计算角的度数.(精选)
小学数学四年级讲义:角度计算(精编)

小学数学四年级讲义:角度计算[解题方法和技巧]一.角及其分类:1、角可以分为锐角、直角、钝角、平角、周角。
锐角:大于0°,小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:等于180°的角叫做平角。
周角:等于360°的角叫做周角。
2、对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。
两条直线相交,构成两对对顶角。
互为对顶角的两个角相等。
3、余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。
等角的余角相等,等角的补角相等二、三角形的外角:1、定义:三角形的一条边与另一条边的反向延长线组成的角,叫做三角形的外角。
2、性质:三角形的一个外角等于与它不相邻的两个内角的和。
.三角形的一个外角大于与它不相邻的任一内角.三、折叠图形性质:折叠前后重叠部分完全重合(对应角,对应边,面积相等)[题型一:线与角求角度计算][模型例题1.]如图,直线AB⊥CD于点O,EF为过点O的一条直线。
(1)写出图中与∠1互余的角;(2)若∠2=30°,求∠AOE的度数.答案:(1)∠COE,∠2.(2)120°。
解析:(1)和为90°的两个角互余,故∠COE与∠1互余,又∠2与∠COE为对顶角,相等,故也与∠1互余。
(2)∠2与∠COE为对顶角,相等,故∠AOE=∠AOC+∠COE=90°+30°=120°。
[参照模型做练习1]1.如图1所示,直线AB,CD相交于点O,OE⊥AB,那么下列结论错误的是()A.∠AOC与∠COE互为余角B.∠BOD与∠COE互为余角C.∠COE与∠BOE互为补角D.∠AOC与∠BOD是对顶角2.如图所示,直线AB,CD相交于点O,∠BOE=90°,若∠COE=55°,求∠BOD的度数。
计算角的度数专项练习题

计算角的度数专项练习 1、求图中∠2=?2.已知∠1=45°,求下面各角的度数。
∠2=∠3=∠4=3.已知∠3=30°,求下面各角的度数。
∠1=∠2=3.求下图中各个角的度数。
(1)已知∠1=28°求∠2、∠3、∠4和∠5各是多少度?(2)如下图,已知∠2=35°,求∠1、∠3是多少度。
3.【例题1】说出每个钟面上时钟和分针所形成的角的度数。
【举一反三】一、先写出每个钟面上的时间, 再量一量钟面上的分针和时针所组成的角的度数。
时间 ( ∶ ) ( ∶ ) ( ∶ ) ( ∶ )角度 ( ) ( ) ( ) ( )角度计算和三角形一、专心填一填。
1、一个等腰三角形,它的一个角是40°,另外两个角的度数分别是()、()。
2、长5厘米,8厘米,()厘米的三根小棒不能围成一个三角形3、一个三角形中有一个角是45°,另一个角是它的2倍,第三个角是(),这是一个()三角形。
4、一个等腰三角形的周长是21厘米,它的底边长是腰的1.5倍,那么这个等腰三角形的腰是()厘米.5、一个等腰三角形,顶角度数是其中一个底角的2倍,那么这个等腰三角形的顶角度数是().6、把一个等边三角形平均分成两个直角三角形,其中一个直角三角形的两个锐角分别是()、()。
二、精心选一选(将正确答案的序号填在括号里)。
1、所有的等边三角形都是()三角形。
A、钝角B、锐角C、直角2、一个三角形至少有()个锐角。
A、1B、2C、33、一个三角形中,最多有()个直角。
A、1B、2C、34、把一个10°的角先扩大6倍后,再用6倍的放大镜来看,看到的角是()。
A、10°B、60°C、120°D、360°5、一个三角形的两条边分别是40厘米、50厘米,第三条边的长度只能选()。
A、80厘米B、90厘米C、110厘米6、下面说法,正确的是()。
A、等腰三角形都是等边三角形B、等边三角形都是等腰三角形C、等腰三角形都是锐角三角形。
小学奥数 角度计算 精选练习例题 含答案解析(附知识点拨及考点)

4-1-3.角度计算知识点拨一、角1、角的定义:自一点引两条射线所成的图形叫角2、表示角的符号:∠3、角的分类:锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种(1)锐角:大于0°,小于90°的角叫做锐角。
(2)直角:等于90°的角叫做直角。
(3)钝角:大于90°而小于180°的角叫做钝角。
(4)平角:等于180°的角叫做平角。
(5)优角:大于180°小于360°叫优角。
(6)劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。
(7)周角:等于360°的角叫做周角。
(8)负角:按照顺时针方向旋转而成的角叫做负角。
(9)正角:逆时针旋转的角为正角。
(10)0角:等于零度的角。
4、角的大小:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。
二、三角形1、三角形的定义:由三条边首尾相接组成的封闭图形叫做三角形2、内角和:三角形的内角和为180度;外角:(1)三角形的一个外角等于另外两个内角的和;(2)三角形的一个外角大于其他两内角的任一个角。
3、三角形的分类(1)按角分:锐角三角形:三个角都小于90度。
直角三角形:有一个角等于90度。
钝角三角形:有一个角大于90度。
注:锐角三角形和钝角三角形可统称为斜三角形(2)按边分:不等腰三角形;等腰三角形(含等边三角形)。
模块一、角度计算【例 1】有下列说法:(1)一个钝角减去一个直角,得到的角一定是锐角,(2)一个钝角减去一个锐姥,得到的角不可能还是钝角.(3)三角形的三个内麓中至多有一个钝角.(4)三角形的三个内角中至少有两个锐角.(5)三角形的三个内角可以都是锐角.(6)直角三角形中可胄邕有钝角.(7)25︒的角用10倍的放大镜看就变成了250︒ 其中,正确说法的个数是【考点】角度计算 【难度】3星 【题型】填空 【解析】 几何问题(1)、(3)、(4)、(5)是正确的说法.【答案】(1)、(3)、(4)、(5)是正确的说法【例 2】 下图是3×3的正方形方格,∠1与∠2相比,较大的是_____。
度数的加减乘除运算

解:(1)10°15′36〃
(2)35.675°
例2 计算下列各题: (1) 43°20′+27°42′27〃; (2) 180°-115°32′12〃 (3) 30°31′×5; (4) 143°16′÷4
解:(1)因为 20′+42′=62′=1°2′,所以 43°20′+27°42′27〃=71°2′27〃; (2)180°-126°43′12〃=179°59′60〃126°43′12〃=53°16′48〃; (3)30°31′×5=30°×5+31′×5=150° +155′=150°+2°35′=152°35′; (4)143°16′÷4=143°÷4+16′÷4=35 °+3°÷4+16′÷4=35°+(180′+16′)÷ 4=35°+49′=35°49′.
角的加减运算:
(1)34 34 21 51 55 85 56 25
0 ' 0 ' 0 ' 0
'
(2)180 52 31
0 0 '
计算:
分析:把度化成度、分、 秒的形式,一般都是把度 例l (1)将10.26°化为度、分、秒; 的小数部分化成分,把分 的小数部分化成秒;把度、 (2)将35°40′30〃化为度. 分、秒的形式化成度,一 般地是先把秒化成分,再 把分化成度.
想一想:
(1)若时钟由2点30分走到2 点55分,问时针、分针各转过多大的 角度?
(2)钟表上2时15分时,时针与分 针所成的锐角是多少度?
说明:进行加法运算时,先算秒,再算分,最后算度, 够60〃时,把60〃化为1′,够60′时,把60′化为 1°; 进行减法运算时,不够减,借1°化为60′,借1′化为 60〃;关于度、分、秒的乘法:把度、分、秒分别乘 以乘数,够60′时,把60′化为1°,关于度、分、秒的 除法:把度的余数化成分或把分的余数化成秒后再除.
小学奥数角度计算精选练习例题含答案解析(附知识点拨及考点)

⼩学奥数⾓度计算精选练习例题含答案解析(附知识点拨及考点)⼀、⾓1、⾓的定义:⾃⼀点引两条射线所成的图形叫⾓2、表⽰⾓的符号:∠3、⾓的分类:锐⾓、直⾓、钝⾓、平⾓、周⾓、负⾓、正⾓、优⾓、劣⾓、0⾓这10种(1)锐⾓:⼤于0°,⼩于90°的⾓叫做锐⾓。
(2)直⾓:等于90°的⾓叫做直⾓。
(3)钝⾓:⼤于90°⽽⼩于180°的⾓叫做钝⾓。
(4)平⾓:等于180°的⾓叫做平⾓。
(5)优⾓:⼤于180°⼩于360°叫优⾓。
(6)劣⾓:⼤于0°⼩于180°叫做劣⾓,锐⾓、直⾓、钝⾓都是劣⾓。
(7)周⾓:等于360°的⾓叫做周⾓。
(8)负⾓:按照顺时针⽅向旋转⽽成的⾓叫做负⾓。
(9)正⾓:逆时针旋转的⾓为正⾓。
(10) 0⾓:等于零度的⾓。
4、⾓的⼤⼩:⾓的⼤⼩与边的长短没有关系;⾓的⼤⼩决定于⾓的两条边张开的程度,张开的越⼤,⾓就越⼤,相反,张开的越⼩,⾓则越⼩。
⼆、三⾓形1、三⾓形的定义:由三条边⾸尾相接组成的封闭图形叫做三⾓形2、内⾓和:三⾓形的内⾓和为180度;外⾓:(1)三⾓形的⼀个外⾓等于另外两个内⾓的和;(2)三⾓形的⼀个外⾓⼤于其他两内⾓的任⼀个⾓。
3、三⾓形的分类(1)按⾓分:锐⾓三⾓形:三个⾓都⼩于90度。
直⾓三⾓形:有⼀个⾓等于90度。
钝⾓三⾓形:有⼀个⾓⼤于90度。
注:锐⾓三⾓形和钝⾓三⾓形可统称为斜三⾓形(2)按边分:不等腰三⾓形;等腰三⾓形(含等边三⾓形)。
模块⼀、⾓度计算【例 1】有下列说法:(1)⼀个钝⾓减去⼀个直⾓,得到的⾓⼀定是锐⾓,(2)⼀个钝⾓减去⼀个锐姥,得到的⾓不可能还是钝⾓. (3)三⾓形的三个内麓中⾄多有⼀个钝⾓. (4)三⾓形的三个内⾓中⾄少有两个锐⾓. (5)三⾓形的三个内⾓可以都是锐⾓.知识点拨4-1-3.⾓度计算(6)直⾓三⾓形中可胄邕有钝⾓.(7)25?的⾓⽤10倍的放⼤镜看就变成了250? 其中,正确说法的个数是【考点】⾓度计算【难度】3星【题型】填空【解析】⼏何问题(1)、(3)、(4)、(5)是正确的说法.【答案】(1)、(3)、(4)、(5)是正确的说法【例 2】下图是3×3的正⽅形⽅格,∠1与∠2相⽐,较⼤的是_____。
初中数学 如何计算角的度数

初中数学如何计算角的度数
要计算一个角的度数,你可以使用以下方法:
1. 度数的定义:一个完整的圆共有360度。
所以,一个角的度数表示了它所占据的圆的比例。
2. 已知角度:如果你已经知道了一个角的度数,那么计算它的度数就非常简单了,直接使用已知的度数即可。
3. 通过边的长度和半径计算:如果你有一个扇形或弧形的角,并且已知边的长度和圆的半径,那么你可以使用以下公式来计算角的度数:
度数= (边的长度/ 圆的周长) * 360
4. 通过弧长计算:如果你知道一个角的弧长和圆的半径,那么可以使用以下公式来计算角的度数:
度数= (弧长/ 圆的周长) * 360
5. 通过角的弧度计算:在高中数学中,角的度数也可以用弧度来表示。
弧度是一个角所对应的圆的弧长与半径之比。
如果你知道一个角的弧度,可以使用以下公式来计算它的度数:度数= 弧度* (180 / π)
这些是计算角度的一些基本方法。
根据具体情况,你可以选择适合的方法进行计算。
求角度数必考100题

求角度数必考100题摘要:一、引言1.角度数的重要性2.求角度数的方法与技巧二、求角度数必考100题解析1.分类介绍求角度数的方法a.直接求解法b.间接求解法c.几何关系求解法d.三角函数求解法e.数值计算法2.针对不同题型的求角度数策略a.单选题求解策略b.多选题求解策略c.填空题求解策略d.解答题求解策略3.必考100题详解a.题目1-题目10b.题目11-题目20c.题目21-题目30...e.题目91-题目100三、求角度数必考100题实战演练1.模拟试题2.答案与解析四、总结与展望1.求角度数的学习方法2.考试技巧与策略3.提高求角度数能力的建议正文:作为一名职业写手,我根据所提供的文本为您编写了以下求角度数必考100题的文章。
本文旨在帮助读者掌握求角度数的方法与技巧,以便在考试中取得优异成绩。
以下是文章的详细内容:一、引言1.角度数的重要性在数学、物理、工程等领域,角度数是一个基本的概念。
掌握求角度数的方法对于解决实际问题具有重要意义。
因此,在学习过程中,我们要对求角度数给予足够的重视。
2.求角度数的方法与技巧求角度数的方法多种多样,下面我们将介绍一些常用的方法。
二、求角度数必考100题解析1.分类介绍求角度数的方法(1)直接求解法:根据题意,直接计算角度大小。
(2)间接求解法:通过求解相关量,间接得到角度大小。
(3)几何关系求解法:利用几何图形的性质和解题方法求解角度。
(4)三角函数求解法:运用三角函数公式和性质求解角度。
(5)数值计算法:利用计算器或数值计算软件求解角度。
2.针对不同题型的求角度数策略(1)单选题求解策略:熟悉各种求角度数的方法,快速判断正确答案。
(2)多选题求解策略:掌握各个选项的求解方法,提高正确率。
(3)填空题求解策略:根据题意,选用合适的求解方法,确保答案正确。
(4)解答题求解策略:分析题目,灵活运用各种求角度数的方法,展现解题过程。
3.必考100题详解本文将不再一一列举题目及解答过程,仅给出部分题目的解答思路,以供参考。
角的度量与计算

(一)角的度量 1.角的度量工具: 量角器
2.度量角的方 1、对“中”——角的顶点对量角器的中心
法:
2、重合——角的一边与量角器的零线重合
注;2. 1.把以“度分秒”组合形式为单位的数化为以 度为单位的数,方法是,从后向前除以60,边除 边加。
2.把“度分秒”组合形式 化成 纯度 (1)39°36′= 39.6 ° (2)108°42′36″= 108(1) 12036/56// + 45024/35// 解:(1)原式=(12+45)0+(36+24)/+(56+35)//
注:1.把以度为单位的数化为以度,分,秒组合形式为单位的 数,方法是,从前向后,取整数部分后,小数部分乘60往后
1.纯度 化 “度分秒”组合形式:
(1)16.24°= 16 ° 14 ′ 24 ″ (2)34.37°= 34 ° 22 ′ 12 ″
2 把“度分秒”组合形式 化成 纯度
(1)72036/
(3)21031/27//×3 解:原式
=(21×3)0(31×3)/(27×3)// =63093/81// =63094/21// =64034/21//
(4) 63021/39//÷3 解:原式=(63÷3)0(21÷3)/(39÷3)//
=2107/13// (5)10606/25//÷5 解:原式=(106÷5)0(6÷5)/(25÷5)//
练习(加减计算):
(1) 12036/56// + 45024/35// (2) 78043/ - 61048/49// (3) 12036/58// + 35024/ (4) 900 - 61048/49//
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算角的度数
在计算角的度数时常常用到以下知识:平角的度数是180°;周角的度数是360°;直角的度数是90°;三角形的内角和等于180°;等腰三角形的两个底角相等;直角三角形中两个锐角的和等于90°;等边三角形的每个内角等于60°.
下面我们学习如何计算角的度数.
例1如图6—1,求∠1,∠2,∠3的度数.
分析:因为∠1与130°的和
是一个平角,用180°减去130°就是∠1的度数;利用直角三角形中两个锐角和等于90°,再由前面得出的∠1的度数,可以求出∠2的度数;∠2与∠3的和是180°,由此得到∠3的度数.
解:∠1=180°-130°=50°
∠2=90°-∠1=90°-50°=40°
∠3=180°-∠2=180°-40°=140°
例2如图6—2,已知∠C=25°,AD=DB=BC,求∠ADE的度数.
分析:要求∠ADE的度数,只须求∠ADC的度数,因为BD=BC,所以∠BDC=∠C,根据三角形内角和等于180°,可以求出∠DBC的度数,由于∠DBC与∠ABD的和是180°,所以∠ABD的度数可以求出,又因为AD=DB,所以∠BAD=∠ABD,再利用三角形内角和等于180°,得到∠ADB的度数,最终求出∠ADE的度数.
解:因为DB=BC
所以∠BDC=∠C=25°
在△BDC中,
∠DBC=180°-∠C-∠BDC=180°-25°-25°=130°
又因为∠ABD+∠DBC=180°
所以∠ABD=180°-∠DBC=180°-130°=50°
因为AD=DB
所以∠DAB=∠ABD=50°
在△ADB中
∠ADB=180°-∠DAB-∠ABD=180°-50°-50°=80°
所以∠ADC=ADB+∠BDC=80°+25°=105°
∠ADE=180°-∠ADC=180°-105°=75°
说明:∠ADE=∠DAB+∠C,这并不是偶然的巧合,而是因为∠ADE与∠ADC的和是180°,∠ADC与∠C及∠DAB的和也是180°,所以∠ADE等于∠C+∠DAB.∠ADE叫做△ADC 的一个外角,由此得出一个重要的结论:三角形的任意一个外角等于和它不相邻的两个内角的和.如图6—3中,∠DAC、∠ABE、∠ACF都分别叫三角形ABC的外角,而
∠DAC=∠ABC+∠ACB
∠ABE=∠BAC+∠ACB
∠ACF=∠ABC+∠CAB
例3如图6—4,已知:∠ACB=3∠A=6∠B,DE⊥AB,求∠D的度数.
分析:在△ABC中,由∠A、∠B、∠ACB的关系及它们的和等于180°,可以得出∠B的度数,在直角三形DEB中,∠D与∠B的和是90°,可以得出∠D的度数.
解:在△ABC中
∠A+∠B+∠ACB=180°
因为3∠A=6∠B,所以∠A=2∠B,又∠ACB=6∠B,所以2∠B+∠B+6∠B=180°
9∠B=180°
∠B=20°
在直角三角形DEB中,
因为∠D+∠B=90°
所以∠D=90°-∠B=90°-20°=70°.
例4同样大小的12个正方形,如图6—5那样排列起来,∠ABC是多少度?
分析:要求∠ABC的度数,似乎无从下手,但仔细观察图形特点,如果将直线AB经过的三个小正方形绕点A逆时针旋转90°,如图6—6,点D移到点E,AB与AC重合,得到△ABC是直角三角形,并且AB=AC,这样容易求出∠ABC的度数.
解:将直线AB经过的三个小正方形绕点A逆时针旋转90°,则△ABD与△ACE重合,即△ABC是直角三角形,且AB=AC,所以∠ABC=∠ACB=45°.
例5将正方形ABCD对半折叠后,折线为EF,如图6—7,将B点利用折线移到EF上,折线为CP,求∠1、∠2的度数.
分析:以CP为折线折叠后点B移到点M,如图6—8,以EF为折线折叠后,点B与C重合,所以MB=MC,又因为以CP为折线折叠后,点B与M重合,所以BC=MC,∠1=∠3,于是由MB=MC=BC知,△MBC是等边三角形,所以∠1+∠3=60°,可以求出∠1的度数.而在△ABM中,由于MB=BC知,MB=AB,所以△ABM是等腰三角形,由∠MBC的度数可以求出∠ABM的度数,这样便可以求出∠BAM的度数,最终可以求出∠2的度数.
解:因为以EF为折线折叠后,B与C重合,所以MB=MC,以CP为折线折叠后,B与M 重合,所以BC=MC,∠1=∠3,由MB=MC=BC知,△MBC是等边三角形,所以2∠1=60°,即∠1=30°.
在△ABM中,因为MB=AB,所以,△ABM是等腰三角形,所以
∠ABM=90°-∠MBC=90°-60°=30°
∠BAM=(180°-30°)÷2=75°
∠2=90°-∠BAM=90°-75°=15°.
例6如图6—9,已知△ABC是等边三角形,D是AC中点,E是
状.
分析:由于△ABC是等边三角形,所以∠3=60°,如果能设法求出∠2的度数,就可以求出∠E的度数.
解:因为△ABC是等边三角形,所以∠ABC=∠ACB=60°.因为D是AC中点,AB=BC,所以以BD为折线折叠的话,必然A与C重合,因
由于∠3=∠2+∠E
由∠1=∠E知DB= DE,所以△DBE是等腰三角形.最新文件仅供参考已改成word文本。
方便更改。