缩小了。日本首先开发了GTO晶闸管,它大大简化了变流器结构,在首次使用的2500V GTO 的基础上,BBC(瑞士)公司开发了首台1400V中间直流环节电压的机车传动变流器(1987年起向BT/SZU 铁路提供了8 台使用这种GTO 变流器的机车从1989 年起向瑞士联邦铁路(SBB)、苏黎世城市高速铁路提供了115 台用这种GTO 变流器的Re450 型电力机车)。

80年代末有了可供使用的4 500 V/3 000 A的GTO,可以实现2800V中间直流环节电压或更高电压的大功率应用。6.1MW功率的SBB机车2000( Re460 型)采用了三电平变流器(每台逆变器用12只GTO元件)。

投入首批应用的部分ICE 1 电动车组(1989~1990年)、挪威国家铁路(NSB )的IC70型电动车组(1992年)和CL7000 欧洲穿梭式电力机车(1992年)使用了西门子和庞巴迪公司开发的用4.5 kV GTO 的中间直流环节电压为2800 V的二点平GTO变流器(无串联连接每台逆变器6只GTO元件)此时使用了Marquart-Undeland 电路。后来用4.5 kV元件、2800 V中间直流环节电压的二电平变流器成了西门子和庞巴迪公司的标准产品,直到2001年所有批量生产的机车和动车用的变流器都采用了这种电路。个别用6.5kV GTO 元件的变流器直接用于3 kV 直流电网。但相对日益成熟的6.5kV IGBT 技术它们就退居次要地位了在铁路用静止变流器上硬驱动控制的GTO技术,可直接用GTO串联电路但在欧洲还未用于铁路传动中。

2、从GTO技术到IGBT技术

GTO是具有很细梳条门极结构的晶闸管。导通时,门极触发单元(GU)向门极提供几安培的控制电流,关断时,GU从门极吸收很大的电流,约为关断GTO 电流的1/5。耗尽载流子后,门极呈高阻状态。为可靠地关断GTO,GU应使门极电压大至保持为-15 V。根据门极- 阴极特性曲线上的高阻性,GU 能识别GTO的关断状态,并将该信息反馈给电子控制装置。开关指令和反馈信号通过2 根光纤电缆传输。变流器中所有GU 共用的电源为GU 提供±48V、16 kHz 矩形电压,功

率约为30 W。GU中的电位是隔离的(试验电压11kV)。

最大反向电压为4 500V、最大关断电流为3000 A或4000 A的标准GTO平板元件,其硅片和接触直径为75 mm 或85 mm (外壳直径为108mm或120mm)必须用约4 t 的外力压紧以保证正常的电和热接触。GTO 和二极管及其散热器和接线端子组装在一起。螺旋管散热器用油或酯浸渍冷却,金属散热盒用去离子水冷却,氮化铝A I N 散热盒用工业用水冷却。

用限流电抗器将导通电流的上升率限制为500 A/us ,用无感的电容电路将关断后的电压上升率限制为500 V/us,以便GTO 重复峰值电压不超过其耐压值,高频GTO (FGTO)允许有较快的电压上升率,可使用较小的吸收电容。

吸收电路的阻尼时间、开/关过程后GTO 的恢复时间和保护时间要求最小导通和关断时间的数量级为50-200 us。因为整个GTO 的导通压降随温度而变化所以并联连接时电流的热分布是稳定的,用于机车动车传动的大功率GTO通常既不需并联,又不需串联。

在一相电路的2 只GTO 都导通的故障情况时,电流迅速升至很高,以致关断试验引起GTO损坏。此时GTO变流器的保护对保护击穿作出反应,连续降低支撑电容器的能量。采取一系列预防措施可避免保护击穿。进一步预防击穿的关断保护需要一个瞬间过电压限制器(MUB)。

IGBT 是一种绝缘栅双极型晶体管。利用加在栅极和发射极之间的电场来控制,导通和关断集电极和发射极间输出时,可根据栅极电压特性曲线来控制电流上升率和电压上升率。IGBT不需要吸收电路,但电流和电压同时存在时,IGBT 必须承受开关损耗。大功率IGBT的开关动作时间为1-2us。大多数制造商都在致力于生产无需外接吸收电路的IGBT。这样就可以大大简化IGBT-SRBG的结构(相对GTO的SRBG 而言),但也保留个别例外即IGBT有小量的吸收电路。

IGBT在满电流时导通电压约为4 V。虽然这比GTO的要高些,但开关频率较高时,IGBT变流器从空载至满载时的损耗比GTO变流器的要小,因为没有式(1)中与负荷有关的线路损耗。

过流时,IGBT去饱和,电压远大于4 V,损耗功率过大,造成IGBT 损坏。为防止过流,门极驱动单元GDU监控集电极-发射极电压,在临界状态时立即接通关断电路。与GTO技术采用的防止击穿方式不同,IGBT技术用保护关断电路来防止过电流,为防止中间直流环节的过电压通过IGBT接入负荷电阻作为瞬间电压限制器或阻尼电阻。

由于导通电压为正温度系数,IGBT并联电路是热稳定的,这也是大功率工作时所需要的。通过并联电路中的对称阻抗力求电流尽可能均匀分布。

相对于压接式平板元件,大功率IGBT也采用了模块结构。其冷却面和有效装配面绝缘,大大简化了SRBG 的结构。1700 V (用于750 V 的轻载近郊运输车辆)、3300 V(用于至1500 V的重载近郊运输车辆)和6500V(用于至3kV 的大功率)电压等级的IGBT模块已成为欧洲的标准。对4500V 电压等级(中间直流环节电压2800 V),庞巴迪公司使用集成水冷式模块(集成功率模块IPM 等)。

模块内半导体芯片通过底板上的导线并联连接,以符合在宇宙辐射时对热循环强度和耐压强度等的特殊要求。

如同高电位的GTO 门极触发单元(GU),IGBT的控制单元GDU亦在发射极上,它们有电位隔离的直流电压电源(功率等级10 W)。为防止IGBT 去饱和,GDU 必须检测集电极- 发射极电压。通过光纤与电子控制装置进行双向通信,GDU控制导通和关断过程以及保护关断电路。如果GDU可编程,其参数就容易与各种不

同的IGBT 特性相匹配。

IGBT的GDU虽然比GTO的门极触发单元GU小些,但功能要求却很高,以确保IGBT变流器可靠运行。

3、从IGBT技术到IGCT技术

集成门极换流晶闸管IGCT是一种新型电力电子器件。它是将GCT芯片与门极驱动器在外围以低电感方式集成在一起,综合了晶体管的稳定关断能力和晶闸管低通态损耗的优点,在导通阶段发挥晶闸管的性能,关断阶段呈现晶体管的特性。IGCT具有电流大、电压高、开关频率高、可靠性高、结构紧凑、损耗低等特点,而且成本低、成品率高,具有很好的应用前景。

IGCT不需要吸收电路,可以像晶闸管一样导通,像IGBT一样关断,并且具有最低的功率损耗。IGCT在使用时只需将它连接到一个20V的电源和一根光纤就可以控制它的开通和关断。由于IGCT结构设计上采用了新技术,使得IGCT的开通损耗可以忽略不计,再加上它的低导通损耗,使得它可以在以往大功率半导体器件所无法满足的高频率下运行。尽管IGCT变频器不需要限制dv/dt的缓冲电路,但是IGCT本身不能控制di/dt(这是IGCT的主要缺点),所以为了限制短路电流上升率,在实际电路中常串入适当电抗。

在国外,瑞士的ABB公司已经推出比较成熟的高压大容量产品。日本三菱公司在1998年也开发了直径为88mm的6kV/4kA的IGCT晶闸管。在国内,目前株洲电力机车研究所正在开发用于电力机车牵引的IGCT变流系统,有望在不久的将来成为交流传动的主角。还有清华大学在内的少数几家科研机构也在自己开发的电力电子装置中应用了IGCT。

IGCT即有GTO高阻断能力和低通态压降,又具备了和IGBT类似的开关性能,因此是一种较理想的兆瓦级、中压开关器件。

国内技术发展

多年来, 我国电力机车制造事业在总结、优化国产电力机车成熟技术和经验的同时, 不断在引进和消化吸收国外电力机车的先进技术。

1、直直传动

内燃或电力机车采用直流牵引发电机或直流电网直接向数台直流牵引电动机供电的传动方式。由直流接触网供电,机车采用直流牵引电机。直流电经直流变换器(DC-DC)向直(脉)流牵引电机供电。

直-直流电力机车采用直流制供电,牵引变电所内设有整流装置,它将三相交流电变成直流电后,再送到接触网上。因此,电力机车可直接从接触网上取得

直流电供给直流串励牵引电动机使用,简化了机车上的设备。直流制的缺点是接触网的电压低,一般为l500V或3000 V,接触导线要求很粗,要消耗大量的有色金属,加大了建设投资。我国使用直直传动的车型主要有DF,DF2,DF3,ND1,ND2等。

2、交直传动

内燃或电力机车采用交流牵引发电机或单相交流网及变压器,通过整流器向数台直流牵引电动机供电的传动方式。由交流接触网供电,机车采用直流牵引电机。交流电经整流器整流为直流电,向直(脉)流牵引电机供电。

1948年普通晶体管(transistor)的发明引起了电子工业革命,1957年第一只晶闸管(thyristor)的问世,为电力电子技术的诞生奠定了基础。从此,交直传动系统为人们所接受并广泛应用。

交流感应电机要满足车辆牵引特性要求的调速手段非常复杂,而直流电机很容易满足要求。1900年开始,机械整流装置开始用于纽约的地铁供电,直流传动系统开始受到青睐。1949年,第一辆引燃管(ignitron)整流的电传动机车诞生,交直流传动系统开始发展。到了1950年代,硅整流器电传动系统动车问世,标志着交直流牵引传动时代的到来。1960年代初期,大功率硅整流器迅速取代了引燃管,具有调压开关的硅整流器交-直流系统电力机车得到了广泛应用。电传动车在牵引工况,牵引电机大多采用了串励方式,也有采用它励和复励的情况;在制动工况,牵引电机大多采用它励方式。通过调压开关改变硅整流桥交流侧电压来改变牵引电机的端电压,实现机车的控制。晶闸管(俗称可控硅)发明并获得应用以后,于1970年除,提出了“经济多桥段”可控硅相控机车。这样电机端电压可以获得无级调节,从而实现了电力机车的无级调速。

我国1958年诞生了第一台引燃管整流的6Y1型电力机车,1966年在6Y1型电力机车上用硅二极管取代引燃管获得成功,并于1968年定型为韶山1(SS1)型电力机车,第一台韶山1型电力机车整流机组采用ZP-300A/600V二极管,每个整流臂用14个期间串联和16个支路并联组成,全车两组整流机组共用448个二极管,随着硅二极管反向耐压的提高和导通电流的增大,从0131台SS1机车开始,全车只用108只二极管。1978年研制成功的韶山3型电力机车采用了级间晶闸管相控调压技术。1985年研制成功的以PK管为开关器件的韶山4型电力机车标志着无极调速国产相控机车的诞生。

3、交直交传动

内燃机车交-直-交电传动

电力机车交-直-交电传动

内燃或电力机车采用交流牵引发电机或单相交流电网及变压器,经整流器将交流电变换成直流,再通过逆变器将直流电变换成频率和幅值按列车运行控制要求变化的交流电,向数台交流牵引电动机供电的传动方式。由交流接触网供电,车辆采用交流牵引电机。交流电经整流器整流为直流电(中间直流环节),再经逆变器将直流电转换为可调压、变频的三相交流电,向交流牵引电机供电。

交-直-交流电力机车采用交流无整流子牵引电动机(即三相异步电动机),这种电动机在制造、性能、功能,体积、重量、成本、维护及可靠性等方面远比整流子电机优越得多。交直交电力传动系统具有良好的粘着性能,适用于大功率。它之所以迟迟不能在电力机车上应用,主要原因是调速比较困难。这种机车具有优良的牵引能力,很有发展前途。我国现有车型主要有DF4DAC,NJ1,DJ,DJ2,DJJ1,DJ4,CRH等。

展望

我国机车电传动技术已走过50余年的发展里程,取得了巨大进步,铁路运输从速度和功率已被用到技术极限的交-直传动迈入速度更快、功率更高的交流传动的阶段,但这项技术的创新和开拓是永无止境的,它必将随着相关技术的发展而不断提高到更新的水平上。

参考文献:

1、 W.Runge,王渤洪从GTO变流器到IGBT变流器看传动技术的发展(一)[期刊论文]-变流技术与电力牵引2006(6)

2、 W.Runge,王渤洪从GTO变流器到IGBT变流器看传动技术的发展(二)[期刊论文]-变流技术与电力牵引2006(6)

3、刘志刚,梁晖电力电子学【M】北京交通大学出版社 2004年.p1-8

4、ABB Semiconductors AG.Applying in IGCTs[M].Switzerland.February 2006.p4-12

5、俞斌 IGCT应用技术的研究硕士论文北京交通大学 2008.6

6、刘友梅我国电力机车四十年技术发展综述 1998(5-6)

7、张大勇我国机车电传动技术的发展[期刊论文]-机车电传动2007(3)

8、龙谷宗我国电力牵引变压器技术现状及发展[期刊论文]-电力机车与城轨车辆 2006(02)

9、 Weber K ~ 轨道交通车辆的橡胶弹性车轮[C]. 范佩鑫译城市轨道交通车辆转向架文集上海铁道学院 1998

10、王伯铭,赵清橡胶弹性车轮在轻轨车辆中的应用[J] 西南交通大学学报 1998(4)

11、刘连根 NJ1型机车用牵引逆变器[期刊论文]-机车电传动 2000(4)

12、冯江华机车交流传动控制系统的发展[期刊论文]-机车电传动 2001(4)

13、W.D.Weigel (德)先进的交流电传动现状和展望[综述评论]-交流技术与电力牵引2004(5)

14、黄济荣,冯江华我国交流牵引传动技术的最新发展[期刊论文]-机车电传动2001(1)

15、张波,杨万坤,李杰波世界铁路牵引发展50年[期刊论文]-铁道机车车辆2005(12)

最新液压传动技术发展现状与前景展望

液压传动技术发展现状与前景展望 摘要:对液压传动技术及其优缺点进行描述;将其发展现状、工业应用情况作了一个简要的总结归纳;并根据其自身的特点对其发展趋势在液压现场总线技术、自动化控制软件技术、纯水液压传动、电液集成块等四方面做了合理的展望。关键词:液压传动;工业应用;发展趋势 1 液压传动的定义及其地位 液压传动是以流体(液压油液)为工作介质进行能量传递和控制的一种传动形式。它们通过各种元件组成不同功能的基本回路,再由若干基本回路有机地组合成具有一定控制功能的传动系统[1]。液压传动,是机械设备中发展速度最快的技术之一,特别是近年来,随着机电一体化技术的发展,与微电子、计算机技术相结合,液压传动进入了一个新的发展阶段[2]。 2 液压传动的发展简史 液压传动是根据17 世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795 年英国约瑟夫?布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905 年将工作介质水改为油,又进一步得到改善。第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920 年以后,发展更为迅速。1925 液压元件大约在19 世纪末20 世纪初的20 年间,才开始进入正规的工业生产阶段[2]。年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁?尼斯克(G?Constantimsco)对能量波动传递所进行的理论及实际研究;1910 年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展[3]。第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近20 多年。在1955 年前后, 日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。液压技术主要是由武器装备对高质量控制装置的需要而发展起来的。随着控制理论的出现和控制系统的发展,液压技术与电子技术的结合日臻完善,电液控制系统具有高响应、高精度、高功率-质量比和大功率的特点,从而广泛运用于武器和各工业部门及技术领域[4]。 3 液压传动的优缺点 3.1 与机械传动、电气传动相比,液压传动具有以下优点 1.液压传动的各种元件,可以根据需要方便、灵活地来布置。 2.重量轻、体积小、运动惯性小、反应速度快。 3.操纵控制方便,可实现大范围的无级调速(调速范围达2000:1)。 4.可自动实现过载保护。

电力牵引传动系统

.. . … 目录 1. 概述 (1) 1.1 电力牵引的特点 (1) 2. 电力机车的传动方式 (2) 2.1 直-直流传动 (2) 2.2 交-直流传动 (3) 2.3 直-交流传动 (3) 2.4 交-直-交流传动 (3) 3. 我国机车电传动技术的发展与现状 (4) 3.1 交-直传动技术的发展 (4) 3.2 交流传动技术的发展 (5) 4. 动车组的牵引传动系统的现状 (6) 5. 电力牵引传动系统网侧原理图 (8)

1.概述 1.1电力牵引的特点 电力机车属非自带能源式机车,电力牵引具有一系列燃牵引所不及的优越性,表现在以下几方面: 1、电力机车的功率大 燃机车功率受到柴油机本身容量、尺寸和重量的限制,故机车功率不能过大。而电力机车不受上述条件的限制,机车功率(或单位重量功率)要大得多,目前轴功率已达1000kW(若交流牵引电动机可达1600kW)。一台电力机车的牵引能力相当于1.5台(或更多一些)燃机车的牵引能力。由于电力机车功率大、起动快、允许速度高,所以能够多拉快跑,极提高了线路的通过能力和输送能力。 2、电力机车的效率高 由于电力牵引所需的电能是由发电厂(或电站)集中产生,因此燃料的利用率要比燃牵引高得多。由火电厂供电的电力牵引的效率高达35%,由水电站供电的电力牵引则更高,可达60%以上。而燃牵引的效率约为25%左右,而且柴油价格较贵,有燃烧排放污染。 3、电力机车的过载能力强 机车在起动列车或牵引列车通过限制坡道时,其过载能力具有很大的意义。由于电力机车的过载能力不会受到能源供给的限制,而牵引电动机的短时过载能力总是比较大。因此,电力机车所需的起动加速时间一般约为燃机车的1/2,从而能够提高列车速度。 4、电力机车的运营费用较低

电力牵引传动基础——复习提纲一

《电力牵引传动基础》复习提纲 1. 动力集中、动力分散分别是什么含义? 2. 机车在结构上主要由车体和转向架两部分构成;在功能上包括受流系统、牵引与制动系统、 辅助供电系统,以及列车通信系统。 3. 何谓轴重、轴式?一台138吨、轴式为C0-C0的机车,轴重是多少? 4. 名词解释:传动比、一系悬挂、二系悬挂、持续功率、小时功率、粘着、空转(现象、原 因和危害)、轴重转移、质量回转系数、计算粘着系数 5. 从能量来源及传动方式分,轨道牵引动力主要有哪些类型? 蒸汽机车;内燃机车——机械、液力、电力传动;电力机车——直流、低频单相交流、工频单相交流 6. 按照牵引电机及变流器的不同,电传动机车有哪些类型?或者:“交—直”和“交—直—交”是什么含义? 直—直传动(DC/DC)、交—直传动(AC/DC)、直—交传动(DC-AC)、交—直—交传动(AC—DC-AC) 7. 集中供电、部分集中供电、独立供电分别是什么含义? 8. “交—直”型机车,牵引电流要经过哪些环节或装置? 牵引网→受电弓、主断路器、牵引变压器、(调压开关)、整流器、平波电抗器、直流牵引电机→钢轨 9 “交—直—交”型机车,牵引电流要经过哪些环节或装置? 牵引网→受电弓、主断路器、牵引变压器、PWM整流器、直流支撑电容、逆变器、三相异步电机→钢轨 10. 列车的牵引力是如何产生的,牵引力的大小和哪些因素有关,如何有效提高牵引力? 11. 轮轨间的粘着系数与哪些因素有关?机车的计算粘着系数与哪些因素有关,如何有效消除 不利因素的影响? 12. 列车运行阻力包括哪两部分,其中基本阻力与速度是什么关系,附加阻力主要包括哪些阻

国内外电力牵引传动与控制技术的现状与发展

国内外电力牵引传动与控制技术的现状与发展 交通设备1003班叶文斌宋文强卢志文康杨 摘要: 始于上世纪70年代初的交流电传动技术已经从晶闸管技术发展到GTO技术。交流电传动技术的不断成熟,使其真正成为所有新机车动车的标准。在最近几年中实现了IGBT取代GTO晶闸管的重要技术转型。作为最新进步,该技术转型现在还涵盖了大功率应用范围。德国铁路公司新型的BR189 四电流制电力机车最早将该项革新技术应用于极限功率范围。我国电力牵引技术在不断引进和消化吸收国外先进技术的同时,自主创新,也取得了长足的进步。 关键词:电力牵引传动晶闸管 GTO技术 IGBT技术 IGCT技术直直传动交 直传动交直交传动 Abstract: Starting at beginning of the seventies of the last century the three-phase ac drive technology was developed from Thyristor Technology to GTO technology .With its high maturity three-phase ac drive technology has become the standard for practically all new vehicles .During the last years the replacement of GTO-Thyristors by IGBTs (insulated gate bipolar transistor) was carried out as another important technology change. Now as the last step this technology change also covers the high power applications. The new class 189 four-systems locomotive of German Rail (DB AG) forms the leading application for this innovation in the high power range. Electric traction technologies in China continue to introduce and absorb advanced foreign technology, independent innovation, have also made great progress. Key words:Electric traction drive thyristor GTO technology IGBT technology IGCT technology DC-DC drive technology AC-DC drive technology AC-DC-AC drive technology 引言 铁道牵引电传动技术是牵引动力设备的核心技术,其发展目标一直是致力于改善机车牵引和电制动性能,提高运用可靠性和能源的有效利用率,减少对环境的影响,降低运营成本,更好地满足铁路运输市场的需求。自上世纪50年代末,我国第1台干线电力机车问世至今,我国机车电传动技术随着电力电子和功率电力电子器件技术的发展和应用,经历了从第1代SS 1型电力机车的低压侧调压开关调幅式的有级调压调速技术,到第2代的SS3型电力机车调压开关分级与级间晶闸管相控平滑调压相结合的调压调速技术,再到第3代的SS4~SS9型电力机车的多段桥晶闸管相控无级平滑调压调速技术,直到全新一代的“和谐”型交流传动机车的跨越式发展历程。电传动技术与功率电力电子器件技术紧密相关。一代功率电力电子器件,产生一代牵引设备。只有在GTO、IGBT等全控型大功率电力电子器件及先进的控制技术出现后,才真正确立了现代交流传动技术的优势,使机车电传动技术发生了根本变革,由直流传动向交流传动转变。 国外技术发展 现代电力电子技术的迅猛发展,新型电力电子器件不断问世为交流传动奠定

电力传动控制系统——运动控制系统

电力传动控制系统——运动控制系统 (习题解答) 第 1 章电力传动控制系统的基本结构与组成.......... 第 2 章电力传动系统的模型................. 第 3 章直流传动控制系统................... 第 4 章交流传动控制系统................... 第 5 章电力传动控制系统的分析与设计* ............ 错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签

第1章电力传动控制系统的基本结构与组成 1.根据电力传动控制系统的基本结构,简述电力传动控制系统的基本原理和共性问题。 答:电力传动是以电动机作为原动机拖动生产机械运动的一种传动方式,由于电力传输和变换的便利,使电力传动成为现代生产机械的主要动力装置。电力传动控制系统的基本结构如图1-1所示,一般由电源、变流器、电动机、控制器、传感器和生产机械(负载)组成。 控制指令 图1-1电力传动控制系统的基本结构 电力传动控制系统的基本工作原理是,根据输入的控制指令(比如:速度或位置指令),与传感器采集的系统检测信号(速度、位置、电流和电压等),经过一定的处理给出相应的反馈控制信号,控制器按一定的控制算法或策略输出相应的控制信号,控制变流器改变输入到电动机的电源电压、频率等,使电动机改变转速或位置,再由电动机驱动生产机械按照相应的控制要求运动,故又称为运动控制系统。 虽然电力传动控制系统种类繁多,但根据图1-1所示的系统基本结构,可以归纳出研发或应用电力传动控制系统所需解决的共性问题: 1)电动机的选择。电力传动系统能否经济可靠地运行,正确选择驱动生产 机械运动的电动机至关重要。应根据生产工艺和设备对驱动的要求,选择合适的电动机的种类及额定参数、绝缘等级等,然后通过分析电动机的发热和冷却、工作制、过载能力等进行电动机容量的校验。 2)变流技术研究。电动机的控制是通过改变其供电电源来实现的,如直流 电动机的正反转控制需要改变其电枢电压或励磁电压的方向,而调速需要改变电 枢电压或励磁电流的大小;交流电动机的调速需要改变其电源的电压和频率等,因此,变流技术是实现电力传动系统的核心技术之一。 3)系统的状态检测方法。状态检测是构成系统反馈的关键,根据反馈控制 原理,需要实时检测电力传动控制系统的各种状态,如电压、电流、频率、相位、 磁链、转矩、转速或位置等。因此,研究系统状态检测和观测方法是提高其控制

液压传动技术的发展状况及发展趋势

液压传动技术的发展状况及发展趋势 班级:模具2班 姓名:蔡腾飞 学号:130101020071

液压传动技术的发展状况及发展趋势 摘要:液压传动有许多突出的优点,因此它的应用非常广泛.如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等关键词:液压传动工业应用发展方向优点及缺点 一、液压传动的发展概况 液压传动是一门新的学科,虽然从17世纪中叶帕斯卡提出静压传动原理,18世纪末英国制成世界上第一台水压机算起,液压传动技术已有两三百年的历史,但直到20世纪30 年代它才较普遍地用于起重机、机床及工程机械。在第二次世界大战期间,由于战争需要,出现了由响应迅速、精度高的液压控制机构所装备的各种军事武器。第二次世界大战结束后,液压技术迅速转向民用工业,液压技术不断应用于各种自动机及自动生产线。20世纪60年代以后,液压技术随着原子能、空间技术、计算机技术的发展而迅速发展。因此,液压传动真正的发展也只是近三四十年的事。液压传动技术广泛应用了如自动控制技术、计算机技术、微电子技术、及新工艺和新材料等高技术成果,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求 二、液压传动的工业应用 液压传动有许多突出的优点,因此它的应用非常广泛,如一般工。业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等国;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。 目前, 它们分别在实现高压、高速、大功率、高效率、低噪声、长寿命、高度集成化、小型化与轻量化、一体化和执行件柔性化等方面取得了很大的进展。同时, 由于与微电子技术密切配合, 能在尽可能小的空间内传递尽可能大的功率并加以准确的控制, 从而更使得它们在各行各业中发挥出了巨大作用。 应该特别提及的是, 近年来, 世界科学技术不断迅速发展, 各部门对液压传动提出了更高的要求。液压传动与电子技术配合在一起, 广泛应用于智能机器人、海洋开发、宇宙航行、地震予测及各种电液伺服系统, 使液压传动的应用提高到一个崭新的高度。 三、液压传动的发展方向 1.减少能耗,充分利用能量 液压技术在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题:①减少元件和系统的内部压力损失,以减少功率损失。主要表现在改进元件内部流道的压力损失,

(发展战略)液压技术国内外发展方向最全版

(发展战略)液压技术国内 外发展方向

液压技术国内外发展趋势 液压技术发展趋势 液压技术是实现现代化传动和控制的关键技术之壹,世界各国对液压工业的发展都给予很大重视。世界液压元件的总销售额为350亿美元。据统计,世界各主要国家液压工业销售额占机械工业产值的2%~3.5%,而我国只占1%左右,这充分说明我国液压技术使用率较低,努力扩大其应用领域,将有广阔的发展前景。液压气动技术具有独特的优点,如:液压技术具有功率重量比大,体积小,频响高,压力、流量可控性好,可柔性传送动力,易实现直线运动等优点;气动传动具有节能、无污染、低成本、安全可靠、结构简单等优点,且易和微电子、电气技术相结合,形成自动控制系统。因此,液压气动技术广泛用于国民经济各部门。可是近年来,液压气动技术面临和机械传动和电气传动的竞争,如:数控机床、中小型塑机已采用电控伺服系统取代或部分取代液压传动。其主要原因是液压技术存在渗漏、维护性差等缺点。为此,必须努力发挥液压气动技术的优点,克服缺点,注意和电子技术相结合,不断扩大应用领域,同时降低能耗,提高效率,适应环保需求,提高可靠性,这些都是液压气动技术继续努力的永恒目标,也是液压气动产品参和市场竞争是否取 胜的关键。 液压产品技术发展趋势 由于液压技术广泛应用了高科技成果,如:自控技术、计算机技术、微电子技术、可靠性及新工艺新材料等,使传统技术有了新的发展,也使产品的质量、水平有壹定的提高。尽管如此,走向21世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。其主要 的发展趋势将集中在以下几个方面。 减少损耗,充分利用能量 液压技术在将机械能转换成压力能及反转换过程中,总存在能量损耗。为减少能量的损失,必须解决下面几个问题:减少元件和系统的内部压力损失,以减少功率损失;减少或消除系统的节流损失,尽量减少非安全需要的溢流量;采用静压技术和新型密封材料,减少摩擦损失;改善液压系统性能,采用负荷传感系统、二 次调节系统和采用蓄能器回路。 泄漏控制 泄漏控制包括:防止液体泄漏到外部造成环境污染和外部环境对系统的侵害俩个方面。今后,将发展无泄漏元件和系统,如发展集成化和复合化的元件和系统,实现无管连接,研制新型密封和无泄漏管接头,电机油泵组合装置等。无泄漏将是世界液压界今后努力的重要方向之壹。 污染控制 过去,液压界主要致力于控制固体颗粒的污染,而对水、空气等的污染控制往往不够重视。今后应重视解决:严格控制产品生产过程中的污染,发展封闭式系统,防止外部污染物侵入系统;应改进元件和系统设计,使之具有更大的耐污染能力。同时开发耐污染能力强的高效滤材和过滤器。研究对污染的在线测量;开发油水分离净化装置和排湿元件,以及开发能清除油中的气体、水分、化学物质和微生物的过滤元江及检测装置。 主动维护 开展液压系统的故障预测,实现主动维护技术。必须使液压系统故障诊断现代化,加强专家系统的开发研究,建立完整的、具有学习功能的专家知识库,且利用计算机和知识库中的知识,推算出引起故障的原因,提出维修方案和预防措施。要进壹步开发液压系统故障诊断专家系统通用工具软件,开发液压系统自补偿系统,包括自调整、自校正,在故障发生之前进行补偿,这是液压行业努力的方向。 机电壹体化

电力传动电力拖动控制系统B卷附参考答案

2014—2015 学年第二学期期末考试 课程名称:电力传动控制系统 开 卷 B 卷 120分钟 一、选择题(共20分,每题2分) 1、直流P W M 变换器—电动机系统与晶闸管—电动机系统相比, B 。 A 、前者调速范围宽但谐波大 B 、前者调速范围宽且谐波少 C 、后者调整范围宽但谐波大 2、静差率和机械特性的硬度有关,当理想空载转速一定时,特性越硬,静差率 A 。 A 、越小 B 、越大 C 、不变 3、在可逆直流调速系统当中,抑制瞬时脉动环流的措施为 A 。 A 、采用均衡电抗器 B 、采用平波电抗器 C 、采用α=β配合控制 4、带比例调节器的单闭环直流调速系统,如果转速的反馈值与给定值相等,则调节器的输出为 A 。 A 、零 B 、大于零的定值 C 、保持原先的值不变 5、无静差调速系统的PI 调节器中P 部份的作用是 B 。 A 、消除稳态误差 B 、加快动态响应 C 、既消除稳态误差又加快动态响应 6、转速、电流双闭环调速系统中,在恒流升速阶段时,两个调节器的状态是 A 。 A 、ASR 饱和、ACR 不饱和 B 、ACR 饱和、ASR 不饱和 C 、ASR 和ACR 都饱和 7、控制系统能够正常运行的首要条件是 B 。 A 、准确性 B 、稳定性 C 、快速性 8、在直流电机调速系统中,系统无法抑制 B 的扰动。 A 、电网电压 B 、电机励磁电压变化 C 、运算放大器参数变化 9、α=β配合控制双闭环可逆直流调速系统制动过程主要阶段是 C 。 A 、本组逆变阶段 B 、它组反接制动阶段 C 、它组逆变阶段 10、在转速、电流双闭环调速系统中,以下哪一项影响最大电流Idm 的设计 C 。 A 、运算放大器 B 、稳压电源 C 、 电动机允许的过载能力 二、判断题(共20分,每题2分) 1、双闭环调速系统中,给定信号* n U 不变,增加转速反馈系数α,系统稳定运行时转速反馈电压n U 不变。 ( 对 ) 2、I 型系统工程最佳参数是指参数关系选用 K=1/(2T )或ξ=0.707。 ( 对)

液压传动技术的现状及发展

液压传动技术的现状及发展 班级:13级模具二班 姓名:王金露 学号:

液压传动技术的现状及发展【摘要】液压作为一个广泛应用的技术,在未来有更广泛的前景,随着计算机的深入发展,液压控制系统可以和只能的技术,计算机的技术等技术结合起来,这样能够在更多的场合中发挥作用,也可以更加精巧的,更加灵活的完成预期的控制任务。与机械传动相比,液压传动更容易实现其运动参数和动力参数的控制。近年来,液压技术迅速发展,液压元件日臻完善,使得液压传动在机械系统中的应用突飞猛进,液压传动具有的优势也日渐凸显。随着液压技术与微电子技术,计算机控制技术以及传感技术的紧密结合,液压传动技术必将在工程机械行业走驱动系统发展中发挥越来越重要的作用。世界各国对液压工业的发展都给予很大重视。 【关键词】液压装置,计算机,自动控制,微电子 【引言】液压传动技术是工业上最常见的一门技术,他是利用各种元件根据帕斯卡原理来达到力的传递所设计的一种技术。液压传动技术根据其自身的特点在工业上得到了广泛的应用,但也相应的有一

定的局限性。为了给用户提供更全面、更可靠、更物美价廉的自动化,保证产品质量的均一性,减轻单调或繁重的体力劳动,提高生产效率,降低生产成本就需要对液压传动技术不断的创新,因此对于机器的性能、质量、可靠性的要求不断提高,液压传动技术必将在工程机械行业的发展中发挥出越来越重要的作用。 【正文】 液压传动是根据17世纪帕斯卡提出的液体静压力传动原理 而发展起来的一门新兴技术,1795年英国约瑟夫?布拉曼,在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。第一次世界大战后液压传动广泛应用,特别是 1920 年以后,发展更为迅速。 1925 液压元件大约在 19 世纪末 20 世纪初的20年间,才开始进入正规的工业生产阶段。年维克斯发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁?尼斯克对能量波动传递所进行的理论及实际究;1910 年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。第二次世界大战期间,在美国机床中30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近20多年。在1955年前后,日本迅速发展液压传动,1956年成立了“液压工业会”。近30年间,日本液压传动发展之快,居世界领先地位。液压技术主要是由武器装备对高质量控制装置的需要而发展起来的。随着

电力牵引传动系统

目录 1. 概述 (1) 1.1 电力牵引的特点 (1) 2. 电力机车的传动方式 (2) 2.1 直-直流传动 (2) 2.2 交-直流传动 (3) 2.3 直-交流传动 (3) 2.4 交-直-交流传动 (4) 3. 我国机车电传动技术的发展与现状 (4) 3.1 交-直传动技术的发展 (4) 3.2 交流传动技术的发展 (5) 4. 动车组的牵引传动系统的现状 (6) 5. 电力牵引传动系统网侧原理图 (8)

1.概述 1.1电力牵引的特点 电力机车属非自带能源式机车,电力牵引具有一系列内燃牵引所不及的优越性,表现在以下几方面: 1、电力机车的功率大 内燃机车功率受到柴油机本身容量、尺寸和重量的限制,故机车功率不能过大。而电力机车不受上述条件的限制,机车功率(或单位重量功率)要大得多,目前轴功率已达1000kW(若交流牵引电动机可达1600kW)。一台电力机车的牵引能力相当于1.5台(或更多一些)内燃机车的牵引能力。由于电力机车功率大、起动快、允许速度高,所以能够多拉快跑,极大地提高了线路的通过能力和输送能力。 2、电力机车的效率高 由于电力牵引所需的电能是由发电厂(或电站)集中产生,因此燃料的利用率要比内燃牵引高得多。由火电厂供电的电力牵引的效率高达35%,由水电站供电的电力牵引则更高,可达60%以上。而内燃牵引的效率约为25%左右,而且柴油价格较贵,有燃烧排放污染。 3、电力机车的过载能力强 机车在起动列车或牵引列车通过限制坡道时,其过载能力具有很大的意义。由于电力机车的过载能力不会受到能源供给的限制,而牵引电动机的短时过载能力总是比较大。因此,电力机车所需的起动加速时间一般约为内燃机车的1/2,从而能够提高列车速度。 4、电力机车的运营费用较低 (1)功率大、起动快、运行速度高、过载能力强、可以多拉快跑; (2)整备距离长、适合于长交路,提高了机车的利用率; (3)检修周期长、日常维护保养工作量也小。 一般情况下,电力牵引的运营费用比内燃牵引要低15%左右。 此外,由于电力机车运行过程中不污染环境,对于大型铁路枢纽站及隧道长

液压传动论文

液压传动论文 液压传动,是根据17 世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。 在伦敦用水作为工作介质, 以水压机的形式将其应用于工业上, 诞生了世界上第一台水压机。1905 年将工作介质水改为油, 又进一步得到改善。 第一次世界大战(1914 -- 1918) 后液压传动广泛应用, 特别是1920 年以后, 发展更为迅速。液压元件大约在19 世纪末20 世纪初的20 年间, 才开始进入正规的工业生产阶段。1925 年维克斯(F.Vikers) 发明了压力平衡式叶片泵, 为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁·尼斯克(G · Constantimsco) 对能量波动传递所进行的理论及实际研究;1910 年对液力传动( 液力联轴节、液力变矩器等) 方面的贡献,使这两方面领域得到了发展。 液压传动有许多突出的优点,因此它的应用非常广泛,如一般工。业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等国;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。 目前, 它们分别在实现高压、高速、大功率、高效率、低噪声、长寿命、高度集成化、小型化与轻量化、一体化和执行件柔性化等方面取得了很大的进展。同时, 由于与微电子技术密切配合, 能在尽可能小的空间内传递尽可能大的功率并加以准确的控制, 从而更使得它们在各行各业中发挥出了巨大作用。 应该特别提及的是, 近年来, 世界科学技术不断迅速发展, 各部门对液压传动提出了更高的要求。液压传动与电子技术配合在一起, 广泛应用于智能机器人、海洋开发、宇宙航行、地震予测及各种电液伺服系统, 使液压传动的应用提高到一个崭新的高度。目前,液压传动发展的动向, 概括有以下几点: 1. 节约能源, 发展低能耗元件, 提高元件效率; 2. 发展新型液压介质和相应元件, 如发展高水基液压介质和元件, 新型石油基液压介质; 3. 注意环境保护, 降低液压元件噪声; 4. 重视液压油的污染控制; 5. 进一步发展电气-液压控制,提高控制性能和操作性能; 6. 重视发展密封技术,防止漏油; 7. 其它方面,如元件微型化、复合化和系统集成化的趋势仍在继续发展,对液压系统元件的可靠性设计、逻辑设计,与电子技术高度结合,对故障的早期诊断、预测以及防止失效的早期警报等都越来越准确. 一、液压传动的主要优点 与机械传动、电气传动相比,液压传动具有以下优点: (1)液压传动的各种元件、可根据需要方便、灵活地来布置; (2)重量轻、体积小、运动惯性小、反应速度快; (3)操纵控制方便,可实现大范围的无级调速(调速范围达2000:1); (4)可自动实现过载保护; (5)一般采用矿物油为工作介质,相对运动面可自行润滑,使用寿命长; (6)很容易实现直线运动;

我国液压技术发展现状及趋势

我国液压技术发展现状及趋势

一.液压技术地位 液压传动作为一种传动方式,由于具备体积小、重量轻,单位输出的功率大;可在大范围内实现无级变速,且调节方便;操纵方便,与电子技术结合更易与实现各种自动控制和远距离操纵;惯量小,响应速度快,启动、制动和换向迅速;配置灵活,组装方便;易于实现过载保护,安全性好;采用矿物质油为工作介质,自润滑性好;可靠耐用等独到的特点,已成功地用于一切需要中等以上功率输出,且需对运动过程进行灵活控制和调节的地方,是现代化传动与控制的关键技术之一。21世纪是一个高度自动化的社会,随着科技的发展和人类的新需要,大型智能型行走机器人将应运而生。资料表明,液压技术作为能量传递或做功环节是其中必不可少的一部分。故无论现在还是将来,液压技术在国民经济中都占有重要的一席之地,发挥着无法替代的作用,不仅我国,世界各国对液压工业的发展都给予了很大重视。 二.液压技术的优缺点 1.液压系统的优点: 与机械传动、电气传动相比,液压传动具有以下优点: (1)功率密度高,在输出同样功率的条件下,体积和质量可以减少很多。 (2)容易实现无级调速,调速范围大。 (3)可实现自动过载保护。 (4)液压元件已经实现了标准化、系列化和通用化,制造和使用都非常方便。 2.液压系统的缺点: (1)效率较低。在液压传动系统中,不可避免地存在着泄漏和压力损失,工作过程中会伴有能量损耗。 (2)液压油的黏温特性,制约着液压系统的性能,不能在很高或很低的温度下工作。(3)液压油容易引起污染,污染后会导致元件卡滞、泄漏,影响系统的工作性能。(4)液压传动出现故障时,查找原因比较复杂,维修不方便。 三.我国液压技术现状 目前我国制造业快速发展,正经历从制造大国向制造强国的转变,但因液压元件基础研究水平不高,严重制约其核心技术提升,正处于困难和机遇并存阶段。液压技术对于我国机械制造业来说,具有极其重要作用,为一个十分重要的基础研究领域。液压技术是推动国家装备制造业发展,在装备制造业等领域中,起着重要作用。液压技术水平高低严重制约我国制造业发展,影响我国制造强国目标实现,决定我国机械制造行业发展历程,并影响人们物质生活水平提高和生活质量保证。发达国家的液压企业,发展历史悠久,积淀深厚,技术领先。在液压技术研究方面,欧美起步早、设备先进、技术成熟,掌握高性能液压产品加工生产的先进技术,并垄断高端液压产品市场。在技术成熟性、产品种类、规模化生产及加工等方面,我国和国外差距明显,尤其是高端液压产品还依赖进口,严重阻碍我国高端液压产品国产化进程。伴随我国经济与国防的发展,核电、船舶、航天航空、冶金、军工等一些关键领域的液压技术受制于人的现象越来越严重,严重阻碍我国基础装备工业的发展。 四.我国液压技术发展中存在的问题 我国处于液压行业产业链低端位置。我国液压行业发展时间短、产业集中度低,企业规

(完整版)液压传动系统的概论.

液压传动技术的历史进展与趋势 从公元前200多年前到17世纪初,包括希腊人发明的螺旋提水工具和中国出现的水轮等,可以说是液压技术最古老的应用。 自17世纪至19世纪,欧洲人对液体力学、液体传动、机构学及控制理论与机械制造做出了主要贡献,其中包括:1648年法国的B.帕斯卡(B.Pascal)提出的液体中压力传递的基本定律;1681年D.帕潘(D.Papain)发明的带安全阀的压力釜;1850年英国工程师威廉姆.乔治.阿姆斯特朗(William George Armstrong)关于液压蓄能器的发明;19世纪中叶英国工程师佛莱明?詹金(F.Jinken)所发明的世界上第一台蒸气喷射器差压补偿流量控制阀;1795年英国人约瑟夫?布瑞玛(Joseph Bramah)登记的第一台液压机的英国专利;这些贡献与成就为20世纪液压传动与控制技术的发展奠定了科学与工艺基础。 19世纪工业上所使用的液压传动装置是以水作为工作介质,因其密封问题一直未能很好解决以及电气传动技术的发展和竞争,曾一度导致液压技术停滞不前,卷板机。此种情况直至1905年美国人詹涅(Janney)首先将矿物油代替水作液压介质后才开始改观,折弯机。20世纪30年代后,由于车辆、航空、舰船等功率传动的推动,相继出现了斜轴式及弯轴式轴向柱塞泵、径向和轴向液压马达;1936年Harry Vickers发明了先导控制压力阀为标志的管式系列液压控制元件。第二次世界大战期间,由于军事上的需要,出现了以电液伺服系统为代表的响应快、精度高的液压元件和控制系统,从而使液压技术得到了迅猛发展。 20世纪50年代,随着世界各国经济的恢复和发展,生产过程自动化的不断增长,使玻璃冷却器技术很快转入民用工业,在机械制造、起重运输机械及各类施工机械、船舶、航空等领域得到了广泛发展和应用。同期,德国阿亨工业大学(TH Aachen)在仿形刀架

液压传动技术的发展状况及发展趋势

液压传动技术的发展状 况及发展趋势 Modified by JACK on the afternoon of December 26, 2020

液压传动技术的发展状况及发展趋势 班级:模具2班 姓名:蔡腾飞 学号:

液压传动技术的发展状况及发展趋势 摘要:液压传动有许多突出的优点,因此它的应用非常广泛.如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等关键词:液压传动工业应用发展方向优点及缺点 一、液压传动的发展概况 液压传动是一门新的学科,虽然从17世纪中叶帕斯卡提出静压传动原理,18世纪末英国制成世界上第一台水压机算起,液压传动技术已有两三百年的历史,但直到20世纪30年代它才较普遍地用于起重机、机床及工程机械。在第二次世界大战期间,由于战争需要,出现了由响应迅速、精度高的液压控制机构所装备的各种军事武器。第二次世界大战结束后,液压技术迅速转向民用工业,液压技术不断应用于各种自动机及自动生产线。20世纪60年代以后,液压技术随着原子能、空间技术、计算机技术的发展而迅速发展。因此,液压传动真正的发展也只是近三四十年的事。液压传动技术广泛应用了如自动控制技术、计算机技术、微电子技术、及新工艺和新材料等高技术成果,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求 二、液压传动的工业应用 液压传动有许多突出的优点,因此它的应用非常广泛,如一般工。业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等国;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。 目前,它们分别在实现高压、高速、大功率、高效率、低噪声、长寿命、高度集成化、小型化与轻量化、一体化和执行件柔性化等方面取得了很大的进展。同时,由于与微电子技术密切配合,能在尽可能小的空间内传递尽可能大的功率并加以准确的控制,从而更使得它们在各行各业中发挥出了巨大作用。 ?应该特别提及的是,近年来,世界科学技术不断迅速发展,各部门对液压传动提出了更高的要求。液压传动与电子技术配合在一起,广泛应用于智能机器人、海洋开发、宇宙航行、地震予测及各种电液伺服系统,使液压传动的应用提高到一个崭新的高度。 三、液压传动的发展方向 1.减少能耗,充分利用能量

电力牵引传动..

电力牵引传动与控制第一章电力牵引传动与控制系统概述 一、系统组成与功用 1.①内燃机车电力传动与控制系统组成 ②电力机车电力传动与控制系统组成 2.机车理想牵引特性曲线 图1.2 牛马特性 理想特性要求:机车在运行时能经常利用其动力装置的额定功率.即:F·V=3.6η·N=const.

3.电传动装置的功用? 图1.3 柴油机功率特性和扭矩特性 ①充分利用和发挥机车动力装置的功率; ②扩大机车牵引力F与速度V的调节范围; ③提高机车过载能力,解决列车起动问题; ④改善机车牵引控制性能。 Why要电传动:柴油机通过机械直接传动不能适应机车起动、过载、恒功等要求 二、系统分类 1.直-直电力传动系统 内燃或电力机车采用直流牵引发电机或直流电网直接向数台直流牵引电动机供电的传动方式。 特点: ①调速性能优良,系统简洁。 ②直流牵引电机造价较高,但可靠性、维护性相对较差。 ③受直流电机换向条件和机车限界、轴重等限制,主发电机单机功率受到限制。一般在2200KW以下。 ④车型:早期DF,DF2,DF3,ND1,ND2等

2.交-直电力传动系统 内燃或电力机车采用交流牵引发电机或单相交流网及变压器,通过整流器向数台直流牵引电动机供电的传动方式。 特点: ①采用三相交流同步发电机,结构简单,可靠性高,重量轻,造价较低。 ②适用于大功率机车。 ③车型:DF4,DF5,DF7,DF11,ND4,ND5,SS3-SS9等。 3.交-直-交电力传动系统 内燃或电力机车采用交流牵引发电机或单相交流电网及变压器,经整流器将交流电变换成直流,再通过逆变器将直流电变换成频率和幅值按列车运行控制要求变化的交流电,向数台交流牵引电动机供电的传动方式。 特点: ①采用交流牵引电机,彻底克服了直-直系统的不足,重量轻,造价低,可靠性及维修性好 ②良好的粘着性能 ③适用于大功率 ④控制系统复杂 ⑤车型:DF4DAC,NJ1; DJ,DJ2,DJJ1,DJ4; HX、CRH系列等 三、发展历史与现状 1.大功率(内然)机车电力传动与液力传动两种主要传动方式的演变与发展 主要趋势:电力传动 2.电力传动形式的发展:直-直→交-直→交-直-交 发展趋势:大功率、电力牵引、交流传动

(完整版)液压传动发展概况.

第一章绪论 第一节液压传动发展概况 自18世纪末英国制成世界上第一台水压机算起,液压传动技术已有二三百年的历史。直到20世纪30年代它才较普遍地用于起重机、机床及工程机械。在第二次世界大战期间,由于战争需要,出现了由响应迅速、精度高的液压控制机构所装备的各种军事武器。第二次世界大战结束后,战后液压技术迅速转向民用工业,液压技术不断应用于各种自动机及自动生产线。 本世纪60年代以后,液压技术随着原子能、空间技术、计算机技术的发展而迅速发展。因此,液压传动真正的发展也只是近三四十年的事。当前液压技术正向迅速、高压、大功率、高效、低噪声、经久耐用、高度集成化的方向发展。同时,新型液压元件和液压系统的计算机辅助设计(CAD)、计算机辅助测试(CAT)、计算机直接控制(CDC)、机电一体化技术、可靠性技术等方面也是当前液压传动及控制技术发展和研究的方向。 我国的液压技术最初应用于机床和锻压设备上,后来又用于拖拉机和工程机械。现在,我国的液压元件随着从国外引进一些液压元件、生产技术以及进行自行设计,现已形成了系列,并在各种机械设备上得到了广泛的使用。 机械的传动方式 一切机械都有其相应的传动机构借助于它达到对动力的传递和控制的目的。 机械传动——通过齿轮、齿条、蜗轮、蜗杆等机件直接把动力传送到执行机构 的传递方式。 电气传动——利用电力设备,通过调节电参数来传递或控制动力的传动方式 液压传动——利用液体静压 力传递动力 液体传动 液力传动——利用液体静流 动动能传递动力 流体传动 气压传动 气体传动 气力传动 第二节液压传动的工作原理及其组成 一、液压传动的工作原理 液压传动的工作原理,可以用一个液压千斤顶的工作原理来说明。

电力牵引传动控制系统发展现状

1.2电力牵引传动控制系统发展现状 自20世纪80年代末90年代初至今,己有多种型号的三相交流电力机车、交流电传动内燃机车和高速电动车组分别在德国、法国、日本、中国等众多国家的铁路线上运行。从20世纪90年代开始,铁路发达国家已不再生产交直传动电力机车和直流传动内燃机车,,而是全部采用交流传动技术。 交流传动电力机车具有如下优势[(2l0 (1)良好的牵引性能:合理的利用系统的调压、调频特性,可以实现宽范围 的平滑调速,另外调节调频特性能使机车和动车组启动时发出较大启动转矩。 (2)电网功率因数高、谐波干扰小:在交直交电力机车和动车组上,其电源 侧变流器可以采用四象限脉冲整流器,它通过PWM控制方法,可以调节电网输入电流的相位,使所取电流接近正弦波形,并能在广泛的负载范围内使机车和动车组的功率因数接近于1,这在减少对通信信号的谐波干扰方面和充分利用电网的传输功率方面都有很大的意义。另外,四象限脉冲整流器能很方便的实现牵引和再生之间的能量转换,取得显著的节能效果。 (3)牵引系统功率大、体积小、重量轻、运行可靠:由于异步牵引电动机转 速可达4000 r /min,利用了直流电动机换向器所占的空间,所以交流电动机能够做到功率大、重量轻,与带换向器的直流(脉流)电动机相比,其单位质量功率(kW/棺)是直流电动机的3倍。在列车车体提供的空间范围内,异步电动机的功率可以达到1400^-2000 kW。另外,交流电动机没有换向器和电刷装置,机车和动车组主电路系统又可以省去许多带触点电器,故障率低易于维护,进一步提高了机车和动车组运行中的可靠性。 (4)良好的牵引特性:由于交流异步电动机有较硬的机械特性,有自然防空 转的性能。三相交流异步电机对瞬时过压和过流不敏感,不存在换向器和火花问题,在启动时能在更长的时间内发出更大的转矩。特别是牵引电机控制采用矢量控制或直接转矩控制策略,可以实现大范围平滑调速,适合当代动车组高速牵引、机车重载牵引的要求。 20世纪70年代,我国许多科研单位已开始进行电力半导体变流技术和三相交流传动的研究,容量从几千瓦逐渐扩大。与此同时,铁道科学研究院与株洲电力机车研究所等也在进行交流传动机车的研制,到1996年研制成功单轴功率1000 kW的AC4000型交流传动原型机车,这是我国牵引传动由交直传动转变为 铁路运输作为我国中长距离,大运量、安全、低耗、环保、快捷的运输形式已成为交通运输体系中的重要组成部分,在国民经济中占有非常重要的地位。尤其是

相关文档
最新文档