动态规划课程设计(矩阵链乘问题)

合集下载

动态规划-(矩阵连乘)

动态规划-(矩阵连乘)
} return m[0][n-1]; }
12
4、构造最优解
void MatrixChain::Traceback(int i, int j) {
if(i==j) { cout<<'A'<<i; return;} if (i<s[i][j]) cout<<'('; Traceback(i, s[i][j]); if (i<s[i][j])cout<<')'; if(s[i][j]+1<j)cout<<'('; Traceback(s[i][j]+1, j); if(s[i][j]+1<j) cout<<')'; } void MatrixChain::Traceback() { cout<<'('; Traceback(0, n-1); cout<<')'; cout<<endl; }
②当i=j时,A[i:j]=Ai,因此,m[i][i]=0,i=1,2,…,n ③当i<j时,m [ i ] j ] [ m [ i ] k ] [ m [ k 1 ] j ] [ p i 1 p k p j
这里 A i 的维数为 pi1pi
∴可以递归地定义m[i][j]为:
m [i]j] [ m i k j{ m [i]n k [ ] m [k 0 1 ]j] [ p i 1 p kp j}i i j j
根据MatrixChain动态规划算法: ②计算m[i][j]数乘次数
m[2][5]=min m[2][2]+m[3][5]+p1p2p5=13000

矩阵连乘问题(动态规划算法)

矩阵连乘问题(动态规划算法)

矩阵连乘问题(动态规划算法)动态规划算法思想简介:将⼀个问题分解为多个⼦问题,这点和分治法类似,但是每个⼦问题不是独⽴的⽽是相互联系的,所以我们在求解每个⼦问题的时候可能需要重复计算到其他的⼦问题,所以我们将计算过的⼦问题的解放进⼀个表中,这样就能避免了重复计算带来的耗费,这就是动态规划的基本思想;⼀般地,动态规划思想⼀般⽤来解最优化问题,主要分为以下四个步骤:(1)找出最优解的性质,并刻画其结构特征;(2)递归地定义最优值;(3)以⾃底向上的⽅式计算出最优值;(4)根据计算得到的最优值时得到的信息,构造最优解;同时,问题的最优⼦结构性质也是该问题可⽤动态规划算法求解的显著特征,这⾥的最优⼦结构性质即指:问题的最优解也即代表着它的⼦问题有了最优解;问题描述:分析过程如下:(1)分析最优⼦结构的性质:(2)分析递归关系,以及利⽤⾃底向上的⽅式进⾏计算:(3)获取最优值和最优解:代码如下:#ifndef MATRIX_CHAIN_H#define MATRIX_CHAIN_Hvoid matrix_chain(int *p, int n, int **m, int **s);void traceback(int i, int j, int **s);#endif#include <iostream>#include "matrix_chain.h"using namespace std;//利⽤动态规划算法获取最优值void matrix_chain(int *p, int n, int **m, int **s) //p:各个矩阵的列数,n:矩阵个数,m:m[i:j]矩阵i到j的相乘次数,s:对应的分开位置{for (int i = 0; i < n; i++){m[i][i] = 0;}for (int r = 2; r <= n; r++){for (int i = 0; i < n - r + 1; i++){int j = i + r - 1;m[i][j] = m[i + 1][j] + p[i - 1] * p[i] * p[j];s[i][j] = i;for (int k = i + 1; k < j; k++){int t = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];if (t < m[i][j]){m[i][j] = t;s[i][j] = k;}}}}}//利⽤s[i][j]获取最优解void traceback(int i, int j, int **s){if (i == j)return;traceback(i, s[i][j], s);traceback(s[i][j] + 1, j, s);cout << "Multiply A" << i << " , " << s[i][j];cout << "and A" << (s[i][j] + 1) << " , " << j << endl;}#include <iostream>#include "matrix_chain.h"using namespace std;int main(void){int matrix_num = 0; //矩阵个数cout << "请输⼊矩阵个数:" << endl;cin >> matrix_num;int **m = new int *[matrix_num];for (int i = 0; i < matrix_num; i++)m[i] = new int[matrix_num];int **s = new int *[matrix_num];for (int i = 0; i < matrix_num; i++)s[i] = new int[matrix_num];int *p = new int[matrix_num];cout << "请输⼊各矩阵的列数:" << endl;for (int i = 0; i < matrix_num; i++){cin >> p[i];}matrix_chain(p, matrix_num, m, s);traceback(0, matrix_num - 1, s);system("pause");return1;}可结合我的另⼀篇关于贪⼼算法的博客进⾏⽐较,了解这两者的区别;。

动态规划-4矩阵连乘问题

动态规划-4矩阵连乘问题

6.4多个矩阵连乘模块设计软件行业中客户总是在变更需求银行对我们公司开发的乘法模块还不满意。

他们的真实想法并不是实现两个矩阵的乘法,而是是能一次够实现多个矩阵按照算法运算法则的乘法,因此要求我们进一步改进我们的系统,实现多个矩阵的连乘功能,并且需要看到我们设计的程序能够满足他们的运行效率要求时才付二期款。

⏹给定n 个矩阵,其中与是可乘的,。

考察这n 个矩阵的连乘积⏹由于矩阵乘法满足结合律,所以计算矩阵的连乘可以有许多不同的计算次序。

这种计算次序可以用加括号的方式来确定。

⏹若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积},...,,{21n A A A i A 1+i A 1,...,2,1-=n i nA A A (21)D C B A , , ,1050⨯=A 4010⨯=B 3040⨯=C 530⨯=D )))(((D BC A )))(((D C AB )))(((D BC A )))(((CD B A )))(((CD AB 16000, 10500, 36000, 87500, 34500◆设有四个矩阵,它们的维数分别是:◆总共有五中完全加括号的方式∑==qk kjikijba c 1⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⨯⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡qr q q r r pq p p q q pr r n r r b b b b b b b b b a a a a a a a a a c c c c c c c c c 212222111211212222111211212222111211matrixMultiply(int[][]a,int[][]b,int[][]c,int ra,int ca,int rb,int cb){if(ca!=rb)Throw new IllegalArgumentException (“矩阵不可乘”);for(int i=0;i<ra;i++)for(int j=0;i<cb;j++){int sum=a[i][0]*b[0][j];for(int k=1;k<rb;k++)Sum+=a[i][k]*b[k][j];c[i][j]=sum;}对于p X q 矩阵A 和一个q X r 矩阵B , AB 需要?标准乘法计算.∑==qk kjikijba c 1⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⨯⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡qr q q r r pq p p q q pr r n r r b b b b b b b b b a a a a a a a a a c c c c c c c c c 212222111211212222111211212222111211matrixMultiply(int[][]a,int[][]b,int[][]c,int ra,int ca,int rb,int cb){if(ca!=rb)Throw new IllegalArgumentException (“矩阵不可乘”);for(int i=0;i<ra;i++)for(int j=0;i<cb;j++){int sum=a[i][0]*b[0][j];for(int k=1;k<rb;k++)Sum+=a[i][k]*b[k][j];c[i][j]=sum;}对于p X q 矩阵A 和一个q X r 矩阵B , AB 需要?标准乘法计算.( A1X (A 2X A 3) )20 X 100 X 10 = 2000020 X 10 X 50 = 1000030000 次运算20 X 100 X 50 = 100000100X 10 X 50 = 50000150000 次运算如果A 1, A 2, and A 3是20X100, 100X10, 和10X50 矩阵,A 1X A 2X A 3乘积运算次数是多少?( (A 1X A 2) X A 3)矩阵连乘问题给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2 ,…,n-1。

动态规划法解矩阵连乘问题

动态规划法解矩阵连乘问题

动态规划法解矩阵连乘问题实验内容给定n个矩阵{A1,A2,….An},其中Ai与Ai+1是可乘的,i=1,2,3。

,n-1。

我们要计算这n个矩阵的连乘积。

由于矩阵乘法满足结合性,故计算矩阵连乘积可以有许多不同的计算次序。

这种计算次序可以用加括号的方式确定。

若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则我们可依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。

解题思路将矩阵连乘积A(i)A(i+1)…A(j)简记为A[i:j],这里i <= j 。

考察计算A[i:j]的最优计算次序。

设这个计算次序在矩阵A(k)和A(k+1)之间将矩阵链断开,i <= k < j, 则其相应完全加括号方式为(A(i)A(i+1) …A(k)) * (A(k+1)A(k+2) …A(j))。

特征:计算A[i:j]的最优次序所包含的计算矩阵子链A[i:k]和A[k+1:j]的次序也是最优的。

矩阵连乘计算次序问题的最优解包含着其子问题的最优解。

设计算A[i:j] , 1 <= i <= j <= n ,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1, n]当i = j 时,A[i:j]=Ai ,因此,m[i,i] = 0 , i = 1,2, …,n当i < j 时,m[i,j] = m[i,k] + m[k+1,j] + p(i-1)p(k)p(j) 这里A(i)的维数为p(i-1)*(i)( 注:p(i-1)为矩阵A(i)的行数,p(i)为矩阵A[i]的列数)实验实验代码#in elude <iostream>#in elude <vector>using n amespaee std ;class matrix_cha in{public:matrix_eha in(const vector <int> & c){ cols = c ;count = cols.size (); mc.resize (co unt);s.resize (co unt);for (i nt i = 0; i < count; ++i) { mc[i].resize (co unt); s[i].resize (co unt);}for (i = 0; i < count; ++i) { for (int j = 0; j < count; ++j) { mc[i][j] = 0 ;s[i][j] = 0 ;//记录每次子问题的结果void lookup_cha in () {__lookup_cha in (1, count - 1);min_count = mc[1][co unt - 1];cout << "min _multi_co unt = "<< min_count << endl ;//输出最优计算次序__trackback (1, count - 1);}//使用普通方法进行计算void calculate () {int n = count - 1; //矩阵的个数// r表示每次宽度// i,j表示从从矩阵i到矩阵j// k表示切割位置for (i nt r = 2; r <= n; ++ r) {for (int i = 1; i <= n - r + 1; ++ i) {int j = i + r - 1 ;//从矩阵i到矩阵j连乘,从i的位置切割,前半部分为0mc[i][j] = mc[i+1][j] + cols[i-1] * cols[i] * cols[j];s[i][j] = i ;for (int k = i + 1; k < j; ++ k) {int temp = mc[i][k] + mc[k + 1][j] +cols[i-1] * cols[k] * cols[j];if (temp < mc[i][j]) {mc[i][j] = temp ;s[i][j] = k ;}} // for k} // for i} // for rmin_count = mc[1][ n];cout << "min _multi_co unt = "<< min_count << endl ;//输出最优计算次序__trackback (1, n);private:int __lookup_cha in (int i, i nt j) {//该最优解已求出,直接返回if (mc[i][j] > 0) {return mc[i][j];}if (i == j) {return 0 ; //不需要计算,直接返回}//下面两行计算从i到j按照顺序计算的情况int u = __lookup_cha in (i, i) + __lookup_cha in (i + 1, j)+ cols[i-1] * cols[i] * cols[j];s[i][j] = i ;for (int k = i + 1; k < j; ++ k) {int temp = __lookup_cha in (i, k) + __lookup_cha in(k + 1, j)+ cols[i - 1] * cols[k] * cols[j];if (temp < u) {u = temp ;s[i][j] = k ;}}mc[i][j] = u ;return u ;}void __trackback (int i, i nt j) {if (i == j) {return ;}__trackback (i, s[i][j]);__trackback (s[i][j] + 1, j);cout <<i << "," << s[i][j] << " " << s[i][j] + 1 << "," << j << endl;}private:vector<int> cols ; // 列数int count ; // 矩阵个数+ 1vector<vector<int> > mc; //从第i个矩阵乘到第j个矩阵最小数乘次数vector<vector<int> > s; //最小数乘的切分位置int min_count ; //最小数乘次数};int mai n(){//初始化con st i nt MATRIX_COUNT = 6 ;vectorvi nt> c(MA TRIX_COUNT + 1);c[0] = 30 ;c[1] = 35 ;c[2] = 15 ;c[3] = 5 ;c[4] = 10 ;c[5] = 20 ;c[6] = 25 ;matrix_cha in me (c); // mc.calculate (); mc」o okup_cha in (); return 0 ;}实验结果实验验证从s 可知计算顺序为((A1(A2A3))((A4A5))A6))实验总结在这次实验中懂得了动态规划法运用方法和解题思路的重要性,在这个程序中如何 建立动态规划的过程建立递归过程 保存已解决的子问题答案。

算法设计与分析——矩阵连乘问题(动态规划)

算法设计与分析——矩阵连乘问题(动态规划)

算法设计与分析——矩阵连乘问题(动态规划)⼀、问题描述引出问题之前我们先来复习⼀下矩阵乘积的标准算法。

int ra,ca;//矩阵A的⾏数和列数int rb,cb;//矩阵B的⾏数和列数void matrixMultiply(){for(int i=0;i<ra;i++){for(int j=0;j<cb;j++){int sun=0;for(int k=0;k<=ca;k++){sum+=a[i][k]*b[k][j];}c[i][j]=sum;}}}给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2…,n-1。

如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。

例如,给定三个连乘矩阵{A1,A2,A3}的维数分别是10*100,100*5和5*50,采⽤(A1A2)A3,乘法次数为10*100*5+10*5*50=7500次,⽽采⽤A1(A2A3),乘法次数为100*5*50+10*100*50=75000次乘法,显然,最好的次序是(A1A2)A3,乘法次数为7500次。

加括号的⽅式对计算量有很⼤的影响,于是⾃然地提出矩阵连乘的最优计算次序问题,即对于给定的相继n个矩阵,如何确定矩阵连乘的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。

⼆、问题分析矩阵连乘也是Catalan数的⼀个常⽤的例⼦,关于时间复杂度的推算需要参考离散数学关于Catalan的内容。

下⾯考虑使⽤动态规划法解矩阵连乘积的最优计算次序问题。

1、分析最优解的结构问题的最优⼦结构性质是该问题可以⽤动态规划求解的显著特征!!!2、建⽴递归关系3、计算最优值public static void matrixChain(int n) {for (int i = 1; i <= n; i++) {m[i][i] = 0;}for (int r = 2; r <= n; r++) {//i与j的差值for (int i = 1; i <= n - r + 1; i++) {int j = i + r - 1;m[i][j] = m[i + 1][j] + p[i - 1] * p[i] * p[j];s[i][j] = i;for (int k = i + 1; k < j; k++) {int t = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];if (t < m[i][j]) {m[i][j] = t;s[i][j] = k;}}}}}4、构造最优解public static void traceback(int i, int j) {if (i == j) {System.out.printf("A%d", i); // 输出是第⼏个数据return;}System.out.printf("(");traceback(i, s[i][j]);// 递归下⼀个数据System.out.printf(" x ");traceback(s[i][j] + 1, j);System.out.printf(")");}三、总结。

矩阵连乘问题实验报告

矩阵连乘问题实验报告

一、实验目的通过本次实验,加深对动态规划算法的理解和应用,掌握解决矩阵连乘问题的方法,提高算法分析和设计能力。

二、实验原理矩阵连乘问题是指给定n个矩阵,每个矩阵都与它的前一个矩阵可乘,求计算这些矩阵连乘积的最优计算次序,以使计算过程中所需的数乘次数最少。

由于矩阵乘法满足结合律,因此可以通过加括号的方式确定不同的计算次序。

三、实验步骤1. 问题描述:给定n个矩阵A1, A2, ..., An,其中Ai与Ai-1是可乘的。

求计算矩阵连乘积A1A2...An的最优计算次序,使得计算过程中所需的数乘次数最少。

2. 输入数据:矩阵个数n,每个矩阵的规模。

3. 输出结果:计算矩阵连乘积的最优计算次序和最少数乘次数。

4. 算法设计:- 定义一个二维数组m[i][j],其中m[i][j]表示计算矩阵AiAi-1...Aj的最少数乘次数。

- 初始化m[i][i] = 0,因为单个矩阵无需计算。

- 对于每个子问题A[i:j],计算m[i][j]的最小值:- 遍历k从i到j-1,将问题分解为A[i:k]和Ak+1:j,计算m[i][k]和m[k+1][j]的和,并加上k个矩阵的维度乘积。

- 取上述和的最小值作为m[i][j]的值。

5. 递归关系:- 当i = j时,m[i][j] = 0。

- 当i < j时,m[i][j] = min(m[i][k] + m[k+1][j] + p[i-1]p[k]p[j]),其中k从i到j-1,p[i-1]表示矩阵Ai-1的行数,p[j]表示矩阵Aj的列数。

6. 自底向上计算:- 从m[1][1]开始,按照递归关系计算m[1][2],m[1][3],...,m[1][n]。

- 然后计算m[2][3],m[2][4],...,m[2][n],以此类推,直到计算m[1][n]。

7. 输出最优计算次序:- 从m[1][n]开始,根据递归关系和子问题的最优解,逐步确定每个子问题的最优计算次序,直到得到整个问题的最优计算次序。

动态规划矩阵链相乘

动态规划矩阵链相乘
(A[2:3])A4: 计算A[2:3]的计算量+计算A[2:3] 乘A4的计算量:240+10 ☓6 ☓10=840
A2(A[3:4]): 计算A[3:4]的计算量+计算A2乘 (A[3:4])的计算量:240+10 ☓4 ☓10=640
A1 5☓10 A2 10☓4 A3 4☓6 A4 6☓10
50 ☓5 ☓ 100 +50 ☓100 ☓ 10 =75000 按A(BC)计算,所需乘法次数为:
5 ☓100 ☓ 10 + 50☓5 ☓10=7500 可见如何结合十分影响计算的效率,自然提 出了矩阵链相乘的最优计算次序问题
完全加括号的矩阵连乘积
完全加括号的矩阵连乘积可递归地定义为: (1)单个矩阵是完全加括号的;
两个矩阵相乘
若A是一个p*q矩阵,B是一个q*r矩阵,则 其乘积C=AB是一个p*r矩阵。
for(i=1;i<=p;i++) for(j=1;j<=r;j++) {c[i][j]=0; for(k=1;k<=q;k++)c[i][j]+=a[i][k]*b[k][j]; } 总共需要pqr次数乘。
(A1A2A3)乘A4的计算量:320+5 ☓6 ☓10=620
(A1A2)(A3A4): 200+240+5 ☓4 ☓10=640
A1(A2A3A4 ): 640 &#来存储 计算A[i:j]的最少数乘次数 例7.1:A1 5☓10 A2 10☓4 A3 4☓6 A4 6☓10 请给出计算A[1:4]的最优计算次序 1、计算规模为2的子问题 计算A[1:2] 所需乘法次数:5☓10 ☓4=200 计算A[2:3] 所需乘法次数:10☓4 ☓6=240 计算A[3:4]所需乘法次数: 4☓6☓10=240

矩阵链乘法(动态规划)

矩阵链乘法(动态规划)

矩阵链乘法(动态规划)
⼀题意描述:
给定由n个要相乘的矩阵构成的序列(链)<A1,A2,A3,····A n>。

由于矩阵满⾜结合律(加括号⽅式表⽰结合⽅式),不同的计算⽅式导致的求出最终计算结果的代价相异,有的花的时间很少,有的⽅式所花时间很多,那么下⾯的任务就是求出算出结果所需要的最少时间及⼀个最优解。

⼆思路分析:
设p(n)表⽰⼀串n个矩阵可能的加全部括号⽅案数。

当n=1时,只有⼀个矩阵,此时p(1)=1。

当n>=2时,⼀个加全部括号的矩阵乘积等于两个加全部括号的⼦矩阵乘积的乘积,⽽且这两个⼦乘积之间的分裂可能发⽣在第k个和第k+1个矩阵之间,其中k=1,2,····,n-1;因此可以求得递归式:
1.找局部最优解:把问题:转化成两个最优⼦问题:及
2.构造递归解:
⾸先定义m[i,j]为解决⼦问题A[i....j]的最⼩计算次数,那么解决整个问题A[1,n]所花的最⼩时间为m[1,n]。

那么递归⽅程可以写成如下形式:
为了跟踪如何构造⼀个最优解我们可以定义s[i,j]为这样的⼀个k值,在该处分裂乘积后可得⼀个最优解。

3.构造函数进⾏求解
输出最优路径的函数⾃⼰编写,经过调⽤数组s[i][j]即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态规划程序设计
实验目的:掌握并实现动态规划算法。

实验内容:对维数为序列(5,10,3,12,5,50,6)的各矩阵。

找出其矩阵链乘的一个最优加全括号。

实验要求:利用动态规划思想写出算法的伪代码和C程序代码
(一)算法思想
穷举所有的计算次序,且对每一计算次序确定其乘法次数。

由此可找出n个矩阵进行连乘积A1A2…An的最小乘法次数。

将矩阵链乘积简记为A[i:j] ,这里i≤j
考察计算A[i:j]的最优计算次序。

设这个计算次序在矩阵Ak和Ak+1之间将矩阵链断开,i≤k<j,则其相应完全加括号方式为
计算量:A[i:k]的计算量加上A[k+1:j]的计算量,再加上A[i:k]和A[k+1:j]相乘的计算量
设计算A[i:j],1≤i≤j≤n,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1,n]
当i=j时,A[i:j]=Ai,因此,m[i,i]=0,i=1,2,…,n
当i<j时,
可以递归地定义m[i,j]为:
k位置只有j-i种可能
(二)程序代码
//动态规划
import java.io.*;
public class Testsuanfa {
public final int len = this.GetN()+1;
public int[] A = new int[len];
public double[][] M = new double[len][len];
public double[][] S = new double[len][len];
//取得用户需要规划的矩阵连乘的个数。

public int GetN(){
int dvalue = 0;
String value;
System.out.println("请输入连乘矩阵个数:");
BufferedReader bfr = new BufferedReader(new InputStreamReader(System.in));
try {
value = bfr.readLine();
dvalue =Integer.parseInt(value);
//捕捉输入异常
} catch (IOException e) {
System.out.println("输入出错了,请重新输入:");
System.exit(0);
}catch (NumberFormatException e2) {
System.out.println("请输入正确的数字!!");
System.exit(0);
}
return dvalue;
}
//输入矩阵的序列
public int GetA(){
int dvalue = 0;
String value;
System.out.println("请输入分别矩阵维数序列:");
BufferedReader bfr = new BufferedReader(new InputStreamReader(System.in));
try {
value = bfr.readLine();
dvalue =Integer.parseInt(value);
//捕捉输入异常
} catch (IOException e) {
System.out.println("输入出错了,请重新输入:");
System.exit(0);
}catch (NumberFormatException e2) {
System.out.println("请输入正确的数字!!");
System.exit(0);
}
return dvalue;
}
public void f(){
//调用GetA方法,拿到每个序列值
for(int i=0;i<len;i++){
A[i] = this.GetA();
}
for(int i=0;i<len;i++){
M[i][i] = 0;
}
//依次从长度为2到len,求解每一个长度的最有加全括号。

for(int l=2;l<len;l++){
for(int i=1;i<len-l+1;i++){
int j = i+l-1;
M[i][j] = Double.MAX_V ALUE;
for(int m=i;m<j;m++){
double temp = M[i][m]+M[m+1][j]+A[i-1]*A[m]*A[j];
if(temp<M[i][j]){
M[i][j] = temp;
S[i][j] = m;
}
}
}
}
//调用输出方法print()
System.out.print("你输入的一组矩阵序列为:");
for(int i=0;i<len;i++){
System.out.print(A[i]+" ");
}
System.out.println();
System.out.println();
System.out.print("通过动态规划,其最优加全括号为:");
this.print(1,len-1);
}
//输出方法
public void print(int i,int j){
if(i==j){
System.out.print("A"+i);
}else{System.out.print("(");
this.print(i,(int) S[i][j]);
this.print((int) (S[i][j]+1),j);
System.out.print(")");
}
}
public static void main(String[] args) {//主函数定义一个对象,调用方法f(),实现动态规划。

Testsuanfa tsf = new Testsuanfa();
tsf.f();
}
}。

相关文档
最新文档