红外光谱测试条件

合集下载

红外光谱操作规程

红外光谱操作规程

红外光谱操作规程
《红外光谱操作规程》
一、实验目的
本实验旨在通过红外光谱仪对样品进行测试,得出样品的红外光谱图谱,从而分析样品的成分和结构。

二、实验原理
红外光谱仪是利用物质对红外光的吸收、散射、反射等现象,来研究物质的结构和成分的一种分析仪器。

样品在受到红外光照射后,会产生红外光谱图谱,不同物质的谱图会呈现出不同的特征峰,通过比对标准谱图,可以得出样品的成分和结构。

三、实验步骤
1. 将样品放置在红外光谱仪的样品台上,调整仪器参数使得样品受到适当的红外光照射。

2. 开始测试,观察样品的红外光谱图谱,并记录相关数据。

3. 根据记录的数据,对谱图进行分析,得出样品的成分和结构。

四、实验注意事项
1. 操作人员需穿戴好实验服和防护眼镜,确保个人安全。

2. 在操作过程中,需注意样品的处理和测试,避免样品受到污染或损坏。

3. 操作人员应熟悉红外光谱仪的使用方法,并了解处理紧急情况的应急措施。

五、实验结果处理
根据实验得出的数据和谱图,分析得出样品的成分和结构,并将结果记录下来。

六、实验结论
根据实验结果,得出样品的成分和结构,并对实验过程中的问题进行总结和改进。

以上就是《红外光谱操作规程》的相关内容,希望可以对进行红外光谱实验的人员提供一些参考。

红外光谱测试步骤

红外光谱测试步骤

红外光谱测试步骤步骤一:准备样品首先,需要准备好要测试的样品。

样品通常以固态、液态或气态存在。

根据样品的形态和测试要求,可以采用不同的方法和设备。

步骤二:选择适当的红外光源红外光源通常采用加热的坚硬或软弹性固体物质,如钨丝、石英或硅。

这些红外光源可以产生连续谱线或选择性的谱线。

选择适当的红外光源取决于所测样品的特性和要求。

步骤三:选择适当的检测器常见的红外光谱检测器有热敏电阻器、半导体、热电偶和金卤化物探测器等。

选择适当的检测器取决于所测样品的性质和测试目的。

步骤四:进行样品预处理样品预处理是为了去除杂质、水分或其他可能干扰光谱测试结果的物质。

常见的预处理方法包括粉碎、溶解、稀释、过滤等。

步骤五:选择适当的红外光谱仪根据测试要求和所测样品的特性,选择适当的红外光谱仪。

常见的红外光谱仪有傅里叶变换红外光谱仪(FTIR)和色散式红外光谱仪等。

根据测试的需求选择合适的设备。

步骤六:准备和校准仪器在进行红外光谱测试之前,需要准备和校准仪器。

包括调节光路、检查光源的强度和稳定性、检查检测器的响应、校准波长等,以确保仪器的正常工作和准确性。

步骤七:测量样品光谱将样品放入样品室或配置适当的光学装置。

根据测试要求和仪器的操作方法,选择适当的测量模式和参数,如红外光谱范围、分辨率、积分时间等。

开始测量样品的红外光谱。

步骤八:处理和分析光谱数据测量完样品的红外光谱后,需要对数据进行处理和分析。

常见的处理方法包括基线校正、光谱平滑、光谱修正(如能量修正或强度修正)等。

对光谱数据进行解释和分析,以识别光谱中的谱带和功能基团。

步骤九:数据解读和结论根据光谱数据的解释和分析结果,可以得出结论。

通过与数据库或文献对比,确定样品的化合物结构、组分、纯度等信息。

步骤十:记录实验结果与清理仪器最后,将实验结果记录下来,并及时清理仪器,确保仪器的正常运行和延长使用寿命。

总结以上所述,红外光谱测试是一种基于物质与红外辐射相互作用的分析技术。

红外光谱的实验测量方法

红外光谱的实验测量方法

红外光谱的实验测量方法姜志全理化科学实验中心2014年当样品受到频率连续变化的红外光照射时,分子吸收某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。

记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱红外光谱红外吸收光谱产生的条件,除要求仪器红外光源所发出的红外光具有恰好能满足分子振动能级跃迁时所需要的能量之外,还要提供分子发生偶极矩的改变所消耗的能量红外吸收光谱是分子振动能级跃迁产生的。

因为分子振动能级差为0.05~1.0 eV ,比转动能级差(0.0001~0.05 eV )大,因此分子发生振动能级跃迁时,不可避免地伴随转动能级的跃迁,因而无法测得纯振动光谱►►红外光区的划分近红外光区中红外光区远红外光区0.75 ~ 2.5 μm 、13300 ~ 4000 cm -1近红外光区的吸收带主要是由低能电子跃迁、含氢原子团(如O–H 、N–H 、C–H )伸缩振动的倍频吸收产生。

该区的光谱可用来研究稀土和其它过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及含氢原子团化合物的定量分析中红外光区吸收带是绝大多数有机化合物和无机离子的基频吸收带。

由于基频振动是红外光谱中吸收最强的振动,所以该区最适于进行红外光谱的定性和定量分析远红外光区吸收带是由气体分子中的纯转动跃迁、振动-转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。

由于低频骨架振动能灵敏地反映出结构变化,所以对异构体的研究特别方便。

此外,还能用于金属有机化合物(包括络合物)、氢键、吸附现象的研究2.5 ~ 25 μm 、4000 ~ 400 cm -125 ~ 1000 μm 、400 ~ 10 cm-1红外光谱的常规测试方法中红外区的透光材料1.4923.8 (10°C)5000∼400KCl 氯化钾 3.4不溶5000∼660Si硅4.0不溶5000∼430Ge 锗 2.42不溶3400∼27001650∼600C 金刚石(II)2.4不溶5000∼500ZnSe 硒化锌 2.2不溶5000∼710ZnS 硫化锌 1.430.0016 (20°C)5000∼1110CaF2氟化钙 1.460.17 (20°C)5000∼830BaF2氟化钡 2.2不溶5000∼285AgBr 溴化银 2.0不溶5000∼435AgCl 氯化银 2.370.02 (20°C)5000∼250TlBr•TlI KRS-5 1.7944.0 (0°C)5000∼165CsI 碘化铯 1.5653.5 (0°C)5000∼400KBr 溴化钾 1.5435.7 (0°C)5000∼625NaCl 氯化钠折射率水中溶解度(g/100ml 水)透光范围(cm -1)化学组成材料名称金刚石透光材料40003500300025002000150010001020304020304050607080S i n g l e B e a mWavenumber (cm -1)T r a n s m i tt a n c e (%)红外透射光谱测定透过样品前后的红外光强度变化而得到的谱图称为红外透射光谱从样品分子在接受红外光照射时能态变化的角度分类,红外透射光谱属于吸收光谱红外吸收谱带的位置、强度和形状随测定时样品的物理状态及制样方法而变化各种不同的样品有不同的处理技术,一种样品往往有几种制样方法可供选择,因此需要根据具体情况(如样品状态、分析目的等)选择合适的样品制备方法同一种样品的气态红外谱图与液态、固态的不同同一种固态样品,颗粒大小不同会有不同谱形►►试样的制备试样的浓度和测试厚度应选择适当以使光谱图中大多数吸收峰的透过率处于15~70%范围内试样中不应含有游离水►浓度太小,厚度太薄,会使一些弱的吸收峰和光谱的细微部分不能显示出来过大,过厚,又会使强的吸收峰超越标尺刻度而无法确定它的真实位置和强度水分的存在不仅会侵蚀吸收池的盐窗,而且水分本身在红外区有吸收,将使测得的光谱图变形►►液态水的红外光谱红外光谱的测量方法气体样品:常规气体池长光程气体池液体和溶液试样:液体池液膜法固体样品:KBr压片法石蜡油研磨法特殊的测量模式:镜面反射法衰减全反射法(ATR)漫反射法(DRIFTS)光声光谱法仪器联用模式:气红联用液红联用热重-红外联用气体池气体样品的测定可使用窗板间隔为2.5~10 cm 的大容量气体池。

红外光谱样品制备和测试技术

红外光谱样品制备和测试技术

石蜡油研磨法
石蜡油 ( Mineral oil 或Nujol ) 研 磨法可以非常有效地避免溴化钾压片 法存在的两个致命缺点,即不会发生 离子交换,又不会吸附空气中的水汽。 使用石蜡油研磨法还有另外两个优点: (1)制样速度快;(2)样品和石蜡 油一起研磨时,石蜡油在样品表面形 成薄膜,保护样品使之与空气隔绝。
第二个缺点
用KBr压片法,在3400和1640cm-1 左右会出现水的吸收峰。这是由于 溴化钾研磨时,吸附空气中的水蒸 气造成的。 研磨之前无论溴化钾 烘得多么干,也会出现这种现象。
150mg左右纯KBr研 磨压片得到的光谱
如果无机物样品不含结晶 水,用溴化钾压片法,在 3400和1640cm-1左右也会 出现水的吸收峰。
溴化钾和氯化钾压片法对二甲基金刚烷胺盐酸盐(C12H21N.HCl)光 谱的影响 (A)溴化钾压片法测得的光谱;(B)氯化钾压片法测得的光谱; (C)显微红外光谱法测得的光谱
糊状法
糊状法是在玛瑙研钵中将待测样品 和糊剂一起研磨,将样品微细颗粒 均匀地分散在糊剂中测定光谱。最 常用的糊剂有石蜡油(液体石蜡) 和氟油。用石蜡油或氟油与样品一 起研磨的方法又叫做石蜡油研磨法 或氟油研磨法。
样品吸附水对光谱的影响
真空干燥前,溴化钾压片
真空干燥后,显微红外
用KBr压片法如何 从光谱中消除因KBr吸 附水产生的两个吸收峰?
减弱水吸收峰的方法
• 样品和溴化钾研磨后,将研磨好的粉末在红 外灯下烘烤半个小时以上,再进行压片。在 施加压力之前最好先抽真空。压好的片应尽 快测试光谱。这样做只能部分地而不能彻底 消除光谱中水的吸收峰。 • 背景扣除法:用KBr粉末研磨压片作为背景。
用纯溴化钾锭片作背景测得的样品光谱

红外光谱发射率测试

红外光谱发射率测试

红外光谱发射率测试一、样品准备1.1 样品选择与制备在进行红外光谱发射率测试前,需要选择具有代表性的样品。

样品的性质(如化学成分、粒度、形态等)应符合测试要求。

根据不同的测试目的,可以选择天然样品或人工合成样品。

1.2 样品处理对于某些需要特殊处理的样品(如易潮解、具有强烈气味等),应进行适当处理以避免对测试结果产生干扰。

例如,可以烘干、研磨或使用密封容器储存。

二、光谱采集2.1 仪器准备在进行红外光谱发射率测试前,应确保仪器处于良好状态,包括光路调整、仪器校准、检测器清洁等。

2.2 测试条件设定根据样品性质和测试目的设定测试条件,如扫描范围、扫描次数、分辨率等。

此外,还需设定适当的测试环境参数(如温度、湿度等)。

2.3 光谱采集将制备好的样品放置在样品台上,按照设定的测试条件进行光谱采集。

在采集过程中,应保持样品表面平整、无气泡,并避免外界干扰(如振动、电磁场等)。

三、数据处理与分析3.1 数据处理对采集到的红外光谱数据进行预处理,如去噪、基线校正、归一化等,以增强光谱信号的质量和可靠性。

3.2 数据分析利用专业软件对处理后的数据进行解析,识别出样品的主要化学成分和官能团。

通过对光谱峰位置、峰强度、峰形等参数进行分析,可以获得样品的化学结构信息。

四、结果解释4.1 官能团识别与确认通过对红外光谱的分析,可以识别出样品中存在的官能团,如碳氢键、羰基、羟基等。

这些官能团的存在和分布对于理解样品的化学性质和结构具有重要意义。

4.2 发射率计算根据采集到的红外光谱数据,可以计算样品的发射率。

发射率是衡量物体辐射能力的重要参数,对于研究材料的热学性能、光学性能等具有重要意义。

五、应用扩展5.1 材料研究红外光谱发射率测试在材料研究领域具有广泛的应用,如新型功能材料的开发、材料性能表征等。

通过对材料进行红外光谱发射率测试,可以深入了解材料的化学结构和物理性质。

5.2 环境监测红外光谱发射率测试也可应用于环境监测领域,如大气污染物的检测、水体中污染物的识别等。

红外光谱测试

红外光谱测试
原理
当红外光照射到物质上时,物质分子会吸收特定波长的红外 光,产生振动和转动能级的跃迁,从而形成红外光谱。不同 物质分子具有不同的振动和转动能级,因此红外光谱具有特 征性,可以用于物质鉴别和组成分析。
红外光谱的分类
透射光谱法
测量透过物质后的红外光的强度,从而得到物 质的红外光谱。
反射光谱法
测量照射到物质表面后的红外光的反射强度, 从而得到物质的红外光谱。
技术创新与进步
1 2
高精度光谱解析
随着计算技术和算法的进步,红外光谱解析的精 度将进一步提高,能够更准确地解析出物质的结 构和组成。
微型化与便携化
随着微电子技术和制造工艺的发展,红外光谱仪 将进一步微型化和便携化,便于野外和现场测试。
3
智能化与自动化
未来红外光谱测试将更加智能化和自动化,减少 人工操作和干预,提高测试效率和准确性。
根据特征峰的位置和强度,推断样品中存在的官能团或分子结 构。
结合红外光谱的特征峰和其他测试结果,对样品的分子结构进 行分析和推断。
通过特征峰的峰高和峰面积,计算样品中相关官能团或分子的 含量或浓度,进行定量分析。
红外光谱测试结果可用于材料科学、化学、生物学、医学等领 域,为相关研究和应用提供重要信息。
物质。
用于生物大分子的结构 和组成分析,如蛋白质、
核酸等。
02 红外光谱测试的样品准备
样品选择与制备
01
02
03
04
固体样品
选择具有代表性的样品,确保 样品纯净度高,无杂质。
液体样品
选择清澈透明的液体,避免含 有气泡和悬浮物。
气体样品
选择纯净的气体,避免含有杂 质和水分。
制备方法
根据样品类型,采用合适的制 备方法,如研磨、溶解、干燥

红外光谱的实验技术

红外光谱的实验技术
一 红外光谱实验技术
目前主要有两类红外光谱仪: 色散型红外光谱仪 Fourier(傅立叶)变换红外光谱仪
1
色散型红外光谱原理图
光源
样品
分光器
检测器
光谱图
干涉仪
光源
样品
分光器
傅里叶变换型红外光谱原理图
检测器 干涉图
ቤተ መጻሕፍቲ ባይዱ
光谱图
计算机
2
样品池 - 窗片材料
因玻璃、石英等材料不能透过红外光, 红外吸收池要用可透过红外光的NaCl、KBr、 CsI、KRS-5(TlI 58%,TlBr42%)等材料制 成窗片。用NaCl、KBr、CsI等材料制成的窗 片需注意防潮。固体试样常与纯KBr混匀压 片,然后直接进行测定。
8
试样的处理和制备
(2)石蜡糊法 将干燥处理后的试样研细,与液体石蜡或全氟代烃混
合,调成糊状,夹在盐片中测定。 (3)薄膜法
主要用于高分子化合物的测定。可将它们直接加热熔 融后涂制或压制成膜。也可将试样溶解在低沸点的易挥 发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。
当样品量特别少或样品面积特别小时,采用光束聚光 器,并配有微量液体池、微量固体池和微量气体池,采 用全反射系统或用带有卤化碱透镜的反射系统进行测量。
6
试样的处理和制备
液体和溶液试样
(1)液体池法 沸点较低,挥发性较大的试样,可注入封闭液体池中,
液层厚度一般为0.01~1mm。 (2)液膜法
沸点较高的试样,直接直接滴在两片盐片之间,形成 液膜。
对于一些吸收很强的液体,当用调整厚度的方法仍然 得不到满意的谱图时,可用适当的溶剂配成稀溶液进行
7
试样的处理和制备
15
试样的处理和制备

红外光谱测试方案

红外光谱测试方案
② C=C伸缩振动:烯烃 的C=C伸缩振动出现在1680~1620 cm-1 ,一般很 弱;单核芳烃的C=C伸缩振动出现在1600 cm-1和1500 cm-1附近,有两个 峰,这是芳环的骨架结构,用于确认有无芳核的存在。
③ 苯的衍生物的泛频谱带:出现在2000~1650 cm-1范围,是C-H面外和 C=C面内变形振动的泛频吸收,虽然强度很弱,但它们的吸收面貌在表征 芳核取代类型上是有用的。
红外光谱是鉴别物质和分析物质化学结构的有效 手段,已被广泛应用于物质的定性鉴别、物相分析和 定量测定,并用于研究分子间和分子内部的相互作用。
四、红外光谱的表示方法
T~λ曲线 →前密后疏
(cm1 ) 10 4 ( m)
T ~σ曲线 →前疏后密
IR与UV的区别
IR
起源 分子振动能级伴 随转动能级跃迁
2、900~650 cm-1区域 某些吸收峰可用来确认化合物的顺反构型。烯烃的=C-H面外变形振
动出现的位置,很大程度上决定于双键的取代情况。对于RCH=CH2结构, 在990 cm-1和910 cm-1出现两个强峰;为RC=CRH结构是,其顺、反构 型分别在690 cm-1和970 cm-1出现吸收峰,可以共同配合确定苯环的取代 类型。
(2)变形振动(又称弯曲振动或变角振动) 基团键角发生周期变化而键长不变的振动称为变形振动,用符号
表示。变形振动又分为面内变形和面外变形振动。面内变形振动又 分为剪式(以表示)和平面摇摆振动(以表示)。面外变形振动又 分为非平面摇摆(以表示)和扭曲振动(以表示)。
图示
as CH 3
~
特征区(官能团区)分为三个区域:
(1)4000 ~2500 cm-1 X-H伸缩振动区 (X可以是O、H、C或S等原子)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外光谱分析采用Nicolet Impact 410 型红外光谱仪,样品的结构及骨架振动采用KBr 支撑片,在400-4000 cm-1范围内记录样品的骨架振动红外吸收峰。

吡啶FT-IR 分析:首先将压成自支撑薄片的样品(~20 mg)装入原位红外样品池中,在200 ℃,10-4mmHg 高真空条件下处理0.5 h 以活化样品,降温至室温。

将吡啶引入真空系统中。

吸附0.5 h 后,抽真空至10-4mmHg 清除吸附后余气,再利用Nicolet-Impact 410 型红外光谱仪进行红外扫描,测定吡啶吸附态的红外光谱。

采用美国Nicolet公司的Nexus 670型傅立叶变换红外光谱仪测试,测试分辨率为4cm-1,扫描次数为32次,测试范围为400-4000cm-1。

红外光谱制样方法:
1、用玛瑙研钵将KBr固体研成极细的粉末,放入玻璃小盒内,放到100℃烘箱里保存,以防KBr粉末潮解;
2、称取0.2g KBr粉末和2-4mg样品(无机材料),放入研钵内研磨,将二者充分混合;
3、用药匙加适量样品至压片磨具中,用圆柱体铁棒旋转压实。

套上空心圈及顶盖;
4、讲磨具放到压片机上,拧到上方转盘固定,拧紧下方螺旋钮;
5、摆动右侧长臂,至压力为8-9MPa,等待30s即可取出。

注意事项:
1、KBr粉末不用时,最好放入烘箱中,否则易潮解;
2、若样品为有机物,则加入样品量1mg即可;
3、样品量过多会造成出现宽峰的情况,此时数据无效;
4、KBr粉末潮解后,压片以后容易粘在磨具上,无法取下导致压片失败;
5、压力过大可能导致压片破裂,视破裂程度也可能进行红外测定(中间未破损即可测量)。

红外光谱测试方法:
测试分辨率:4cm-1,扫描次数:64次,测试范围400-4000cm-1
点测量快捷键,改文件名和保存路径;
改变设置:OPTIC→Aperture Setting→1.5mm(狭缝设置)
OPTIC→preamp Gain→Ref(放大倍数)
Check signal:1万以上(若低于1万有可能液氮量不够,补充液氮即可)
Basic→Background Signal Channel(采背景,大概60s,此时不放置样品)
Background→Save Background
装样品,点Sample Signal Channel
选中点,可变换颜色,点---校准峰
保存:选中图(变换颜色按钮),File→Save as→名称→路径
Mode→Data point table(保存以后为DPH文件,大小为69k)。

相关文档
最新文档