统计学第四章习题答案-贾俊平
统计学第四章习题答案 贾俊平

第四章 统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下: 2 4 7 10 10 10 12 12 14 15 要求:(1)计算汽车销售量的众数、中位数与平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics汽车销售数量 10 Missing0 Mean 9、60 Median 10、00Mode10 Std 、 Deviation 4、169 Percentiles25 6、25 50 10、00 75单位:周岁19 15 29 25 24 23 21 38 22 18 30 20 19 19 16 23 27 22 34 24 41 20 3117 23要求;(1)计算众数、中位数:排序形成单变量分值的频数分布与累计频数分布:网络用户的年龄(2)根据定义公式计算四分位数。
Q1位置=25/4=6、25,因此Q1=19,Q3位置=3×25/4=18、75,因此Q3=27,或者,由于25与27都只有一个,因此Q3也可等于25+0、75×2=26、5。
(3)计算平均数与标准差;Mean=24、00;Std、Deviation=6、652(4)计算偏态系数与峰态系数:Skewness=1、080;Kurtosis=0、773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6、652、呈右偏分布。
如需瞧清楚分布形态,需要进行分组。
1、确定组数:()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4、3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图::一种就是所有颐客都进入一个等待队列:另—种就是顾客在三千业务窗口处列队3排等待。
贾俊平第四版统计学-第四章-习题

第四章习题一、选择题1. 一组数据中出现频数最多的变量值称为()。
A.众数B.中位数C.四分位数D.均值2.一组数据排序后处于中间位置上的变量值称为()。
A.众数B.中位数C.四分位数D.均值3. n个变量值乘积的n次方根称为()。
A.众数B.中位数C.四分位数D.几何平均数4. 非众数组的频数占总频数的比率称为()。
A.异众比率B.离散系数C.平均差D.标准差5. 一组数据的最大值与最小值之差称为()。
A.平均差B.标准差C.极差D.四分位差6. 如果一个数据的标准分数是-2,表明该数据()。
A.比平均数高出2个标准差B.比平均数低2个标准差C.等于2倍的平均数D.等于2倍的标准差7. 一组数据的标准分数,其()。
A.均值为1,方差为0 B.均值为0,方差为1C.均值为0,方差为0 D.均值为1,方差为18. 经验法则表明,当一组数据对称分布式,在均值加减1个标准差的范围内大约有()。
A.68%的数据B.95%的数据C.99%的数据D.100%的数据9. 离散系数的主要用途是()。
A.反映一组数据的离散程度B.反映一组数据的平均水平C.比较多组数据的离散程度D.比较多组数据的平均水平10. 两组数据相比较()。
A.标准差大的离散程度也大B.标准差大的离散程度也小C.离散系数大的离散程度也大D.离散系数大的离散程度也小11. 某大学经济管理学院有1200名学生,法学院有800名学生,医学院有320名学生,理学院有200名学生。
在上面的描述中,众数是()。
A.1200 B.经济管理学院C.200 D.理学院12. 对于分类数据,测度其离散程度使用的统计量主要是()。
A.众数B.异众比率C.标准差D.均值13. 对于右偏分布,均值、中位数和众数之间的关系是()。
A.均值>中位数>众数B.中位数>均值>众数C.众数>中位数>均值D.众数>均值>中位数14. 在某行业中随即抽取10家企业,第一季度的利润额(单位:万元)分别为72,63.1,54.7,54.3,29,26.9,25,23.9,23,20。
统计学第四章习题答案-贾俊平

第四章统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数.(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics10Missing0Mean9.60Median10.00Mode10Std. Deviation4。
169Percentiles256。
255010.0075单位:周岁19152925242321382218302019191623272234244120311723要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄(2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18。
75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0。
75×2=26.5。
(3)计算平均数和标准差;Mean=24。
00;Std。
Deviation=6。
652(4)计算偏态系数和峰态系数:Skewness=1。
080;Kurtosis=0。
773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
1、确定组数: ()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 — 最小值)÷ 组数=(41-15)÷6=4。
3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图::一种是所有颐客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。
为比较哪种排队方式使顾客等待的时间更短.两种排队方式各随机抽取9名顾客.得到第一种排队方式的平均等待时间为7.2分钟,标准差为1.97分钟。
《统计学》(贾俊平,第五版)分章习题及答案

《统计学》分章习题及答案(贾俊平,第五版)主编:杨群目录习题部分 (2)第1章导论 (3)第2章数据的搜集 (4)第3章数据的整理与显示 (5)第4章数据的概括性度量 (6)第5章概率与概率分布 (10)第6章统计量及其抽样分布 (11)第7章参数估计 (11)第8章假设检验 (13)第9章分类数据分析 (14)第10章方差分析 (16)第11章一元线性回归 (17)第12章多元线性回归 (19)第13章时间序列分析和预测 (22)第14章指数 (25)答案部分 (30)第1章导论 (30)第2章数据的搜集 (30)第3章数据的图表展示 (30)第4章数据的概括性度量 (31)第5章概率与概率分布 (32)第6章统计量及其抽样分布 (33)第7章参数估计 (33)第8章假设检验 (34)第9章分类数据分析 (34)第10章方差分析 (36)第11章一元线性回归 (37)第12章多元线性回归 (38)第13章时间序列分析和预测 (40)第14章指数 (41)习题部分第1章导论一、单项选择题1.指出下面的数据哪一个属于分类数据()A.年龄B.工资C.汽车产量D.购买商品的支付方式(现金、信用卡、支票)2.指出下面的数据哪一个属于顺序数据()A.年龄B.工资C.汽车产量D.员工对企业某项制度改革措施的态度(赞成、中立、反对)3.某研究部门准备在全市200万个家庭中抽取2000个家庭,据此推断该城市所有职工家庭的年人均收入,这项研究的统计量是()A.2000个家庭B.200万个家庭C.2000个家庭的人均收入D.200万个家庭的人均收入4.了解居民的消费支出情况,则()A.居民的消费支出情况是总体B.所有居民是总体C.居民的消费支出情况是总体单位D.所有居民是总体单位5.统计学研究的基本特点是()A.从数量上认识总体单位的特征和规律B.从数量上认识总体的特征和规律C.从性质上认识总体单位的特征和规律D.从性质上认识总体的特征和规律6.一家研究机构从IT从业者中随机抽取500人作为样本进行调查,其中60%的人回答他们的月收入在5000元以上,50%的回答他们的消费支付方式是使用信用卡。
统计学教材课后答案 第三版 袁卫 庞皓 曾五一 贾俊平主编

第四章、参数估计1.简述评价估计量好坏的标准答:评价估计量好坏的标准主要有:无偏性、有效性和相合性。
设总体参数θ的估计量有1ˆθ和2ˆθ,如果()1ˆE θθ=,称1ˆθ是无偏估计量;如果1ˆθ和2ˆθ是无偏估计量,且()1ˆD θ小于()2ˆD θ,则1ˆθ比2ˆθ更有效;如果当样本容量n →∞,1ˆθθ→,则1ˆθ是相合估计量。
2.说明区间估计的基本原理答:总体参数的区间估计是在一定的置信水平下,根据样本统计量的抽样分布计算出用样本统计量加减抽样误差表示的估计区间,使该区间包含总体参数的概率为置信水平。
置信水平反映估计的可信度,而区间的长度反映估计的精确度。
3.解释置信水平为95%的置信区间的含义答:总体参数是固定的,未知的,置信区间是一个随机区间。
置信水平为95%的置信区间的含义是指,在相同条件下多次抽样下,在所有构造的置信区间里大约有95%包含总体参数的真值。
4.简述样本容量与置信水平、总体方差、允许误差的关系答:以估计总体均值时样本容量的确定公式为例:()22/22z n E ασ= 样本容量与置信水平成正比、与总体方差成正比、与允许误差成反比。
练习题:●1.解:已知总体标准差σ=5,样本容量n =40,为大样本,样本均值x =25,(1)样本均值的抽样标准差σ5=0.7906 (2)已知置信水平1-α=95%,得 α/2Z =1.96,于是,允许误差是E =α/2Z 6×0.7906=1.5496。
●2.解:(1)已假定总体标准差为σ=15元,则样本均值的抽样标准误差为x σ15=2.1429(2)已知置信水平1-α=95%,得 α/2Z =1.96,于是,允许误差是E=α/2Z 6×2.1429=4.2000。
(3)已知样本均值为x =120元,置信水平1-α=95%,得 α/2Z =1.96,这时总体均值的置信区间为±α/2x Z 0±4.2=124.2115.8 可知,如果样本均值为120元,总体均值95%的置信区间为(115.8,124.2)元。
贾俊平《统计学》(第7版)考点归纳和课后习题详解(含考研真题)-第四章至第六章【圣才出品】

第4章数据的概括性度量4.1考点归纳【知识框架】【考点提示】(1)集中趋势、离散趋势的度量指标,包括每个指标的含义、计算公式、特点、意义、适用范围(选择题、简答题、计算题考点);(2)众数、中位数和平均数三个指标的特点和应用场合,偏态分布下三个指标的关系(选择题、简答题、计算题考点);(3)分布形状的测度指标:偏态系数和峰态系数的数值含义(选择题、简答题考点)。
(4)标准分数的计算公式及应用(选择题、简答题、计算题考点);(5)经验法则、切比雪夫不等式的具体应用(选择题考点)。
【核心考点】考点一:集中趋势的度量表4-1集中趋势度量指标【注意】不同偏态程度的分布中集中趋势度量指标的关系:①对称分布中,众数、中位数和平均数相等;②左偏分布中,数据存在极小值,拉动平均数向极小值一方靠,而众数和中位数不受极值的影响,有_x<M e<M o;③右偏分布中,数据存在极大值,必然拉动平均数向极大值一方靠,因此M o<M e<_x。
【知识拓展】不同的教材分位数的计算公式不同,除了表中的计算公式,一种比较精确的计算公式:下四分位数Q L的位置=(n+1)/4,上四分位数Q U的位置=(3n+1)/4。
【真题精选】假定标志值所对应的权数都缩小1/10,则算术平均数()。
[浙江财经大学2019研]A.不变B.无法判断C.缩小百分之一D.扩大十倍【答案】A【解析】假设标志值为x,其对应的权数为f,则算术平均数为_x=∑xf/∑f;若各权数都缩小1/10,则新的算术平均数为110110xf xf x x f f '===∑∑∑∑考点二:离散程度的度量数据的离散程度反映了各变量值远离其中心值的程度,离散程度越小,代表性就越好。
表4-2离散程度的度量指标【注意】①表中方差和标准差的计算公式均为样本数据的方差和标准差。
若为总体数据,则分母应为n。
②标准差系数,也称变异系数或离散系数。
③表中平均差、样本方差、样本标准差仅给出了未分组数据的计算公式,分组数据的计算公式实质是等于未分组数据的计算公式,会运用即可。
统计学第四章习题答案 贾俊平

第四章统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 710 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数.(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics10Missing0Mean9.60Median10.00Mode10Std。
Deviation4。
169Percentiles25 6.255010.0075单位:周岁19152925242321382218302019191623272234244120311723要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄(2)根据定义公式计算四分位数。
Q1位置=25/4=6。
25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5.(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
1、确定组数:()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k =6 2、确定组距:组距=( 最大值 — 最小值)÷ 组数=(41-15)÷6=4。
3,取53、分组频数表网络用户的年龄 (B in ned)分组后的直方图::一种是所有颐客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。
为比较哪种排队方式使顾客等待的时间更短.两种排队方式各随机抽取9名顾客。
统计学课后答案(贾俊平版)人大出版

第三章节:数据的图表展示 (1)第四章节:数据的概括性度量 (15)第六章节:统计量及其抽样分布 (26)第七章节:参数估计 (28)第八章节:假设检验 (38)第九章节:列联分析 (41)第十章节:方差分析 (43)3.1 为评价家电行业售后服务的质量,随机抽取了由100个家庭构成的一个样本。
服务质量的等级分别表示为:A.好;B.较好;C一般;D.较差;E.差。
调查结果如下:B EC C AD C B AE D A C B C D E C E EA DBC C A ED C BB ACDE A B D D CC B C ED B C C B CD A C B C DE C E B B E C C A D C B A E B A C E E A B D D C A D B C C A E D C B C B C E D B C C B C要求:(1)指出上面的数据属于什么类型。
顺序数据(2)用Excel制作一张频数分布表。
用数据分析——直方图制作:接收频率E16D17C32B21A14(3)绘制一张条形图,反映评价等级的分布。
用数据分析——直方图制作:(4)绘制评价等级的帕累托图。
逆序排序后,制作累计频数分布表:接收 频数 频率(%) 累计频率(%) C 32 32 32 B 21 21 53 D 17 17 70 E 16 16 86 A 14 14 1005101520253035CDBAE204060801001203.2 某行业管理局所属40个企业2002年的产品销售收入数据如下: 152 124 129 116 100 103 92 95 127 104 105 119 114 115 87 103 118 142 135 125 117 108 105 110 107 137 120 136 117 108 97 88 123 115 119 138 112 146 113 126 要求:(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics10Missing0Mean9.60Median10.00Mode10Std. Deviation 4.169Percentiles25 6.255010.0075单位:周岁19152925242321382218302019191623272234244120311723要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄(2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。
(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
1、确定组数: ()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图:种是所有颐客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。
为比较哪种排队方式使顾客等待的时间更短.两种排队方式各随机抽取9名顾客。
得到第一种排队方式的平均等待时间为7.2分钟,标准差为1.97分钟。
第二种排队方式的等待时间(单位:分钟)如下:5.5 6.6 6.7 6.8 7.1 7.3 7.4 7.8 7.8要求:(1)画出第二种排队方式等待时间的茎叶图。
第二种排队方式的等待时间(单位:分钟) Stem-and-Leaf PlotFrequency Stem & Leaf1.00 Extremes (=<5.5)3.00 6 . 6783.00 7 . 1342.00 7 . 88Stem width: 1.00Each leaf: 1 case(s)(2)计算第二种排队时间的平均数和标准差。
Mean7Std. Deviation0.714143Variance0.51(3)比较两种排队方式等待时间的离散程度。
第二种排队方式的离散程度小。
(4)如果让你选择一种排队方式,你会选择哪—种?试说明理由。
选择第二种,均值小,离散程度小。
4.4 某百货公司6月份各天的销售额数据如下:单位:万元257276297252238310240236265278271292261281301274267280291258272284268303273263322249269295要求:(1)计算该百货公司日销售额的平均数和中位数。
(2)按定义公式计算四分位数。
(3)计算日销售额的标准差。
解:Statistics百货公司每天的销售额(万元)30Missing0 Mean274.1000Median272.5000Std. Deviation21.17472Percentiles25260.250050272.500075产品多,乙的低成本的产品多。
(1)计算120家企业利润额的平均数和标准差。
(2)计算分布的偏态系数和峰态系数。
解:Statistics120Missing0Mean426.6667Std. Deviation116.48445Skewness0.208Std. Error of Skewness0.221Kurtosis-0.625Std. Error of Kurtosis100名7~17岁的少年儿童作为样本,另一位调查人员则抽取了1 000名7~17岁的少年儿童作为样本。
请回答下面的问题,并解释其原因。
(1)两位调查人员所得到的样本的平均身高是否相同?如果不同,哪组样本的平均身高较大?(2)两位调查人员所得到的样本的标准差是否相同?如果不同,哪组样本的标准差较大?(3)两位调查人员得到这l 100名少年儿童身高的最高者或最低者的机会是否相同?如果不同,哪位调查研究人员的机会较大?解:(1)不一定相同,无法判断哪一个更高,但可以判断,样本量大的更接近于总体平均身高。
(2)不一定相同,样本量少的标准差大的可能性大。
(3)机会不相同,样本量大的得到最高者和最低者的身高的机会大。
4.8 一项关于大学生体重状况的研究发现.男生的平均体重为60kg,标准差为5kg;女生的平均体重为50kg,标准差为5kg。
请回答下面的问题:(1)是男生的体重差异大还是女生的体重差异大?为什么?女生,因为标准差一样,而均值男生大,所以,离散系数是男生的小,离散程度是男生的小。
(2)以磅为单位(1ks=2.2lb),求体重的平均数和标准差。
都是各乘以2.21,男生的平均体重为60kg×2.21=132.6磅,标准差为5kg×2.21=11.05磅;女生的平均体重为50kg×2.21=110.5磅,标准差为5kg×2.21=11.05磅。
(3)粗略地估计一下,男生中有百分之几的人体重在55kg一65kg之间?计算标准分数:Z1=x xs-=55605-=-1;Z2=x xs-=65605-=1,根据经验规则,男生大约有68%的人体重在55kg一65kg之间。
(4)粗略地估计一下,女生中有百分之几的人体重在40kg~60kg之间?计算标准分数:Z1=x xs-=40505-=-2;Z2=x xs-=60505-=2,根据经验规则,女生大约有95%的人体重在40kg一60kg之间。
4.9 一家公司在招收职员时,首先要通过两项能力测试。
在A项测试中,其平均分数是100分,标准差是15分;在B项测试中,其平均分数是400分,标准差是50分。
一位应试者在A项测试中得了115分,在B项测试中得了425分。
与平均分数相比,该应试者哪一项测试更为理想?解:应用标准分数来考虑问题,该应试者标准分数高的测试理想。
Z A=x xs-=11510015-=1;Z B=x xs-=42540050-=0.5因此,A项测试结果理想。
4.10 一条产品生产线平均每天的产量为3 700件,标准差为50件。
如果某一天的产量低于或高于平均产量,并落人士2个标准差的范围之外,就认为该生产线“失去控制”。
下面(1)如果比较成年组和幼儿组的身高差异,你会采用什么样的统计量?为什么?均值不相等,用离散系数衡量身高差异。
(2)4.12 一种产品需要人工组装,现有三种可供选择的组装方法。
为检验哪种方法更好,随机抽取15个工人,让他们分别用三种方法组装。
下面是15个工人分别用三种方法在相同的时间内组装的产品数量:要求:(1)你准备采用什么方法来评价组装方法的优劣?均值不相等,用离散系数衡量身高差异。
(2)如果让你选择一种方法,你会作出怎样的选择?试说明理由。
解:对比均值和离散系数的方法,选择均值大,离散程度小的。
方法A方法B方法C平均165.6平均128.7333333平均125.5333333标准差2.131397932标准差1.751190072标准差2.774029217离散系数:V A=0.01287076,V B= 0.013603237,V C= 0.022097949均值A方法最大,同时A的离散系数也最小,因此选择A方法。
4.13 在金融证券领域,一项投资的预期收益率的变化通常用该项投资的风险来衡量。
预期收益率的变化越小,投资风险越低;预期收益率的变化越大,投资风险就越高。
下面的两个直方图,分别反映了200种商业类股票和200种高科技类股票的收益率分布。
在股票市场上,高收益率往往伴随着高风险。
但投资于哪类股票,往往与投资者的类型有一定关系。
(1)你认为该用什么样的统计量来反映投资的风险?标准差或者离散系数。
(2)如果选择风险小的股票进行投资,应该选择商业类股票还是高科技类股票?选择离散系数小的股票,则选择商业股票。
(3)如果进行股票投资,你会选择商业类股票还是高科技类股票?考虑高收益,则选择高科技股票;考虑风险,则选择商业股票。