红外光谱的测定

合集下载

红外光谱分析法

红外光谱分析法

第一节 基本理论
一、红外吸收光谱的测定与表示法
1. 测定方法 红外光谱测定时所需样品极少,一般为1~5mg。 *固体样品有三种处理方法:
1)配成溶液, 2)与饱和烃如医用石蜡油研成胡状 3)与粉状溴化钾压片,一般用1~2mg样品,与200mg溴化 钾压制成片,可避免溶剂干扰。 *液体样品处理方法: 若不配成溶液,一小滴就够,可直接放在两片吸收池窗板中 间进行测定,叫液膜法。
图2-5正辛烷的红外光谱 (Ⅰ):2960~2850cm-1; (Ⅱ)-CH2-的剪式振动:1465cm-1; (Ⅲ)δ -CH3 (对称):1380cm-1; (Ⅳ)的平面摇摆振动:~725cm-1
43
CH3
(21)375CcHm-1两CH个3:强度当接分近子的中吸出收现带异,丙基时,甲基的1380cm-1带分裂为1385、 (3) -C(CH3)3:叔丁基与异丙基相似,也使1380cm-1带发生分裂,
另一部分光透过,若将其透过的光用单色器进行色散,就可以得到
一带暗条的谱带。若以波长或波数为横坐标,以百分吸收率为纵坐
标,把这谱带记录下来,就得到了该样品的红外吸收光谱图,获得红
外振动信息。
14
红外吸收光谱的图谱多以波长(或波数 )为横坐标,以表示吸收峰的位置;若 用吸收百分率(adsorption%)表示吸收 强度时,吸收峰向上,但是通常以透射 百分率(transmittance%)表示。
振动或称伸张振动),常用符号“S”或
“ν”表示。
H
H
H
H
C
C
对称伸缩振动(νSCH2)
非对称伸缩振动(νasCH2)
2、弯曲振动:
面内弯曲振动 面外弯曲振动 (1)面内弯曲振动:分为剪式和平面摇摆弯曲振动两种。

红外光谱分析方法

红外光谱分析方法

红外光谱分析方法红外光谱分析是一种常见的化学分析方法,它通过测量样品在红外光谱区域的吸收和散射来获取样品的结构信息和化学组成。

红外光谱分析方法的原理基于分子与红外光的相互作用,当样品中的化学键振动或分子转动产生能量变化时,会吸收相应波长的红外光。

通过分析吸收峰的位置、相对强度和形状,可以确定样品中的官能团、键的类型和化学结构。

1.样品制备:将待分析的样品制备成均匀的固体、液体或气体样品。

固体样品可以直接放置在红外光谱仪的样品夹中,液体样品则可以放置在透明的红外吸收池中。

2.光谱采集:根据样品状态的不同,选择合适的红外光源和检测器。

红外光源产生的光经过一个干涉仪,分为参考光束和样品光束。

参考光束和样品光束分别通过样品和参考样品后,进入探测器中进行测量。

测量得到的数据会被转换成光谱图形。

3.光谱解析:通过分析光谱图形,确定各吸收峰的位置、相对强度和形状,以确定样品中包含的官能团和化学键的类型。

常用的解析方法包括查找标准库、峰指认和功能组对比。

4.数据分析:对光谱数据进行进一步的处理和分析,可以使用数据分析软件进行峰面积计算、定量分析和比较分析。

此外,还可以进行谱图拟合、降噪处理和谱图修正等。

红外光谱分析方法广泛应用于有机化学、无机化学、生物化学和材料科学等领域。

它可以用于测定物质的纯度、鉴别不同化合物、判断化学键的类型和确定结构等。

例如,在有机化学中,红外光谱可以用于确定醇、酮、醛、羧酸等不同官能团的存在和位置;在无机化学中,红外光谱可以用于研究配位化合物的配位方式和金属氧化态等。

总之,红外光谱分析方法是一种简便、快速、无损的化学分析方法,通过测量样品在红外光谱区域的吸收和散射来获取化学信息和结构信息。

它在化学研究、材料分析和质量控制等方面具有重要的应用价值。

红外光谱测定注意事项及定性分析1

红外光谱测定注意事项及定性分析1
影响基本振动跃迁的波数或频率(基团频率)的直接
因素为化学键力常数 k 和原子质量。 k 大,化学键的振动波数高,如:
kCC(2222cm-1)>kC=C(1667cm-1)>kC-C(1429cm-1) 质量m大,化学键的振动波数低,如:
mC-C(1430cm-1)<mC-N(1330cm-1)<mC-O(1280cm-1)
红外样品的制备
固体样品: 压片法 、糊状法 、溶液法 、 薄膜法
液体样品的制备:溶液法、成膜法 气体样品的制备:充入气体样品槽。
药品检验中最常见为固体样品压片法
键 RCCH
2100-2140
及 RCCR’ 2196-2260
R=R’则无红外吸收

2240-2260
分子中有 N,H,C,峰
积 CN
(非共轭) 强且锐;

2220-2230
有) 则越弱。
双键伸缩振动区(1900~1200cm-1)
C=O 1900-1650
C=OC 1680-1620
大于18%
3025.61
2849.53
3000 CM-1
2800
2600
0139 0.013
0.012
0.011
0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
0.000
0.001
0.002
0.003
0.004
0050
3996.8
3600
3200
不同的样品采用不同的制样技术,同一样品 采用不同的制样技术,可能会得到不同的光 谱

红外光谱法测定样品方法

红外光谱法测定样品方法

一、红外光谱法测定样品方法红外光谱的试样可以是液体、固体或气体,一般应要求:1. 试样应该是单一组份的纯物质,纯度应>98%或符合商业规格,才便于与纯物质的标准光谱进行对照。

多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。

2. 试样中不应含有游离水。

水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。

3. 试样的浓度和测试厚度应选择适当,以使光谱图中的大多数吸收峰的透射比处于10%~80%范围内。

二、制样的方法1. 气体样品气态样品可在玻璃气槽内进行测定,它的两端粘有红外透光的NaCl或KBr窗片。

先将气槽抽真空,再将试样注入。

2. 液体和溶液试样(1)液体池法沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚度一般为0.01~1mm。

(2)液膜法沸点较高的试样,直接滴在两片盐片之间,形成液膜。

对于一些吸收很强的液体,当用调整厚度的方法仍然得不到满意的谱图时,可用适当的溶剂配成稀溶液进行测定。

一些固体也可以溶液的形式进行测定。

常用的红外光谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。

3. 固体试样(1)压片法将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用(5~10)´107Pa压力在油压机上压成透明薄片,即可用于测定。

试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。

(2)石蜡糊法将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。

(3)薄膜法主要用于高分子化合物的测定。

可将它们直接加热熔融后涂制或压制成膜。

也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。

当样品量特别少或样品面积特别小时,采用光束聚光器,并配有微量液体池、微量固体池和微量气体池,采用全反射系统或用带有卤化碱透镜的反射系统进行测量。

仪器操作1. 样品准备(固体样品)取样品约0.5mg在红外灯下充分研磨,再加入干燥KBr粉末约50mg,继续研磨至混合均匀。

红外光谱测试步骤

红外光谱测试步骤

红外光谱测试步骤
1.准备样品:样品应净化和干燥,以确保获得准确的结果。

样品的形
式可以是固体,液体或气体。

对于固体样品,可以使用粉碎仪将其研磨成
细粉末。

2.准备红外仪器:开启红外仪器并进行预热,以确保其稳定和准确。

校准仪器的零点和基线,以获得准确的光谱数据。

3.放置样品:将样品放置在红外仪器的样品室中,确保样品能够与红
外光线有效反应。

固体样品可以直接放置在样品室中,而液体样品需要使
用适当的样品池来容纳。

4.设置参数:根据样品的性质和分析要求,设置红外仪器的参数。


些参数可能包括光谱扫描范围,分辨率,扫描速度等,以获得最佳的结果。

5.开始测量:在样品放置好并设置好参数后,开始测量红外光谱。


器将发送红外光线通过样品,然后测量样品吸收或发射的光谱。

测量时保
持仪器环境稳定,并避免外部干扰。

6.分析光谱:通过对测得的光谱数据进行分析,可以确定样品中的化
学键类型和组成。

首先,观察光谱的整体形状和特征峰的位置。

然后,通
过比对已知物质的标准光谱库或文献数据,确定特征峰与化学键的对应关系。

7.解释结果:根据对光谱的分析结果,解释样品中化学键的存在和组成。

根据需要可以绘制红外光谱图表,并标注峰对应的化学键。

8.维护仪器:在完成测试后,及时清洁和维护红外仪器,以确保其正
常工作和准确数据。

红外吸收光谱的测定及结构分析

红外吸收光谱的测定及结构分析

红外吸收光谱的测定及结构分析红外光是电磁波谱中的一种,其波长范围为780纳米到1毫米。

红外光具有适当的能量,可以使样品中的分子、原子或离子发生振动,而红外吸收光谱就是通过检测样品对红外光的吸收程度来分析样品的化学成分及结构。

红外光谱仪通常由光源、样品室、光路系统和检测装置组成。

测定红外吸收光谱首先需要准备红外吸收样品,样品通常以固体、液体或气体的形式存在。

对于固体样品,可以将样品制成光学透明的薄膜或固体块,并将其放置在样品室中。

对于液体样品,可以将样品直接放置在透明的光学池中。

对于气体样品,可以通过将气体注入到气体池中进行分析。

在测量红外光谱之前,需要校准红外光谱仪,确保光学路径正确,并进行背景扣除操作,以消除仪器及其他环境因素对测试结果的干扰。

在样品测量之前,还需要检查仪器的分辨率和灵敏度,以确保测量结果的准确性和可靠性。

测量红外吸收光谱时,红外光通过样品后,进入到检测装置中进行检测。

样品对不同波长的红外光有不同的吸收能力,这是由样品的分子结构所决定的。

不同类型的化学结构会导致特定的红外吸收峰出现在光谱中。

通过分析红外光谱,可以推断样品中的化学键类型、官能团以及化学结构。

通常,红外光谱可以显示在一张谱图上,横轴表示波数(或波长),纵轴表示吸收强度。

红外光谱的特征峰通常以波数的单位表示,波数越大,对应的振动频率越高。

根据不同官能团的红外吸收特征,可以利用红外光谱推断样品中的化学结构。

结构分析是利用红外光谱进行的一种定性或定量的分析方法。

这种方法的核心思想是,根据已知化合物的红外光谱标准,与待测样品的红外光谱进行比对,从而推断样品的化学结构。

结构分析还可以结合其他的分析方法,如质谱、核磁共振等,以提高结构鉴定的准确性和可靠性。

总结起来,红外吸收光谱是一种非破坏性、准确可靠的分析方法,广泛用于化学、材料科学、生物化学等领域。

通过测定红外吸收光谱并进行结构分析,可以推断样品的化学结构,并为进一步的研究提供基础。

红外光谱实验步骤

红外光谱实验步骤
红外光谱实验是一种用于分析物质结构的方法,具体步骤如下:
1. 准备样品:选择需要分析的样品,通常需要将样品制备成透明的薄片或溶液。

对于固体样品,可以使用金刚石压片机将其压制成薄片。

2. 设置光谱仪:打开红外光谱仪,在仪器上选择红外光谱扫描模式。

3. 校准仪器:根据仪器的要求,进行波数校准,通常使用气体或参考样品进行校准。

4. 选择检测方法:红外光谱实验可以采用不同的检测方法,最常用的是透射法和反射法。

透射法是将红外光通过样品后进行检测,反射法是将红外光照射在样品表面后进行检测。

5. 放置样品:将样品放置在光谱仪的光路中,根据实验要求选择透射池、反射杯等装置。

6. 开始实验:启动光谱仪,选择适当的波数范围和扫描速度,开始记录红外光谱。

7. 分析结果:根据实验记录的红外光谱图,观察吸收峰的位置和强度,进行物质结构的分析和鉴定。

8. 清洗仪器:实验结束后,关闭光谱仪,并进行相应的清洗和
维护工作,保持仪器的良好状态。

以上是典型的红外光谱实验步骤,具体步骤可能会根据不同的实验要求和仪器设备而略有变化。

有机化合物红外光谱的测定实验报告

有机化合物红外光谱的测定实验报告【实验报告】有机化合物红外光谱的测定实验目的:本实验旨在通过红外光谱技术对给定的有机化合物进行分析,了解其分子结构和官能团的存在情况。

实验步骤:1. 准备样品:从实验室提供的有机化合物中选取一种样品,并制备样品溶液或固体样品。

2. 准备红外光谱仪:确保红外光谱仪的工作状态正常,按照仪器操作手册进行操作和校准。

3. 放置样品:将样品放置在红外光谱仪的样品室或样品台上,并确保样品与红外光的传输路径之间没有干扰。

4. 获取光谱:选择合适的红外光谱扫描模式(如透射或反射模式),设置扫描范围和扫描速度,并开始采集红外光谱数据。

5. 红外光谱解读:通过观察和分析红外光谱图,识别和分析样品中存在的官能团和结构特征。

6. 记录结果:记录有机化合物的红外光谱图,并注明各特征峰的位置、强度和解读结果。

实验结果:根据所获得的红外光谱图,进行峰值分析和解读,确定有机化合物中的官能团和结构特征。

例如,识别出C-H伸缩振动、C=O伸缩振动、O-H伸缩振动等特征峰。

讨论和结论:根据红外光谱图的分析结果,结合已知化合物的红外光谱图谱和文献数据,确定给定有机化合物的结构和可能的官能团。

讨论样品的特点、纯度和可能的分子结构等信息。

实验注意事项:1/ 21. 确保红外光谱仪的工作状态正常,并按照操作手册进行操作和校准。

2. 样品制备时要保持样品的纯度和适当浓度,避免其他杂质对测定结果的影响。

3. 在进行红外光谱扫描时,避免样品与红外光路径之间的干扰和污染。

4. 对红外光谱图的解读需要结合其他实验数据和文献资料进行综合分析。

实验结论:通过红外光谱技术的实验测定和分析,我们得出了有机化合物的红外光谱图,并成功识别出了样品中存在的官能团和结构特征。

根据红外光谱图的峰位和峰形,我们可以推断样品可能含有的官能团,如羟基、羰基、烷基、芳香环等。

通过与已知化合物的红外光谱图谱和文献数据的对比,我们可以初步确定给定有机化合物的分子结构和可能的官能团。

红外光谱的实验测量方法

红外光谱的实验测量方法姜志全理化科学实验中心2014年当样品受到频率连续变化的红外光照射时,分子吸收某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。

记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱红外光谱红外吸收光谱产生的条件,除要求仪器红外光源所发出的红外光具有恰好能满足分子振动能级跃迁时所需要的能量之外,还要提供分子发生偶极矩的改变所消耗的能量红外吸收光谱是分子振动能级跃迁产生的。

因为分子振动能级差为0.05~1.0 eV ,比转动能级差(0.0001~0.05 eV )大,因此分子发生振动能级跃迁时,不可避免地伴随转动能级的跃迁,因而无法测得纯振动光谱►►红外光区的划分近红外光区中红外光区远红外光区0.75 ~ 2.5 μm 、13300 ~ 4000 cm -1近红外光区的吸收带主要是由低能电子跃迁、含氢原子团(如O–H 、N–H 、C–H )伸缩振动的倍频吸收产生。

该区的光谱可用来研究稀土和其它过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及含氢原子团化合物的定量分析中红外光区吸收带是绝大多数有机化合物和无机离子的基频吸收带。

由于基频振动是红外光谱中吸收最强的振动,所以该区最适于进行红外光谱的定性和定量分析远红外光区吸收带是由气体分子中的纯转动跃迁、振动-转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。

由于低频骨架振动能灵敏地反映出结构变化,所以对异构体的研究特别方便。

此外,还能用于金属有机化合物(包括络合物)、氢键、吸附现象的研究2.5 ~ 25 μm 、4000 ~ 400 cm -125 ~ 1000 μm 、400 ~ 10 cm-1红外光谱的常规测试方法中红外区的透光材料1.4923.8 (10°C)5000∼400KCl 氯化钾 3.4不溶5000∼660Si硅4.0不溶5000∼430Ge 锗 2.42不溶3400∼27001650∼600C 金刚石(II)2.4不溶5000∼500ZnSe 硒化锌 2.2不溶5000∼710ZnS 硫化锌 1.430.0016 (20°C)5000∼1110CaF2氟化钙 1.460.17 (20°C)5000∼830BaF2氟化钡 2.2不溶5000∼285AgBr 溴化银 2.0不溶5000∼435AgCl 氯化银 2.370.02 (20°C)5000∼250TlBr•TlI KRS-5 1.7944.0 (0°C)5000∼165CsI 碘化铯 1.5653.5 (0°C)5000∼400KBr 溴化钾 1.5435.7 (0°C)5000∼625NaCl 氯化钠折射率水中溶解度(g/100ml 水)透光范围(cm -1)化学组成材料名称金刚石透光材料40003500300025002000150010001020304020304050607080S i n g l e B e a mWavenumber (cm -1)T r a n s m i tt a n c e (%)红外透射光谱测定透过样品前后的红外光强度变化而得到的谱图称为红外透射光谱从样品分子在接受红外光照射时能态变化的角度分类,红外透射光谱属于吸收光谱红外吸收谱带的位置、强度和形状随测定时样品的物理状态及制样方法而变化各种不同的样品有不同的处理技术,一种样品往往有几种制样方法可供选择,因此需要根据具体情况(如样品状态、分析目的等)选择合适的样品制备方法同一种样品的气态红外谱图与液态、固态的不同同一种固态样品,颗粒大小不同会有不同谱形►►试样的制备试样的浓度和测试厚度应选择适当以使光谱图中大多数吸收峰的透过率处于15~70%范围内试样中不应含有游离水►浓度太小,厚度太薄,会使一些弱的吸收峰和光谱的细微部分不能显示出来过大,过厚,又会使强的吸收峰超越标尺刻度而无法确定它的真实位置和强度水分的存在不仅会侵蚀吸收池的盐窗,而且水分本身在红外区有吸收,将使测得的光谱图变形►►液态水的红外光谱红外光谱的测量方法气体样品:常规气体池长光程气体池液体和溶液试样:液体池液膜法固体样品:KBr压片法石蜡油研磨法特殊的测量模式:镜面反射法衰减全反射法(ATR)漫反射法(DRIFTS)光声光谱法仪器联用模式:气红联用液红联用热重-红外联用气体池气体样品的测定可使用窗板间隔为2.5~10 cm 的大容量气体池。

红外吸收光谱的测定及结构分析

仪器分析实验——红外吸收光谱的测定及结构分析学号:2班级:应用化工技术11-2姓名:韩斐一、实验的目的与要求1.掌握红外光谱法进行物质结构分析的基本原理,能够利用红外光谱鉴别官能团,并根据官能团确定未知组分的主要结构;2.了解仪器的基本结构及工作原理;3.了解红外光谱测定的样品制备方法;4.学会傅立叶变换红外光谱仪的使用。

二、原理红外吸收光谱法就是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置与峰的强度加以表征。

测定未知物结构就是红外光谱定性分析的一个重要用途。

根据实验所测绘的红外光谱图的吸收峰位置、强度与形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下:(1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。

(2)确定未知物不饱与度,以推测化合物可能的结构;(3)图谱解析①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动;②再根据“指纹区”(1300~400cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。

三、仪器与试剂1、Nicolet 510P FT-IR Spectrometer(美国Nicolet公司);2、 FW-4型压片机(包括压模等)(天津市光学仪器厂);真空泵;玛瑙研钵;红外灯;镊子;可拆式液体池;盐片(NaCl, KBr, BaF2等)。

3、试剂:KBr粉末(光谱纯);无水乙醇(AR);滑石粉;丙酮;脱脂棉;4、测试样品:对硝基苯甲酸;苯乙酮等。

四、实验步骤1.了解仪器的基本结构及工作原理2.红外光谱仪的准备①打开红外光谱仪电源开关,待仪器稳定30分钟以上,方可测定;②打开电脑,选择win98系统,打开OMNIC E、S、P软件;在Collect菜单下的ExperimentSet-up中设置实验参数;③实验参数设置:分辨率 4 cm-1,扫描次数32,扫描范围4000-400 cm-1;纵坐标为Transmittance3.红外光谱图的测试①液体样品的制备及测试将可拆式液体样品池的盐片从干燥器中取出,在红外灯下用少许滑石粉混入几滴无水乙醇磨光其表面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 对各种羰基在不同有机化合物中的红外吸收频率进行比较,说明取代效应和共轭效应所起的作用。
二、实验内容
通过苯甲酸进行制样,然后进行红外光谱的扫描,并得到图谱。
三、实验示意图
四、实验用主要仪器设备、消耗品
仪器设备名称
规格
消耗品名称
规格
傅立叶红外光谱仪
苯甲酸
玛瑙研钵
压片机
计算机
五、实验原理及原始计算数据、所应用的公式
红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现)。因此,除了单原子和同核分子如Ne、He、O2、H2等之外,几乎所有的有机化合物在红外光谱区均有吸收。多原子分子的红外光谱与其结构的关系,一般是通过实验手段获得。即通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。
七、实验结果计算及曲线
1. 将不同的样品按所属物态进行制样,用傅立叶变换红外光谱仪测定其红外光谱。
2. 用仪器自带软件优化谱图峰形。
3. 打印样品红外谱图。
八、对实验结果和实验中某些现象的分析讨论
谱图上出现的3000cm-1左右的峰,与标准谱图不一样,是因为样品的吸湿引起的,须对样品进行干燥,即可得与标准谱图相似的结果。
实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=O等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。通常把这种能代表基团存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。红外吸收带的波数位置、波峰的数目以及吸收谱带的强度反映了分子结构上的特点,谱图中的吸收峰与分子中各基团的振动形式相对应,可以用来鉴定未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与分子组成或化学基团的含量有关,可用以进行定量分析和纯度鉴定。
分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱。
红外吸收光谱是一种分子吸收光谱。当样品受到频率连续变化的红外光照射时,分子吸收某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。
由于红外光谱分析特征性强,气体、液体、固体样品都可测定,并具有用量少,分析速度快,不破坏样品的特点。因此,红外光谱法不仅与其它许多分析方法一样,能进行定性和定量分析,而且是鉴定化合物和测定分子结构的用效方法之一。
六、实验数据记录
1. 保证干燥的操作环境。
2. 解释红外光谱时,只需指认各基团的特征吸收峰,不必对每一吸收峰作出解释。
实验精确度%
九、尚待解决的问题
十、对学生的要求
1. 文献调研
2. 对目标对象样品的背景知识了解设计者:孟庆华
首开实验时间:2007.2
编写人:孟庆华
编写时间:2007.2
实验编号CA393012
实 验 指 导 书
实验项目:红外光谱的测定
所属课程:实验化学3-2
课程代码:CA393
面向专业:化学
学院(系):化学化工学院
实验室:基础化学实验中心代号:11101
2007年2月18日
一、实验目的
1. 掌握红外光谱分析的基本原理。
2. 学习傅立叶红外光谱仪的工作原理及使用方法。
相关文档
最新文档