销售利润问题专题
中考数学二轮复习专题销售利润问题(师)

1.1销售利润问题例1某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有4%的损耗,该水果店希望售完这些水果获利不低于3780元,则该水果每千克售价至少为多少元?(限时训练第1题)例2 某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数关系式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.(限时训练第2题)【变式练习1】某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:若超市销售甲、乙两种商品共50件,其中销售甲种商品为a件(a≥30),设销售完50件甲、乙两种商品的总利润为w元,求w与a之间的函数关系式,并求出w的最小值.商品甲乙进价(元/件)120 60售价(元/件)200 100例3小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.(限时训练第3题)【变式练习2】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?【拓展提升】善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x(单位:分钟)与学习收益量y的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小迪解题的学习收益量y与用于解题的时间x之间的函数关系式;(2)求小迪回顾反思的学习收益量y与用于回顾反思的时间x的函数关系式;(3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?(限时训练第4题(1)、(2),第(3)问课堂上做)1.1销售利润问题限时训练班级:______ 学号:____ 姓名:__________ 1、某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有4%的损耗,该水果店希望售完这些水果获利不低于3780元,则该水果每千克售价至少为多少元?2、某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数关系式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.3、小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.4、善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x(单位:分钟)与学习收益量y的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小迪解题的学习收益量y与用于解题的时间x之间的函数关系式;(2)求小迪回顾反思的学习收益量y与用于回顾反思的时间x的函数关系式;(此部分课堂完成)【变式练习1】某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:若超市销售甲、乙两种商品共50件,其中销售甲种商品为a 件(a ≥30),设销售完50件甲、乙两种商品的总利润为w 元,求w 与a 之间的函数关系式,并求出w 的最小值.(限时训练第2题)【变式练习2】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?【拓展提升】在第4题的条件下,(3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大? 商品 甲 乙 进价(元/件) 120 60 售价(元/件)200100。
销售利润问题

销售利润问题1.某种文化衫,平均每天销售40件,每件利润20元,若每件降价1元,则每天可多售出10件,如果每天要盈利1080元,每件应降价多少元?2.某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价。
若每件商品售价为a元,则可卖出(350—10a)件,但物价局限定每件商品价不能超过进价的20%,商店计划要赚400元,需要卖出多少件商品?每件商品的售价为多少元?3.商店销售核桃,其进价为每千克40元,接每千克60元出售,平均每天可售出100千克,后来经过商场调查发现,单价每降低2元,则平均每天的销售量可增加20千克,若该专卖店销售的这种核桃想要平均每天获利2240元(1).每千克核桃应降价多少元?(2).在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场。
该店应按原售价的几折出售?4.某花圃用花盆培育某种花圃,经过试验,发现每盆的盈利与每盆的株数构成一定的关系。
每盆植入3株时,平均单株盈利3元;以同样的栽培件,若每盆增加1株,平均盈利就减少0.5元,要使每盆的盈利 10元,每盆应该植多少株?5.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存是商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件。
正常情况下,每件商品降价多少元是盈利可达6.(基训17页10题)某批发商以每件50元购进800件T恤,第一个月以单价80元销售,售出200件,第二个月如果单价不变,预计可售出200件。
据市场调查,单价每降1元,可售出10件,但最低单价必须高于进价。
第二个月结束后,批发商对余下T恤进行一次性清仓销售。
单价为40元,如果批发商要获利9000元。
那么第二个月T 恤单价为多少元?7、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱的售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱。
初三销售利润问题练习题

初三销售利润问题练习题假设你是一个初三学生,刚刚开放一个小店,你计划销售一些日常用品来赚取利润。
以下是你的销售计划和有关成本和利润的问题,请认真阅读并尝试解答。
假设小店销售笔记本、铅笔和橡皮三种日常用品,并且在学校周边没有竞争对手。
你已从批发商那里购买了一些商品,并将以较高的价格出售给学生。
以下是商品的详细信息:1. 笔记本- 批发价:每本5元- 零售价:每本8元- 每周销量:20本2. 铅笔- 批发价:每支0.5元- 零售价:每支1元- 每周销量:50支3. 橡皮- 批发价:每个0.2元- 零售价:每个0.5元- 每周销量:30个请回答以下问题:问题一:计算笔记本的周销售收入和成本。
答:笔记本的周销售收入=零售价 ×周销量 = 8元/本 × 20本 = 160元笔记本的周成本=批发价 ×周销量 = 5元/本 × 20本 = 100元问题二:计算铅笔的周销售收入和成本。
答:铅笔的周销售收入=零售价 ×周销量 = 1元/支 × 50支 = 50元铅笔的周成本=批发价 ×周销量 = 0.5元/支 × 50支 = 25元问题三:计算橡皮的周销售收入和成本。
答:橡皮的周销售收入=零售价 ×周销量 = 0.5元/个 × 30个 = 15元橡皮的周成本=批发价 ×周销量 = 0.2元/个 × 30个 = 6元问题四:计算小店每周的总销售收入和总成本。
答:小店每周的总销售收入=笔记本的周销售收入 + 铅笔的周销售收入 + 橡皮的周销售收入= 160元 + 50元 + 15元= 225元小店每周的总成本=笔记本的周成本 + 铅笔的周成本 + 橡皮的周成本= 100元 + 25元 + 6元= 131元问题五:计算小店每周的利润。
答:小店每周的利润=总销售收入 - 总成本= 225元 - 131元= 94元问题六:根据上述销售数据,计算每种商品的毛利润率(毛利/销售收入)。
(完整版)利润问题应用题

1 中百超市如果将进货价为40元的商品按50元销售,就能卖出500个,但如果这种商品每个涨价1元,其销售量就减少10个,如果你是超市的经理,为了赚得8 000元的利润,你认为售价应定为多少(售价不能超过进价的160%)?这时应进货多少个?解答这种商品销售问题时,需要明确:总利润=单利润×售出商品的总量.2 。
红星建材店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该建材店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该建材店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.3 某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克,为了促进销售,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元,每天可多售出40千克,另外,每天的房租等固定成本共24元,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?4 某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售1部,所有出售的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.(1)若该公司当月卖出3部汽车,则每部汽车的进价为万元;(2)如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润十返利)。
销售利润问题应用题

销售利润问题应用题基本公式:利润=售价-进价利润率=利润/进价例题:某商品打折后,商家仍然可得25%的利润。
如果该商品是以每件元的价格进的,为该商品在货架上的标价是多少用公式:售价=进价*(1+利润率)本题中,设标价为x元,则售价为:75%*x进价为元,利润率为25%所以 75%*x = *(1+25%) ,解得:x=28(元)练习:1、商品进价为400元,标价为600元,商店要求以利润率不低于5%的售价打折出售,最低可以打几折出售此商品2、某种商品进价为1600元,按标价的8折出售利润率为10%,问它的标价是多少3、甲种运动器械进价1200元,按标价1800元的9折出售,乙种跑步器,进价2000元,按标价3200元的8折出售,哪种商品的利润率更高些4、一批货物,甲把原价降低10元卖,用售价的10%作资金,乙把原价降低20元,用售价的20%作资金,若两人资金一样多,求原价。
5、某商品的售价780元,为了薄利多销,按售价的9折销售再返还30元礼券,此时仍获利10%,此商品的进价是多少元6、一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,那么彩电的标价是多少元7、某商品的标价为165元,若降价以9折出售(即优惠10%),仍可获利10%(相对于进价),那么该商品的进价是多少8、某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品9、某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元10、某商场售货员同时卖出两件上衣,每件都以135元售出,若按成本计算,其中一件赢利25%,另一件亏损25%,问这次售货员是赔了还是赚了11、市场鸡蛋按个数计价,一商贩以每个元购进一批鸡蛋,但在贩运途中,不慎碰坏了12个,剩下的蛋以每个元售出,结果获利元,问商贩当初买进多少鸡蛋12、某学校准备组织教师和学生去旅游,其中教师22名,现有甲、乙两家旅行社,其定价相同,并且都有优惠条件,甲旅行社表示教师免费,学生按八折收费;乙旅行社表示教师和学生一律按七五折收费,经核算后,甲、乙实际收费相同,问共有多少学生参加旅游13、某股民将甲、乙两种股票卖出,甲种股票卖出1500元,获利20%,乙种股票也卖出1500元,但亏损20%,该股民在这次交易中是赢利还是亏损赢利或亏损多少14、某商店从某公司批发部购100件A钟商品,80件B种商品,共花去2800元,在商店零售时,每件A种商品加价15%,每件B种商品加价10%,这样全部售出后共收入3140元,问A、B两种商品的买入价各为多少元15、某种商品因换季准备打折出售,如果按定价的七五折出售,将赔25元,而按定价的九折出售,将赚20元,这种商品的定价为多少元16、一套家具按成本加6成定价出售,后来在优惠条件下,按照售价的72%降低价格售出可得6336元,求这套家具的成本是多少元这套家具售出后可赚多少元17、某种商品标价为226元,现打七折出售,仍可获利13%,这钟商品的进价是多少18、个体户小张,把某种商品按标价的九折出售,仍可获利20%,若按货物的进价为每件24元,求每件的标价是多少元19、某商品的进价是3000元,标价是4500元(1)商店要求利润不低于5%的售价打折出售,最低可以打几折出售此商品(2)若市场销售情况不好,商店要求不赔本的销售打折出售,最低可以打几折售出此商品(3)如果此商品造成大量库存,商店要求在赔本不超过5%的售价打折出售,最低可以打几折售出此商品思考题:1. 某地生产蔬菜,若在市场上直接销售,每吨利润1000元。
6应用题利润专题

利润赢亏问题(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式:商品利润=商品售价—商品进价商品利润率=商品利润/商品进价折扣商品售价=商品标价×10商品进价+商品利润=商品售价折扣商品进价(1+利润率)=商品标价×10例1、一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?分析:探究题目中隐含的条件是关键,可直接设出成本为X元等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15例2、某同学在A、B两家超市发现她看中的随身听的单价相同,书包的单价也相同,随身听与书包的单价和是452元,且随身听的单价是书包的单价的4倍少8元。
①求该同学看中的随身听和书包的单价各是多少元?②某一天该同学听说商家促销,超市A所有商品打八折,超市B全场变式:9:购物满100元返购物劵30元(不足100元不返,购物劵可全场通用).但她只带了400元,如果他只在一家超市购买这两样物品,请问他在哪家买更省钱?(一)普通利润问题1、某商店在某一时间以每件60无的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?2、某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%,这次交易中的盈亏情况如何?(二)打折销售问题1、一家商店将某种服装按成本价提高20%后标价,又以9折销售,售价为270元,这种服装成本价是_________元。
2、一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,•结果每件仍获利15元,这种服装每件的成本为_________.3、某件商品9折降价销售后每件商品售价为a元,则该商品每件原价为( )4、一种药物涨价25%的价格是50元,那么涨价前的价格x满足的方程是____________。
5、某商场将进价为每件X元的上衣标价为m元,在此基础上再降价10%,顾客需付款270元。
专题05 函数实际问题之销售中的利润问题(解析版)

专题05 函数实际问题之销售中的利润问题(解析版)一、利润中的几个等量关系:售价=进价+利润;售价=标价×折扣;总利润=单件(单个商品)利润×总销量;二、需要注意的是,在利用函数解答实际问题的过程中,一定要注意自变量的取值范围,以及在这个取值范围内的函数值的最大值及最小值;切不可直接用原函数的最值当作实际问题的最值;避免出现错误的方法是:作出示意图,由图象分析函数值的最值.题型一、利润问题应用题1. (2019·江苏连云港中考)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.【答案】见解析.【解析】解:(1)y=0.3x+0.4(2500-x)=-0.1x+1000,(2)由题意得:0.25x+0.5(2500-x)≤1000,解得:x≤2500,即1000≤x≤2500,由(1)知,y=-0.1x+1000,∵-0.1<0,∴y随x的增大而减小,当x=1000时,y取最大值,此时甲产品1000吨,乙产品1500吨时能获得最大利润.2. (2019·江苏宿迁中考)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现.销售单价每增加2元,每天销售量会减少1件. 设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?【答案】见解析.【解析】解:(1)y=12-x+50.(2)由题意得:y(x+40)=2250,即(12-x+50)(x+40)=2250,解得:x=50(舍)或x=10,即当x=10时,超市每天销售这种玩具可获利润2250元. (3)由题意知,w= y(x+40)=(12-x+50)(x+40)=12-(x-30)2+2450,∵12-<0,对称轴为x=30,∴当0≤x≤20时,w随x的增大而增大,即当x=20时,w取最大值,最大值为:2400.3. (2019·湖北鄂州中考)“互联网+”时代,网上购物备受消费者青睐. 某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施. 据市场调查反映:销售单价每降1元,则每月可多销售5条. 设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生. 为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?【答案】见解析.【解析】解:(1)y=100+5(80-x)或y=-5x+500(2)由题意,得:W=(x-40)( -5x+500)=-5x2+700x-20000=-5(x-70)2+4500,∵a=-5<0,∴w有最大值即当x=70时,w最大值=4500∴应降价80-70=10(元)(3)由题意,得:-5(x-70)2+4500=4220+200解得:x1=66,x2 =74∵抛物线开口向下,对称轴为直线x=70,∴当66≤x≤74时,符合该网店要求,而为了让顾客得到最大实惠,故x=66∴当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.题型二、图表类利润最值问题4. (2019·青岛中考)某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?【答案】见解析.【解析】解:(1)设商品每天的销售量y与销售单价x之间的函数关系式为y=kx+b,由题意知,30100 4570k bk b+=⎧⎨+=⎩,解得,2160kb=-⎧⎨=⎩,即y关于x的函数解析式是:y=﹣2x+160;(2)30≤x≤50,w=(x-30)y=(x-30)(﹣2x+160)=-2(x-55)2+1250∵30≤x≤50,∴当x=50时,w取最大值为1200元;(3)w≥800,w=-2(x-55)2+1250的图象如下所示,元,∴-2(x-55)2+1250=800,解得:x1=40,x2=70,∴40≤x≤70时,每天的利润不低于800元,故每天的销售量最少应为﹣2×70+160=20件.5. (2019·成都中考)随着5G技术的发展,人们对各类5G产品的使用充满期待. 某公司计划某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化. 设产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设产品在第x 个销售周期的销售数量为p (万台),p 与x 之间的关系为: 1122p x =+,根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品的销售价格是多少元?【答案】见解析.【解析】解:(1)设y 与x 之间的关系式为y =kx +b ,由题意知,∴700055000k b k b +=⎧⎨+=⎩,解得:5007500k b =-⎧⎨=⎩, 即y 与x 之间的关系式为:y =-500x +7500;(2)设第x 个销售周期的销售收入为w 元,则w =yp =(-500x +7500)(1122x +) =-250(x -7)2+16000,∴在第7个销售周期的销售收入最大,销售价格为:4000元.6. (2019·浙江嘉兴中考)某农作物的生长率p 与温度t (C )有如下关系:如图1,当10≤t ≤25时可近似用函数11505p t =-刻画;当25≤t ≤37 时可近似用函数21()0.4160p t h =--+刻画. (1)求h 的值.(2)按照经验,该作物提前上市的天数m (天)与生长率p 满足函数关系:①请运用已学的知识,求m 关于p 的函数表达式;②请用含t 的代数式表示m (3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w (元)与大棚温度t (C )之间的关系如图2.y问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).图1 图2【答案】见解析.【解析】解:(1)将(25,0.3)代入21()0.4160p t h =--+得,h =29或h =21, ∵h >25,∴h =29,(2)①由题意知m 是p 的一次函数,设m =kp +b , 可得:0.200.310k b k b +=⎧⎨+=⎩,解得:k =100,b =-20, ∴m =100p -20,②当10≤t ≤25时,11505p t =-, ∴m =2t -40,当25<t ≤37时,21(29)0.4160p t =--+, ∴m =25(29)208t --+,(3)①当20≤t ≤25时,由(20,200),(25,300)可得:w =20t -200,∴增加利润为:600m +[200×30-w (30-m )]=40t 2-600t -4000=40(t -7.5)2-6250∴当t =25时,利润最高为:6000元;②当25<t ≤37时,w =300,增加利润为:600m +[200×30-w (30-m )]=21125(29)150002t --+, ∴当t =29时,增加利润取最大值为:15000元,综上所述,当t =29时,提前上市20天,增加利润最大,为15000元.7. (2019·湖北咸宁中考)某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x 天的生产成本y (元/件)与x (天)之间的关系如图所示,第x 天该产品的生产量z (件)与x (天)满足关系式z =-2x +120.(1)第40天,该厂生产该产品的利润是 元;(2)设第x 天该厂生产该产品的利润为w 元.①求w 与x 之间的函数关系式,并指出第几天的利润最大.最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?【答案】见解析.【解析】解:(1)由图象可知,第40天时的成本为40元,此时的产量为z =﹣2×40+120=40则第40天的利润为:(80﹣40)×40=1600元故答案为:1600.(2)①设直线AB 的解析式为y =kx +b (k ≠0),把(0,70)(30,40)代入得:304070k b b +=⎧⎨=⎩,解得170k b =-⎧⎨=⎩∴直线AB 的解析式为y =﹣x +70.(Ⅰ)当0<x ≤30时w =[80﹣(﹣x +70)](﹣2x +120)=﹣2x 2+100x +1200=﹣2(x ﹣25)2+2450∴当x =25时,w 最大值=2450.(Ⅱ)当30<x ≤50时, w =(80﹣40)×(﹣2x +120)=﹣80x +4800∵w 随x 的增大而减小∴当x =31时,w 最大值=2320.∴()()()222524500308048003050x x w x x ⎧--+<≤⎪=⎨-+<≤⎪⎩,,, ∴第25天的利润最大,最大利润为2450元.②(i )当0<x ≤30时,令﹣2(x ﹣25)2+2450=2400,解得:x 1=20,x 2=30∵抛物线w =﹣2(x ﹣25)2+2450开口向下,由其图象可知,当20≤x ≤30时,w ≥2400,此时,当天利润不低于2400元的天数为:30﹣20+1=11天,(ii )当30<x ≤50时,由①可知这些天中的日利润均低于2400元,综上所述,当天利润不低于2400元的共有11天.8. (2019·湖北黄冈中考)某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红。
北师大版七年级数学上册专题5.3 销售利润问题(压轴题专项讲练)(学生版)

专题5.3 销售利润问题【典例1】平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为________元,每件乙种商品利润率为________;(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施少于等于450元不优惠超过450元,但不超过600元按售价打九折超过600元其中600元部分八点二折优惠,超过600元的部分打三折优惠品多少件?【思路点拨】(1)设甲的进价为x元/件,根据甲的利润率为50%,求出x的值;(2)设购进甲种商品x件,则购进乙种商品(50-x)件,再由总进价是2100元,列出方程求解即可;额超过600元,分别列方程求解即可.【解题过程】解:(1)设甲的进价为x元/件,则(60-x)=50%x,解得:x=40.故甲的进价为40元/件;乙商品的利润率为(80-50)÷50=60%.故答案为:40;60%;(2)设购进甲种商品x件,则购进乙种商品(50-x)件,由题意得,40x+50(50-x)=2100,解得:x=40.即购进甲商品40件,乙商品10件;(3)设小华打折前应付款为y元,①打折前购物金额超过450元,但不超过600元,由题意得0.9y=504,解得:y=560,560÷80=7(件),②打折前购物金额超过600元,600×0.82+(y-600)×0.3=504,解得:y=640,640÷80=8(件),综上可得小华在该商场购买乙种商品件7件或8件.1.(2022·湖北省宜昌市渔峡口中学七年级期中)某书城开展学生优惠购书活动,凡是一次性购买不超过200元的一律九折优惠;超过200元时,其中的200元按九折计算,超过200元的部分按八折计算.小军第一次购书付款72元,第二次购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元.(1)求小军第一次所购书的定价是多少元?(2)求小军第二次购书的实际付款是多少元?2.(2022·黑龙江牡丹江·七年级期末)某商场进行促销活动,花200元可办理一张会员卡(注:此卡只作为购物优惠凭证不能顶替货款),凭会员卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?(2)小李要买一台标价为3000元的电视,如何购买合算?小李能节省多少元钱?(3)小李按合算的方案,把这台电视买下,如果商场还能盈利30%,这台电视的进价是多少元?3.(2022·全国·七年级专题练习)文峰文具店分两次购进一款礼品盲盒共70盒,总共花费960元,已知第一批盲盒进价为每盒15元,第二批盲盒进价为每盒12元.(1)文具店老板计划将每盒盲盒标价20元出售,销售完第一批盲盒后,再打八折销售完第二批盲盒,按此计划该老板总共可以获得多少利润?(2)在实际销售中,该文具店老板在以(1)中标价销售完m盒后,决定搞一场促销活动,尽快清理库存.老板先将标价提高到每盒40元,再推出活动:购买两盒,第一盒七折,第二盒半价,不单盒销售.售完所有盲盒该老板共获利600元,求m的值.4.(2022·全国·七年级单元测试)某商店购进甲、乙两种型号的节能灯共100只,购进100只节能灯的进货款恰好为2600元,这两种节能灯的进价、预售价如下表:(利润=售价-进价)(1)(2)在实际销售过程中,商店按预售价将购进的甲型号节能灯全部售出,购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润380元,求乙型号节能灯按预售价售出了多少只?5.(2022·河南·郑州市第七初级中学七年级期末)教育部数据显示,近五年共有创业大学生约55万人,国务院办公厅也出台了《关于进一步支持大学生创业的指导意见》来支持大学生创新创业.河南的小张也加入了创业大军,回到自己家乡,做茶叶加工,然后销售到全国各地,创业初期,小张从茶农那里采购甲,乙两种品种的茶叶共100 千克.(1)如果小张购进甲,乙两种茶叶共用了9600元,已知每千克甲种茶叶进价80元,每千克乙种茶叶进价120元,求小张购进甲,乙两种茶叶各多少千克?(2)在(1)的条件下,经过加工,小张把甲种茶叶加价50%作为标价,乙种茶叶加价40%作为标价.由于乙种茶叶深受大众的喜爱,在按标价进行销售的情况下,乙种茶叶很快售完,接着甲种茶叶的最后10 千克按标价打折处理全部售完.在这次销售中,小张获得的利润率为42.5%.求甲种茶叶打几折销售?6.(2022·四川师范大学附属中学七年级期末)某商场计划采购甲、乙两种空气净化机共120台,这两种空气净化机的进价、售价如表:(1)若两种空气净化机的总进价恰为44万元,则甲、乙两种空气净化机各进了多少台?(2)若两种空气净化机都能按售价全部卖出,此时商场获得的利润恰好是成本的30%,则甲、乙两种空气净化机各进了多少台?7.(2022·全国·七年级专题练习)春节,即农历新年,是一年之岁首、传统意义上的年节.俗称新春、新年、新岁、岁旦、年禧、大年等,口头上又称度岁、庆岁、过年、过大年.春节历史悠久,由上古时代岁首祈年祭祀演变而来,为了喜迎新春,某水果店现购进水果篮40个和坚果礼盒20个,已知每个水果篮的进价比每个坚果礼盒的进价便宜10%,水果篮每个售价110元,坚果礼盒每个售价150元.(1)春节期间水果店促销,坚果礼盒按售价八折出售,水果篮按原价销售.某公司一共花了1030元买了水果篮和坚果礼盒共9个,问某公司水果篮和坚果礼盒各买了多少个?(2)在(1)的条件下水果篮和坚果礼盒销售一空,水果篮利润是坚果礼盒利润的2倍.问水果篮和坚果礼盒每个进价各是多少元?8.(2022·江苏南通·七年级期末)某百货商场经销甲、乙两种服装,甲种服装每件进价500元,乙种服装每件进价800元.(1)若该商场同时购进甲、乙两种服装共30件,总进价为21000元,求商场购进甲、乙两种服装各多少件?(2)若该商场对(1)中所购进的甲、乙两种服装进行销售,其中甲种服装每件售价800元,乙种服装每件盈利50%,则该商场销售完这批服装一共能盈利_______元;(3)该商场元旦当天对所有商品实行“满1000元减400元的优惠”(比如:某顾客购物3200元,满三个1000元,则可优惠1200元,只需付款2000元).到了晚上八点后,又推出“先打折”,再参与“满1000元减400元”的活动.张先生元旦购买甲、乙两种服装各一件,标价合计2000元.后来他发现按照晚上八点后的优惠方式付款,竟然比不打折直接参与“满1000元减400元”的活动多付200元钱.问该商场晚上八点后推出的活动是先打几折?9.(2022·浙江丽水·七年级期末)盲盒近来火爆,这种不确定的“盲盒”模式受到了大家的喜爱,某玩具商店计划采购文具盲盒和Molly盲盒,计划采购两种盲盒共100盒,这两种盲盒的进价、售价如表所示:(1)若采购共用去(2)在(1)的条件下全部售完这100盒,那么玩具商店获利多少元?(3)是否有一种采购方案使得销售完这100盒盲盒的总利润恰好为1400元?若能,请说出采购方案;若不能,证明理由.10.(2022·山东·日照山海天旅游度假区青岛路中学七年级期末)某超市第一次用5500元购进了甲、乙两种商品,其中甲种商品150件,乙种商品100件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为30元/件,乙种商品售价为35元/件.(注:获利=售价-进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少2元;甲种商品按原售价提价m%销售,乙种商品按原售价降价m%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多270元,那么m 的值是多少?11.(2022·海南·乐东黎族自治县教育研究培训学校七年级期末)某百货超市经销甲、乙两种服装,甲种服装每件进价50元,售价80元;乙种服装商品每件售价120元,可盈利50%.(1)乙种服装每件进价为____________元;(2)若该商场同时购进甲、乙两种服装共40件,总进价用去2750元,求商场销售完这批服装,共盈利多少?(3)在元旦当天,超市实行“每满100元减30元的优惠”促销(比如:某顾客购物120元,他只需付款90元).张先生上午买了一件标价为320元的羽绒服,到了晚上八点后,超市又推出:先打折,再参与“每满100元减30元”的让利活动,他发现现在购买反而要多付4.4元.问该超市晚上八点后推出的让利活动是先打多少折再进行满减活动的?12.(2022·湖北武汉·七年级期末)武汉某超市准备在两周年庆典之际搞优惠促销活动回馈新老客户,由顾客抽奖决定折扣.某顾客购买了A、B两种商品共410元,分别抽到了六折和八折,而A、B两种商品的原价之和为600元.(1)求A、B两种商品的原价各是多少元?(2)若本次买卖中A种商品最终亏损30%,B种商品最终盈利60%,那么该超市在本次买卖中是盈利还是亏损?盈利或亏损多少元?13.(2022·全国·七年级专题练习)一种节能型冰箱,商家计划按进价加价20%作为售价,为了促销,商家现在按原售价的九折出售了40 台,降价后的新售价是每台2430 元.(1)按照新售价出售,商家每台冰箱还可赚多少元?(2)售完这批冰箱后,商家将购进40 台冰箱的进货款存入银行,存期一年,不扣利息税到期可得人民币92025 元,求这项储蓄的年利率是多少?14.(2022·全国·七年级专题练习)某水果店以5元/千克的价格购进一批橙子,很快售罄,该店又再次购进,第二次进货价格比第一次每千克便宜了2元,两次一共购进600千克,且第二次进货的花费是第一次进货花费的1.2倍.(1)该水果店两次分别购进了多少千克的橙子?(2)售卖中,第一批橙子在其进价的基础上加价a%进行定价,第二批橙子因为进价便宜,因此以第一批橙子的定价再打八折进行销售.销售时,在第一批橙子中有5%的橙子变质不能出售,在第二批橙子中有10%的橙子变质不能出售,该水果店售完两批橙子能获利2102元,求a的值.15.(2022·山东临沂·七年级期末)某商场计划用9万元从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为A型1500元/台,B型2100元/台,C型2500元/台.(1)若该商场恰好用9万元从该厂家购进50台两种不同型号的电视机,请你研究一下该商场的进货方案;(2)已知该商场销售A型电视机可获利150元/台,销售B型电视机可获利200元/台,销售C型电视机可获利250元/台.在(1)条件下,你将选择哪种方案,使得销售获利最多?16.(2022·全国·七年级专题练习)“双十一”活动期间,某羽绒服商家的优惠措施是:购买所有商品先按标价打六折,再享受折后每满200元减30元的优惠.付款可采用“花呗”分3期的方式,还款的费率为2.5%.如图是小亮购买的优惠价和小红“花呗”分3期每期的应付款.(备注:“花呗”是一种消费信用贷款,用户可以“先消费,后付款”)(1)在此次活动中要购买标价为2350元的羽绒服.①打折满减后的优惠价为多少元?②若采用“花呗”分3期付款,则每期应付款为多少元?(2)在此次活动中购买某羽绒服,若采用“花呗”分3期付款,每期应付款为348.5元,求购买此羽绒服的优惠价及羽绒服标价.【答案】(1)①购买标价为2350元的羽绒服,打折满减后的优惠价为1200元;②采用“花呗”分3期付款,则每期应付款为410元;(2)购买此羽绒服的优惠价是1020元,羽绒服标价是1950元或2000元.17.(2022·内蒙古·乌海市第三中学七年级期末)贵阳市人民广场某超市第一次用6000元倍多15件,甲、乙两种商品的进购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12价和售价如下表:(注:获利=售价-进价)(1(2)该超市第二次以第一次的进价又购进甲、乙两种商品.其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?18.(2022·全国·七年级课时练习)某商场经销的甲、乙两种商品,甲种商品每件进价40元,加价50%作为售价;乙种商品每件进价50元,售价80元.(1)甲种商品每件售价为_____元,乙种商品每件的利润为元,利润率为%.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲、乙两种商品各多少件?(3)按以下优惠条件,若小梅一次性购买乙种商品实际付款504元,则此次小梅在该商场最多购买乙种商品多少件?19.(2022·全国·七年级专题练习)丹尼斯经销甲、乙两种商品,甲种商品每件售价60元,利润20元;乙种商品每件进价50元,售价80元.(1)甲种商品每件进价为元,每件乙种商品利润率为;(2)丹尼斯同时购进甲、乙两种商品共50件,总进价为2100元,求购进甲种商品多少件?(3)在“春节”期间,该商场对所有商品进行如下的优患促销话动:少?20.(2022·重庆一中七年级期末)2023年12月,某网店从甲厂家购进了A 、B 两种商品,A 商品每件进价40元,B 商品每件进价10元,两种商品共购进了500件,所用资金为11000元. (1)求12月A 、B 两种商品各购进了多少件?(2)12月初,该网店在出售A 、B 两种商品时,A 商品在进价的基础上加价30%出售,并以此价格售出了14,B 商品以一定价格售出了15.为了促销,余下的A 、B 两种商品.网店推出买一件A 商品送一件B 商品的优惠活动,但是单独购买B 商品无优惠.到12月底,从甲厂家购进的A 、B 两种商品全部售完,且剩余的A 商品都参加了促销活动,最终网店通过销售A 、B 两种商品共获利15%,求12月份每件B 商品的售价是多少元?(3)2022年1月份,甲厂家决定薄利多销,提出了优惠方案,同样生产A 、B 两种商品的乙厂家也提出了优惠方案. 甲厂家优惠方案:优惠方案,第一次全部购进A商品实际付款4320元,第二次全部购进B商品实际付款3690元.已知从乙厂家购买A商品每件进价34元,购买B商品每件进价12元,若网店从乙厂家购买与甲厂家数量分别相同的A、B两种商品,并享受乙厂家的优惠方案,那么相较于从甲厂家购买,网店实际付款金额是节省还是多花费,节省或多花费多少元?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采
取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:
2.(1)商场日销售量增加_________件,每件商品盈利_________元(用含x的代数式表
示);
3.(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到
2100元?
4.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市
场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.
5.(2016南海区校级模拟)某商场销售一种冰箱,每台进价2500元.市场调查研究表明,
当售价为2900元时,平均每天能售出8台;当售价每降50元时,平均每天就能多售出4台;商场要使这种冰箱的销售利润平均每天达到5000元,每台售价应降低多少元?
4.( 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?
5.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.市场调研表明:当销售价为每上涨1元时,其销售量就将减少10个.商场要想销售利润平均每月达到10000元,每个台灯的定价应为多少元?这时应进台灯多少个?想一想1.某商场销售一批名牌衬衫,现
在平均每天能售出20件,每件盈利40元.为了尽快减少库存,商场决定采取降价措施.经调查发现:如果这种衬衫的售价每降低1元时,平均每天能多售出2件.商场要想平均每天盈利1200元,每件衬衫应降价多少元?。