2016届高考数学第一轮总复习检测19

合集下载

(江苏专用)高三数学一轮总复习 第二章 函数与基本初等函数Ⅰ 第七节 对数与对数函数课时跟踪检测 理

(江苏专用)高三数学一轮总复习 第二章 函数与基本初等函数Ⅰ 第七节 对数与对数函数课时跟踪检测 理

课时跟踪检测(十) 对数与对数函数一抓基础,多练小题做到眼疾手快 1.(2015·某某调研)函数y =log 232x -1的定义域是________.解析:由log 23(2x -1)≥0⇒0<2x -1≤1⇒12<x ≤1.答案:⎝ ⎛⎦⎥⎤12,1 2.函数f (x )=log 12(x 2-4)的单调递增区间为________.解析:函数y =f (x )的定义域为(-∞,-2)∪(2,+∞),因为函数y =f (x )是由y =log 12t 与t =g (x )=x 2-4复合而成,又y =log 12t 在(0,+∞)上单调递减,g (x )在(-∞,-2)上单调递减,所以函数y =f (x )在(-∞,-2)上单调递增.答案:(-∞,-2)3.(2016·某某模拟)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是________.解析:因为a =log 23+log 23=log 233=32log 23>1,b =log 29-log 23=log 233=a ,c =log 32<log 33=1.答案:a =b >c4.(2015·某某高考)lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________.解析:lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=lg 5-lg 2+2lg 2-2=(lg 5+lg 2)-2=1-2=-1. 答案:-15.函数y =log 2|x +1|的单调递减区间为______,单调递增区间为______. 解析:作出函数y =log 2x 的图象,将其关于y 轴对称得到函数y =log 2|x |的图象,再将图象向左平移1个单位长度就得到函数y =log 2|x +1|的图象(如图所示).由图知,函数y =log 2|x +1|的单调递减区间为(-∞,-1),单调递增区间为(-1,+∞).答案:(-∞,-1) (-1,+∞)二保高考,全练题型做到高考达标1.函数f (x )=|x -2|-ln x 在定义域内零点的个数为________. 解析:在同一坐标系中分别作函数y =|x -2|与y =ln x 的图象如图所示.由图可知y =|x -2|与y =ln x 有2个交点,所以函数f (x )零点的个数为2.答案:22.(2016·某某五校联考)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3-x+1,x ≤0,则f (f (1))+f ⎝⎛⎭⎪⎫log 312的值是________.解析:由题意可知f (1)=log 21=0,f (f (1))=f (0)=30+1=2,f ⎝⎛⎭⎪⎫log 312=331-log 2+1=33log 2+1=2+1=3,所以f (f (1))+f ⎝ ⎛⎭⎪⎫log 312=5.答案:53.设a =log 323,b =log 525,c =log 727,则a ,b ,c 的大小关系为________.解析:因为log 323=log 32-1,log 525=log 52-1,log 727=log 72-1,log 32>log 52>log 72,故a >b >c .答案:a >b >c4.计算:log 2.56.25+lg 0.001+ln e +2-1+log 23=______. 解析:原式=log 2.5(2.5)2+lg 10-3+ln e 12+2log 232 =2-3+12+32=1.答案:15.若函数f (x )=log a ⎝ ⎛⎭⎪⎫x 2+32x (a >0,a ≠1)在区间⎝ ⎛⎭⎪⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为________.解析:令M =x 2+32x ,当x ∈⎝ ⎛⎭⎪⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1.所以函数y =log a M 为增函数,又M =⎝⎛⎭⎪⎫x +342-916,因此M 的单调递增区间为⎝⎛⎭⎪⎫-34,+∞.又x 2+32x >0,所以x >0或x <-32.所以函数f (x )的单调递增区间为(0,+∞).答案:(0,+∞)6.如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =log22x ,y =x 12,y =⎝⎛⎭⎪⎫22x的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.解析:由条件得,点A 在函数y =log22x 的图象上,从而由2=2,得x A =12.而点B 在函数y =x 12上,从而2=x 12,解得x B =4.于是点C 的横坐标为4.又点C 在函数y =⎝⎛⎭⎪⎫22x上,从而y C =14,所以点D 的坐标为⎝ ⎛⎭⎪⎫12,14. 答案:⎝ ⎛⎭⎪⎫12,14 7.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值X 围是______.解析:问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合函数图象可知a >1.答案:(1,+∞)8.(2016·某某四市调研)函数f (x )=log 2x ·log 2(2x )的最小值为______.解析:依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝ ⎛⎭⎪⎫log 2x +122-14≥-14,当且仅当log 2x =-12,即x =22时等号成立,因此函数f (x )的最小值为-14.答案:-149.已知函数f (x )是定义在R 上的偶函数,f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式; (2)解不等式f (x 2-1)>-2.解:(1)当x <0时,-x >0,则f (-x )=log 12(-x ).因为函数f (x )是偶函数,所以f (-x )=f (x ). 所以函数f (x )的解析式为f (x )=⎩⎨⎧log 12x ,x >0,0,x =0,log 12-x ,x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数, 所以不等式f (x 2-1)>-2可化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2-1|<4,解得-5<x <5, 即不等式的解集为(-5,5).10.已知函数f (x )=log a (x +1)-log a (1-x ),(a >0且a ≠1). (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a >1时,求使f (x )>0的x 的解集. 解:(1)要使函数f (x )有意义.则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1.故所求函数f (x )的定义域为(-1,1). (2)证明:由(1)知f (x )的定义域为(-1,1), 且f (-x )=log a (-x +1)-log a (1+x ) =-[log a (x +1)-log a (1-x )]=-f (x ), 故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域(-1,1)内是增函数,所以f (x )>0⇔x +11-x>1,解得0<x <1.所以使f (x )>0的x 的解集是(0,1). 三上台阶,自主选做志在冲刺名校1.已知函数f (x )=log a (2x -a )在区间⎣⎢⎡⎦⎥⎤12,23上恒有f (x )>0,则实数a 的取值X 围是________.解析:当0<a <1时,函数f (x )在区间⎣⎢⎡⎦⎥⎤12,23上是减函数,所以log a ⎝ ⎛⎭⎪⎫43-a >0,即0<43-a <1,解得13<a <43,故13<a <1;当a >1时,函数f (x )在区间⎣⎢⎡⎦⎥⎤12,23上是增函数,所以log a (1-a )>0,即1-a >1,解得a <0,此时无解.综上所述,实数a 的取值X 围是⎝ ⎛⎭⎪⎫13,1. 答案:⎝ ⎛⎭⎪⎫13,1 2.(2016·某某中学月考)已知函数f (x )=log a 1-xb +x (0<a <1)为奇函数,当x ∈(-1,a ]时,函数f (x )的值域是(-∞,1],则a +b 的值为________.解析:由1-xb +x >0,解得-b <x <1(b >0).又奇函数定义域关于原点对称,故b =1.所以f (x )=log a 1-x 1+x (0<a <1).又g (x )=1-x x +1=-1+2x +1在(-1,a ]上单调递减,0<a <1,所以f (x )在(-1,a ]上单调递增.又因为函数f (x )的值域是(-∞,1],故f (a )=1,此时g (a )=a ,即1-a a +1=a ,解得a =2-1(负根舍去),所以a +b = 2. 答案: 23.已知函数f (x )=3-2log 2x ,g (x )=log 2x .(1)当x ∈[1,4]时,求函数h (x )=[f (x )+1]·g (x )的值域;(2)如果对任意的x ∈[1,4],不等式f (x 2)·f (x )>k ·g (x )恒成立,某某数k 的取值X 围.解:(1)h (x )=(4-2log 2x )·log 2x =-2(log 2x -1)2+2, 因为x ∈[1,4],所以log 2x ∈[0,2], 故函数h (x )的值域为[0,2]. (2)由f (x 2)·f (x )>k ·g (x ), 得(3-4log 2x )(3-log 2x )>k ·log 2x ,令t =log 2x ,因为x ∈[1,4],所以t =log 2x ∈[0,2], 所以(3-4t )(3-t )>k ·t 对一切t ∈[0,2]恒成立, ①当t =0时,k ∈R ;②当t ∈(0,2]时,k <3-4t 3-tt恒成立,即k <4t +9t-15,因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号,所以4t +9t-15的最小值为-3.综上,实数k 的取值X 围为(-∞,-3).。

高三总复习直线与圆的方程知识点总结_2

高三总复习直线与圆的方程知识点总结_2

2016届高考数学复习——直线与圆的方程【考试要求】(1)直线与方程① 在平面直角坐标系中,结合具体图形,确定直线位置的几何要素. ② 理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式. ③ 能根据两条直线的斜率判定这两条直线平行或垂直.④ 掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及 一般式),了解斜截式与一次函数的关系.⑤ 能用解方程组的方法求两直线的交点坐标.⑥ 掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.(2)圆与方程① 掌握确定圆的几何要素,掌握圆的标准方程与一般方程.② 能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方 程,判断两圆的位置关系.③ 能用直线和圆的方程解决一些简单的问题.【知识及公式回顾】1. 点到直线距离:__________________________(已知点(p 0(x 0,y 0)与直线L :AX+BY+C=0) 推论:两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0⇒d=_________________2. 对称问题:(1)点关于点对称:点P (x 1,y 1)关于M (x 0,y 0)的对称点P '( , )2)点关于线的对称:设点P(a,b),则其关于直线l 的对称点P '的坐标?一般方法:Py LP 0x3. 圆的方程① 标准方程 ()22)(r b y a x =-+-,______________为圆心,_______________为半径。

② 一般方程:022=++++F Ey Dx y x , C 圆心______________, 半径=r __________________当0422=-+F E D 时,表示一个点。

当0422<-+F E D 时,不表示任何图形。

4. 点与圆的位置关系:考察点到圆心距离d ,然后与半径r 比较大小。

高考数学一轮复习 第七章 不等式 7.5 绝对值不等式课件

高考数学一轮复习 第七章 不等式 7.5 绝对值不等式课件
∴f(x)min=a+1,
∴a+1=5,
∴a=4.综上,a=-6或a=4.
8.(2014广东,9,5分)不等式|x-1|+|x+2|≥5的解集为
.
答案 {x|x≤-3或x≥2}
解析
原不等式等价于
x 1, (x 1)
(
x
2)
5

2 x 1, (x 1) (x
2)
5

x ( x
2, 1)
(
x
高考数学 (浙江专用)
第七章 不等式
§7.5 绝对值不等式
五年高考
考点 含绝对值不等式的解法
1.(2016浙江,8,5分)已知实数a,b,c. ( ) A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100 B.若|a2+b+c|+|a2+b-c|≤1,则a2+b2+c2<100 C.若|a+b+c2|+|a+b-c2|≤1,则a2+b2+c2<100 D.若|a2+b+c|+|a+b2-c|≤1,则a2+b2+c2<100
2)
5,
解得x≥2或x≤-3.
故原不等式的解集为{x|x≤-3或x≥2}.
9.(2013重庆,16,5分)若关于实数x的不等式|x-5|+|x+3|<a无解,则实数a的取值范围是
.
答案 (-∞,8]
解析 由绝对值的几何意义得|x-5|+|x+3|的最小值为8,若|x-5|+|x+3|<a无解,应有a≤8. 故a的取值范围是(-∞,8].

【金版教程】2016高考(新课标)数学(理)大一轮复习试题:阶段示范性金考卷4

【金版教程】2016高考(新课标)数学(理)大一轮复习试题:阶段示范性金考卷4

阶段示范性金考卷四(测试范围第七章)(时间:90分钟分值:150分)第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. [2014·福建高考]某空间几何体的正视图是三角形,则该几何体不可能是()A. 圆柱B. 圆锥C. 四面体D. 三棱柱答案:A2. [2015·广东七校联考]已知平面α、β和直线m,给出条件:①m ∥α;②m⊥α;③m⊂α;④α⊥β;⑤α∥β.能推导出m∥β的是()A. ①④B. ①⑤C. ②⑤D. ③⑤解析:由两平面平行的性质可知两平面平行,在一个平面内的直线必平行于另一个平面,于是选D.答案:D3. 在下列四个正方体中,能得出AB⊥CD的是()解析:A中,直线AB在平面BCD内的投影与CD垂直,故AB⊥CD.答案:A4. 设α、β、γ为平面,l、m、n为直线,则m⊥β的一个充分条件为()A. α⊥β,α∩β=l,m⊥lB. n⊥α,n⊥β,m⊥αC. α∩γ=m,α⊥γ,β⊥γD. α⊥γ,β⊥γ,m⊥α解析:如图①知A错;如图②知C错;如图③在正方体中,两侧面α与β相交于l,都与底面γ垂直,γ内的直线m⊥α,但m与β不垂直,故D错;由n⊥α,n⊥β,得α∥β.又m⊥α,则m⊥β,故B正确.答案:B5. 设α、β、γ是三个互不重合的平面,m、n是两条不重合的直线,下列命题中正确的是()A. 若α⊥β,β⊥γ,则α⊥γB. 若m∥α,n∥β,α⊥β,则m⊥nC. 若α⊥β,m⊥α,则m∥βD. 若α∥β,m⊄β,m∥α,则m∥β解析:对于A,若α⊥β,β⊥γ,α,γ可以平行,也可以相交,A 错;对于B,若m∥α,n∥β,α⊥β,则m,n可以平行,可以相交,也可以异面,B错;对于C,若α⊥β,m⊥α,则m可以在平面β内,C错;易知D正确.答案:D6. [2015·云南昆明模拟]一个几何体的三视图如图所示,正视图和侧视图都是等边三角形.若该几何体的四个顶点在空间直角坐标系O -xyz 中的坐标分别是(0,0,0),(2,0,0),(2,2,0),(0,2,0),则第五个顶点的坐标可能为( )A. (1,1,1)B. (1,1,2)C. (1,1,3)D. (2,2,3)解析:因为正视图和侧视图是等边三角形,俯视图是正方形,所以该几何体是正四棱锥,还原几何体并结合其中四个顶点的坐标,建立空间直角坐标系,设O (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),则所求的第五个顶点的坐标为S (1,1,z ),正视图为等边三角形,且边长为2,故其高为3,又正四棱锥的高与正视图的高相等,故z =±3,故第五个顶点的坐标可能为(1,1,3)或(1,1,-3),选C.答案:C7. 如图所示,正四棱锥P -ABCD 的底面积为3,体积为22,E 为侧棱PC 的中点,则P A 与BE 所成的角为( ) A.π6 B.π4C.π3D.π2解析:连接AC 、BD 交于点O ,连接OE ,OP ,易得OE ∥P A ,∴所求角为∠BEO .∵PO ⊥OB ,OB ⊥OA ,∴OB ⊥平面P AC ,OB ⊥OE .由所给条件易得OB =62,OE =12P A =22,在△OBE 中,tan ∠OEB =3,∴∠OEB =π3,选C.答案:C8. [2015·辽宁三校联考]某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A. 2π3B. π3C. 2π9D. 16π9解析:由题知该几何体为底面半径为2,高为4的圆锥的13部分,其体积是13π×22×4×13=16π9.故选D.答案:D9. 如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =12,则下列结论中错误的是( )A. AC ⊥BEB. EF ∥平面ABCDC. 三棱锥A -BEF 的体积为定值D. △AEF 的面积与△BEF 的面积相等解析:由AC ⊥平面DBB 1D 1,可知AC ⊥BE ,故A 正确.由EF ∥BD ,EF ⊄平面ABCD ,知EF ∥平面ABCD ,故B 正确.A 到平面BEF的距离即A 到平面DBB 1D 1的距离为22,且S △BEF =12BB 1×EF =定值,故V A -BEF 为定值,即C 正确.答案:D10. [2014·安徽高考]一个多面体的三视图如图所示,则该多面体的体积为( )A. 233B. 476C. 6D. 7解析:由三视图知这个多面体是正方体截去两个全等的三棱锥后剩余的部分,其直观图如图所示,结合题图中尺寸知,正方体的体积为23=8,一个三棱锥的体积为13×12×1×1×1=16,因此多面体的体积为8-2×16=233,故选A.答案:A11. 在正方体ABCD -A 1B 1C 1D 1中,点M 为棱AA 1的中点,则直线BC 1与平面MC 1D 1所成角的正弦值是( )A. 1015B. 3010C. 1010D. 31010解析:设正方体的棱长为1,以D 点为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则M ⎝ ⎛⎭⎪⎫1,0,12,D 1(0,0,1),C 1(0,1,1),B (1,1,0), 则MD 1→=⎝ ⎛⎭⎪⎫-1,0,12, MC 1→=⎝ ⎛⎭⎪⎫-1,1,12, BC 1→=(-1,0,1).设平面MC 1D 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·MD 1→=0,n ·MC 1→=0,即⎩⎪⎨⎪⎧ -x +12z =0,-x +y +12z =0,所以取x =1,则z =2,y =0,即n =(1,0,2).设直线BC 1与平面MC 1D 1所成角为θ,则sin θ=|cos 〈n ,BC 1→〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·BC 1→|n ||BC 1→|=⎪⎪⎪⎪⎪⎪-1+25×2=1010,故选C. 答案:C12. 在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A. 12B. 23C. 33D. 22解析:以A 为原点建立如图所示的空间直角坐标系A -xyz ,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎨⎧ y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2. ∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos〈n 1,n 2〉=23×1=23. 即所成的锐二面角的余弦值为23.答案:B第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13. [2015·忻州期末]已知不重合的直线m 、l 和不重合的平面α、β,且m ⊥α,l ⊂β,给出下列命题:①若α∥β,则m ⊥l ;②若α⊥β,则m ∥l ;③若m ⊥l ,则α∥β;④若m ∥l ,则α⊥β.其中正确命题的个数是________.解析:对于①,∵m ⊥α,α∥β,∴m ⊥β,又l ⊂β,∴m ⊥l ,①正确;对于②,∵m ⊥α,α⊥β,∴m ∥β或m ⊂β,又l ⊂β,∴m 与l 可能相交、平行或异面,②错误;对于③,∵m ⊥α,m ⊥l ,∴l ∥α或l ⊂α,又l ⊂β,∴α与β有可能相交,也有可能平行,③错误;对于④,∵m ⊥α,m ∥l ,则l ⊥α,又l ⊂β,∴α⊥β,④正确,∴正确命题的个数是2.答案:214. [2015·北京西城区模拟]已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为________.解析:由正三棱柱三视图还原直观图可得正(主)视图是一个矩形,其中一边的长是侧(左)视图中三角形的高,另一边是棱长.因为侧(左)视图中三角形的边长为2,所以高为3,所以正视图的面积为2 3.答案:2 315. 如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 是A 1B 1上的点,则点E 到平面ABC 1D 1的距离是________________.解析:解法一:以点D 为坐标原点,DA ,DC ,DD 1所在射线为x ,y ,z 轴,建立如图所示空间直角坐标系,设点E (1,a,1)(0≤a ≤1),连接D 1E ,则D 1E →=(1,a,0).连接A 1D ,易知A 1D ⊥平面ABC 1D 1,则DA 1→=(1,0,1)为平面ABC 1D 1的一个法向量.∴点E 到平面ABC 1D 1的距离是d =|D 1E →·DA 1→||DA 1→|=22. 解法二:点E 到平面ABC 1D 1的距离,即B 1到BC 1的距离,易得点B 1到BC 1的距离为22. 答案:2216. 在三棱锥P -ABC 中,P A ⊥底面ABC ,P A =2,底面△ABC 是边长为2的正三角形,则此三棱锥外接球的半径为________.解析:底面△ABC 是边长为2的正三角形,P A ⊥底面ABC ,可得此三棱锥的外接球即为以△ABC 为底面、以P A 为高的正三棱柱的外接球.∵△ABC 是边长为2的正三角形,∴△ABC 的外接圆半径r =233,球心到△ABC 的外接圆圆心的距离d =1,故球的半径R =r 2+d 2=73=213.答案:213三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17. [2014·江苏高考](本小题满分10分)如图,在三棱锥P -ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知P A ⊥AC ,P A =6,BC =8,DF =5.求证:(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.证明:(1)因为D,E分别为棱PC,AC的中点,所以DE∥P A.又因为P A⊄平面DEF,DE⊂平面DEF,所以直线P A∥平面DEF.(2)因为D,E,F分别为棱PC,AC,AB的中点,P A=6,BC=8,所以DE∥P A,DE=12P A=3,EF=12BC=4.又因为DF=5,故DF2=DE2+EF2,所以∠DEF=90°,即DE⊥EF.又P A⊥AC,DE∥P A,所以DE⊥AC.因为AC∩EF=E,AC⊂平面ABC,EF⊂平面ABC,所以DE⊥平面ABC.又DE⊂平面BDE,所以平面BDE⊥平面ABC.18. [2015·江西九江模拟](本小题满分12分)已知点P在矩形ABCD 的边DC上,AB=2,BC=1,点F在AB边上且DF⊥AP,垂足为E,将△ADP沿AP边折起,使点D位于D′位置,连接D′B、D′C得四棱锥D′-ABCP.(1)求证:D′F⊥AP;(2)若PD=1,且平面D′AP⊥平面ABCP,求四棱锥D′-ABCP 的体积.解:(1)证明:∵AP⊥D′E,AP⊥EF,D′E∩EF=E,∴AP⊥平面D′EF,∴AP⊥D′F.(2)连接PF,∵PD=1,∴四边形ADPF是边长为1的正方形,∴D′E=DE=EF=2 2.∵平面D′AP⊥平面ABCP,D′E⊥AP,∴D′E⊥平面ABCP,∵S梯形ABCP=12×(1+2)×1=32,∴V D′-ABCP=13D′E·S梯形ABCP=2 4.19.[2015·大连双基测试](本小题满分12分)已知三棱柱ABC-A′B′C′中,平面BCC′B′⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,AA′=3,E,F分别在棱AA′,CC′上,且AE=C′F=2.(1)求证:BB′⊥底面ABC;(2)在棱A′B′上找一点M,使得C′M∥平面BEF,并给出证明.解:(1)证明:如图,取BC中点O,连接AO,因为三角形ABC 是等边三角形,所以AO⊥BC,又平面BCC′B′⊥底面ABC,AO⊂平面ABC,平面BCC′B′∩平面ABC=BC,所以AO⊥平面BCC′B′,又BB′⊂平面BCC′B′,所以AO⊥BB′.又BB′⊥AC,AO∩AC=A,AO⊂平面ABC,AC⊂平面ABC,所以BB′⊥底面ABC.(2)如图,显然M不是A′,B′,棱A′B′上若存在一点M,使得C′M∥平面BEF,过M作MN∥AA′交BE于N,连接FN,MC′,所以MN∥C′F,即C′M和FN共面,所以C′M∥FN,所以四边形C′MNF为平行四边形,所以MN=2,所以MN是梯形A′B′BE的中位线,M为A′B′的中点.20. [2015·武汉调研](本小题满分12分)如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =2,AA 1=3,D 是BC 的中点,点E 在棱BB 1上运动.(1)证明:AD ⊥C 1E ;(2)当异面直线AC ,C 1E 所成的角为60°时,求三棱锥C 1-A 1B 1E 的体积.解:(1)证明:∵AB =AC ,D 是BC 的中点,∴AD ⊥BC .①又在直三棱柱ABC -A 1B 1C 1中,BB 1⊥平面ABC ,AD ⊂平面ABC ,∴AD ⊥BB 1.②由①,②得AD ⊥平面BB 1C 1C .由点E 在棱BB 1上运动,得C 1E ⊂平面BB 1C 1C ,∴AD ⊥C 1E .(2)∵AC ∥A 1C 1,∴∠A 1C 1E 是异面直线AC ,C 1E 所成的角,由题设,∠A 1C 1E =60°. ∵∠B 1A 1C 1=∠BAC =90°,∴A 1C 1⊥A 1B 1,又AA 1⊥A 1C 1,从而A 1C 1⊥平面A 1ABB 1,于是A 1C 1⊥A 1E .故C 1E =A 1C 1cos60°=22,又B 1C 1=A 1C 21+A 1B 21=2,∴B 1E =C 1E 2-B 1C 21=2.从而VC 1-A 1B 1E =13S △A 1B 1E ×A 1C 1=13×12×2×2×2=23.21. [2014·陕西高考](本小题满分12分)四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱BD ,DC ,CA 于点F ,G ,H .(1)证明:四边形EFGH 是矩形;(2)求直线AB 与平面EFGH 夹角θ的正弦值.解:(1)证明:由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1.由题设,BC ∥平面EFGH ,平面EFGH ∩平面BDC =FG ,平面EFGH ∩平面ABC =EH ,∴BC ∥FG ,BC ∥EH ,∴FG ∥EH .同理EF ∥AD ,HG ∥AD ,∴EF ∥HG ,∴四边形EFGH 是平行四边形.又∵AD ⊥DC ,AD ⊥BD ,∴AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG ,∴四边形EFGH 是矩形.(2)解法一:如图,以D 为坐标原点建立空间直角坐标系,则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),DA →=(0,0,1),BC →=(-2,2,0),BA →=(-2,0,1).设平面EFGH 的法向量n =(x ,y ,z ),∵EF ∥AD ,FG ∥BC ,∴n ·DA →=0,n ·BC →=0,得⎩⎪⎨⎪⎧z =0,-2x +2y =0,取n =(1,1,0), ∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪BA →·n |BA →||n |=25×2=105. 解法二:如图,以D 为坐标原点建立空间直角坐标系,则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),∵E 是AB 的中点,∴F ,G 分别为BD ,DC 的中点,得E ⎝ ⎛⎭⎪⎫1,0,12,F (1,0,0),G (0,1,0). ∴FE →=⎝ ⎛⎭⎪⎫0,0,12,FG →=(-1,1,0),BA →=(-2,0,1). 设平面EFGH 的法向量n =(x ,y ,z ),则n ·FE →=0,n ·FG →=0,得⎩⎨⎧ 12z =0,-x +y =0,取n =(1,1,0),∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪BA →·n |BA →||n |=25×2=105. 22. [2014·重庆高考](本小题满分12分)如图,四棱锥P -ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB =2,∠BAD =π3,M为BC 上一点,且BM =12,MP ⊥AP .(1)求PO 的长;(2)求二面角A -PM -C 的正弦值.解:(1)如图,连接AC ,BD ,因为ABCD 为菱形,则AC ∩BD =O ,且AC ⊥BD .以O 为坐标原点,OA →,OB →,OP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz .因为∠BAD =π3,故OA =AB ·cos π6=3,OB =AB ·sin π6=1,所以O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),OB →=(0,1,0),BC →=(-3,-1,0).由BM =12,BC =2知,BM →=14BC →=⎝⎛⎭⎪⎫-34,-14,0, 从而OM →=OB →+BM →=⎝⎛⎭⎪⎫-34,34,0, 即M ⎝⎛⎭⎪⎫-34,34,0. 设P (0,0,a ),a >0,则AP →=(-3,0,a ),MP →=⎝ ⎛⎭⎪⎫34,-34,a . 因为MP ⊥AP ,故MP →·AP →=0,即-34+a 2=0,所以a =32或a =-32(舍去),即PO =32.(2)由(1)知,AP →=⎝⎛⎭⎪⎫-3,0,32, MP →=⎝ ⎛⎭⎪⎫34,-34,32,CP →=⎝ ⎛⎭⎪⎫3,0,32. 设平面APM 的法向量为n 1=(x 1,y 1,z 1),平面PMC 的法向量为n 2=(x 2,y 2,z 2),由n 1·AP →=0,n 1·MP →=0,得 ⎩⎨⎧ -3x 1+32z 1=0,34x 1-34y 1+32z 1=0,故可取n 1=⎝ ⎛⎭⎪⎫1,533,2, 由n 2·MP →=0,n 2·CP →=0, 得⎩⎨⎧34x 2-34y 2+32z 2=0,3x 2+32z 2=0,故可取n 2=(1,-3,-2), 从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-155, 故所求二面角A -PM -C 的正弦值为105.。

2016届高三数学一轮总复习课件:第七章 立体几何7-4

2016届高三数学一轮总复习课件:第七章 立体几何7-4
行).
符号语言
l⊄α
a⊂α ⇒l∥α a∥l
第六页,编辑于星期五:二十点 十二分。
2.性质定理: 文字语言
如果一条直线和一个平 性 面平行,经过这条直线 质 的平面和这个平面相 定 交,那么这条直线就和 理 交线平行(简记线面平行
⇒线线平行).
图形语言
符号语言
a∥α
a⊂β ⇒a∥b α∩β=b
答案 平行
第十三页,编辑于星期五:二十点 十二分。
知识点二
平面与平面平行
4.设l为直线,α,β是两个不同的平面.下列命题中正确的是
() A.若l∥α,l∥β,则α∥β
B.若l⊥α,l⊥β,则α∥β
C.若l⊥α,l∥β,则α∥β
D.若α⊥β,l∥α,则l⊥β
第十四页,编辑于星期五:二十点 十二分。
解析 l∥α,l∥β,则α与β可能平行,也可能相交,故A项 错;由面面平行的判定定理可知B项正确;由l⊥α,l∥β可知α⊥ β,故C项错;由α⊥β,l∥α可知l与β可能平行,也可能相交,故 D项错.
第二十页,编辑于星期五:二十点 十二分。
问题3 证明面面平行有哪些常见的方法? (1)利用定义:即证两个平面没有公共点(不常用). (2)利用面面平行的判定定理(主要方法). (3)利用垂直于同一条直线的两平面平行(客观题可用). (4)利用平面平行的传递性,即两个平面同时平行于第三个平 面,则这两个平面平行(客观题可用).
第十九页,编辑于星期五:二十点 十二分。
问题2 证明线面平行有哪些常见的方法? (1)利用线面平行的定义(无公共点); (2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α); (3)利用面面平行的性质(α∥β,a⊂α⇒a∥β); (4)利用面面平行的性质(α∥β,a⊄α,a⊄β,a∥α⇒a∥β).

2016届高考数学文科一轮复习课件:10-4参数方程

2016届高考数学文科一轮复习课件:10-4参数方程

栏 目 链 接
课前自修
2.点斜式.
x=x0+at, (t 为参数) y=y0+bt.
b 其中,(x0,y0)表示该直线上的一点, 表示直线的斜率. a 当 a,b 分别表示点 M(x,y)在 x 方向与 y 方向的分速度时,t 就具有物理意义——时间,相应的 at,bt 则表示点 M(x,y)在 x 方向,y 方向上相对(x0,y0)的位移.
栏 目 链 接
参数 . 参变数 ,简称________ y 的变数 t 叫做________
相对于参数方程而言, 直接给出点的横、 纵坐标间关系的方程叫 做普通方程.
课前自修
二、圆的参数方程
圆 (x - x0)2 + (y - y0)2 = r2 的 参 数 方 程 为 _________________(θ 为参数) 特别地,圆心在原点,半径为 r 的圆 x2+y2=r2 的参数 方程是________________ (θ 为参数). 其中参数 θ 的几何意义是 OM0 绕点 O 逆时针旋转到 OM 的位置时,OM0 转过的角度.
2 x=2pt , (t 为参数) y=2pt.
其中参数 t 表示抛物线上除顶点外的任意一点与原点连线的斜率 的倒数,其范围为 t∈(-∞,+∞).
栏 目 链 接
课前自修
六、直线的参数方程
1.标准式.
x=x0+tcos θ, 经过点 M0(x0, y0), 倾斜角为 θ 的直线的参数方程为 (t 为参数) y=y0+tsin θ
栏 目 链渐开线的参数方程.
x=r(cos φ+φsin φ), (φ 为参数) y=r(sin φ-φcos φ).
其中 r 为基圆的半径, φ 为过切点的半径与 x 轴正方向所成的角.

高考数学一轮总复习第二章函数、导数及其应用第六节对数与对数函数练习文

高考数学一轮总复习第二章函数、导数及其应用第六节对数与对数函数练习文

高考数学一轮总复习第二章函数、导数及其应用第六节对数与对数函数练习文【最新考纲】 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点.会画底数为2,10,12的对数函数的图象.3.体会对数函数是一类重要的函数模型.4.了解指数函数y =a x(a >0,且a≠1)与对数函数y =log a x(a >0,且a≠1)互为反函数.1.对数的概念如果a x=N(a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质、换底公式与运算性质(1)对数的性质:①a log a N =N ;②log a a b=b(a >0,且a≠1). (2)换底公式:log a b =log c blog c a(a ,c 均大于0且不等于1,b >0).(3)对数的运算性质:如果a >0,且a≠1,M >0,N >0,那么:①log a (M·N)=log a M +log a N ,②log a M N =log a M -log a N ,③log a M n=nlog a M (n∈R).3.对数函数的定义、图象与性质4.反函数指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图象关于直线y=x对称.1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)log2x2=2log2x.( )(2)函数y=log2(x+1)是对数函数.( )(3)函数y=lg(x+3)+lg(x-3)与y=lg[(x+3)(x-3)]的定义域相同.( )(4)当x>1时,若log a x>log b x,则a<b.( )答案:(1)×(2)×(3)×(4)√2.已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1解析:由图象可知y =log a (x +c)的图象是由y =log a x 的图象向左平移c 个单位得到的,其中0<c <1.再根据单调性可知0<a <1.答案:D3.(2015·四川卷)lg 0.01+log 216的值是________. 解析:lg 0.01+log 216=lg 1100+log 224=-2+4=2. 答案:24.(2015·北京卷)2-3,312,log 25三个数中最大的数是________.解析:因为2-3=123=18<1,1<312=3<2,log 25>log 24=2,所以三个数中最大的数是lo g 25. 答案:log 255.函数f(x)=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________.解析:当x≥1时,log 12x ≤0,当x <1时,0<2x<2,故值域为(0,2)∪(-∞,0]=(-∞,2). 答案:(-∞,2)两种关系1.a b=N ⇔log a N =b(a >0,a ≠1,N >0).2.指数函数y =a x(a >0,且a≠1)与对数函数y =log a x(a >0,且a≠1)互为反函数,应从概念、图象和性质三个方面理解它们之间的联系与区别.两点注意1.在无M >0的条件下,log a M n=nlog a |M|(n∈N *,且n 为偶数).2.解决与对数函数有关的问题时,务必先研究函数的定义域.对数函数的单调性取决于底数a ,应注意底数的取值范围.两类方法1.对数值的大小比较方法:(1)化同底后利用函数的单调性.(2)作差或作商法.(3)利用中间量(0或1).(4)化为同真数后利用图象比较.2.多个对数函数图象比较底数大小的问题,可通过图象与直线y =1交点的横坐标进行判定.一、选择题1.2lg 2-lg 125的值为( )A .1B .2C .3D .4 解析:2lg 2-lg 125=lg ⎝ ⎛⎭⎪⎫22÷125=lg 100=2.答案:B2.(2016·石家庄一模)已知a =312,b =log 1312,c =log 213,则( )A .a >b >cB .b >c >aC .c >b >aD .b >a >c解析:因为312>1,0<log 1312<1,c =log 213<0所以a >b >c. 答案:A4.函数f(x)=lg 1|x +1|的大致图象为( )解析:f(x)=lg 1|x +1|=-lg|x +1|的图象可由偶函数y =-lg|x|的图象左移1个单位得到.由y =-lg|x|的图象可知选D. 答案:D5.(2016·唐山统考)已知f(x)=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( ) A .(-∞,-1] B.⎝ ⎛⎭⎪⎫-1,12 C.⎣⎢⎡⎭⎪⎫-1,12 D.⎝ ⎛⎭⎪⎫0,12解析:要使函数f(x)的值域为R ,则有⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a<12.答案:C 6.设f(x)=lg ⎝⎛⎭⎪⎫21-x +a 是奇函数,则使f(x)<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞) 解析:由f(x)是奇函数可得a =-1, ∴f(x)=lg 1+x1-x 的定义域为(-1,1).由f(x)<0,可得0<1+x1-x <1,解得-1<x <0.答案:A二、填空题7.(2014·安徽卷)⎝ ⎛⎭⎪⎫1681-34+log 354+log 345=________.解析:⎝ ⎛⎭⎪⎫1681-34+log 354+log 345=⎝ ⎛⎭⎪⎫23-3+log 31=278+0=278.答案:2788.函数y =log 12(x 2-6x +17)的值域是________.解析:x 2-6x +17=(x -3)2+8≥8,则y≤log 128=-3,即函数的值域为(-∞,-3].答案:(-∞,-3]9.(2015·天津卷)已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b)取得最大值.解析:由于a >0,b >0,ab =8,所以b =8a.所以log 2a ·log 2(2b)=log 2a ·log 2⎝ ⎛⎭⎪⎫16a =log 2a ·(4-log 2a)=-(log 2a -2)2+4,当且仅当log 2a =2,即a =4时,log 2a ·log 2(2b)取得最大值4. 答案:4 三、解答题10.已知函数f(x)=log a (x +1)-log a (1-x),a >0且a ≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)若a >1时,求使f(x)>0的x 的取值集合. 解:(1)f(x)=log a (x +1)-log a (1-x),则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1. 故所求函数f(x)的定义域为{x|-1<x <1}. (2)由(1)知f(x)的定义域为{x|-1<x <1}, 且f(-x)=log a (-x +1)-log a (1+x) =-[log a (x +1)-log a (1-x)]=-f(x), 故f(x)为奇函数.(3)因为当a >1时,f(x)在定义域{x|-1<x <1}内是增函数,所以f(x)>0⇔x +11-x >1,解得0<x <1.所以使f(x)>0的x 的解集是{x|0<x <1}.11.设x∈[2,8]时,函数f(x)=12log a (ax)·log a (a 2x)(a >0,且a≠1)的最大值是1,最小值是-18,求a 的值.解:由题意知f(x)=12(log a x +1)·(log a x +2)=12(log 2a x +3log a x +2)=12(log a x +32)2-18. 当f(x)取最小值-18时,log a x =-32,又∵x∈[2,8],∴a ∈(0,1). ∵f(x)是关于log a x 的二次函数,∴函数f(x)的最大值必在x =2或x =8时取得. ①若12(log a 2+32)2-18=1,则a =2-13,此时f(x)取得最小值,x =(2-13)-32=2∉[2,8],舍去.②若12(log a 8+32)2-18=1,则a =12,此时f(x)取得最小值,x =⎝ ⎛⎭⎪⎫12-32=22∈[2,8],符合题意,∴a =12.。

【南方凤凰台】(江苏专用)高考数学大一轮复习 综合模拟卷二

【南方凤凰台】(江苏专用)高考数学大一轮复习 综合模拟卷二

2016高考综合模拟卷(2)数 学一、 填空题(本大题共14小题,每小题5分,共70分) 1. 设集合M={-1,0,1},N={x|x 2≤x},则M ∩N= .2. 某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布图如图所示,若130~140分数段的人数为90,则90~100分数段的人数为.(第2题)3. 一个质地均匀的正四面体(侧棱长与底面边长相等的正三棱锥)玩具的四个面上分别标有1,2,3,4这四个数字.若连续两次抛掷这个玩具,则两次朝下的面上的数字之积为奇数的概率是 .4. 等比数列x,3x+3,6x+6,…的第4项是 .5. “x>y>0”是“xy >1”的 条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)6. 已知变量x,y 满足约束条件x 0,y 1,x y,≥⎧⎪≤⎨⎪≤⎩那么z=4x ·2y的最大值为 .7. 给出下列四个命题:①平行于同一平面的两个不重合的平面平行;②平行于同一直线的两个不重合的平面平行;③垂直于同一平面的两个不重合的平面平行;④垂直于同一直线的两个不重合的平面平行; 其中为真命题的是.(填序号)8. 设某流程图如图所示,该程序运行后输出的k的值是.(第8题)9. 在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A,B两点,则弦AB的长为.10. 已知函数πx-12⎛⎫⎪⎝⎭,x∈R.若cos θ=35,θ∈3π,2π2⎛⎫⎪⎝⎭,则fπ2θ3⎛⎫+⎪⎝⎭= .11. 设正实数x,y,z满足x2-3xy+4y2-z=0,则当zxy取得最大值时,x+2y-z的最大值为.12. 若对任意的k∈R,|BA-k BC|≥|CA|恒成立,则△ABC的形状一定是.13. 已知椭圆C:22xa+22yb=1(a>b>0)的左焦点为F,椭圆C与过原点的直线相交于A,B两点,连接AF,BF,若AB=10,AF=6,cos∠ABF=45,则椭圆C的离心率e= .14. 若不等式(mx-1)[3m 2-(x+1)m-1]≥0对任意的m ∈(0,+∞)恒成立,则实数x 的值为 .二、 解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)15. (本小题满分14分)在△ABC 中,角A,B,C 的对边分别是a,b,c,已知sin C+cos C=1-sin C2.(1) 求sin C 的值;(2) 若a 2+b 2=4(a+b)-8,求边c.16. (本小题满分14分)如图,AB 为圆O 的直径,点E,F 在圆上,四边形ABCD 为矩形,AB ∥EF,∠BAF=π3,M 为BD 的中点,平面ABCD ⊥平面ABEF.(1) 求证:BF ⊥平面DAF; (2) 求证:ME ∥平面DAF.(第16题)17. (本小题满分14分)如图,某园林单位准备绿化一块直径为BC 的半圆形空地,△ABC 外的地方种草,△ABC 的内接正方形PQRS 为一水池,其余的地方种花,若BC=a,∠ABC=θ,设△ABC 的面积为S 1,正方形的PQRS 面积为S 2. (1) 用a,θ表示S 1和S 2;(2) 当a 固定,θ变化时,求12S S 的最小值.(第17题)18. (本小题满分16分)如图,已知椭圆C 1:22y a +22x b =1(a>b>0)的短轴长为4,离心率为,其一个焦点在抛物线C 2:x 2=2py(p>0)的准线上,过点M(0,1)的直线交椭圆C 1于C,D 两点,交抛物线C 2于A,B 两点,分别过点A,B 作抛物线C 2的切线,两切线交于点Q. (1) 求C 1,C 2的方程; (2) 求△QCD 面积的最小值.(第18题)19. (本小题满分16分)已知数列{a n }的前三项分别为a 1=5,a 2=6,a 3=8,且数列{a n }的前n 项和S n 满足S n+m =12(S 2n +S 2m )-(n-m)2,其中m,n 为任意正整数.(1) 求数列{a n }的通项公式及前n 项和S n ;(2) 求满足2nS-32a n +33=k 2的所有正整数k,n.20. (本小题满分16分)设函数f n (x)=x n +bx+c(n ∈N *,b,c ∈R ).(1) 当n=2,b=1,c=-1时,求函数f n (x)在区间1,12⎛⎫ ⎪⎝⎭内的零点; (2) 设n ≥2,b=1,c=-1,求证:f n (x)在区间1,12⎛⎫ ⎪⎝⎭内存在唯一的零点; (3) 设n=2,若对任意的x 1,x 2∈[-1,1],有2122f (x )-f (x )≤4,求b 的取值范围.2016届高考综合模拟卷(2)1. {0,1} 【解析】因为N={x|x2≤x}={x|0≤x≤1},所以M∩N={0,1}.2. 810 【解析】高三年级总人数为900.05=1 800;90~100分数段的人数的频率为0.45;90~100分数段的人数为1 800×0.45=810.3. 14【解析】共有16种等可能情况:(1,1),(1,2),(1,3)(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3)(3,4),(4,1),(4,2),(4,3),(4,4).两次朝下的面上的数字之积为奇数共有4种情况,所以所求概率为1 4.4. -24 【解析】由题意,(3x+3)2=x(6x+6),解得x=-1或x=-3.当x=-1时,3x+3=0,故舍去;所以x=-3.则等比数列前3项为-3,-6,-12,故第4项为-24.5. 充分不必要【解析】当x>y>0时,xy>1成立,反之不成立,例如x<y<0时也可得到xy>1.6. 8 【解析】如图,约束条件表示的是以(0,0),(0,1),(1,1)为顶点的三角形及其内部区域,目标函数z=4x·2y=22x+y,在顶点(1,1)处2x+y取得最大值3,目标函数取得最大值23=8.(第6题)7. ①④【解析】若α∥β,α∥γ,则β∥γ,即平行于同一平面的两个不重合的平面平行,故①正确;若a∥α,a∥β,则α与β平行或相交,故②错误;若α⊥γ,β⊥γ,则平面α与β平行或相交,故③错误;若a⊥α,a⊥β,则α与β平行,故④正确.8. 5 【解析】 阅读流程图知:运算规则是S=S ×k 2. 第一次循环:k=3,S=1×32=9; 第二次循环:k=5,S=9×52=225>100. 退出循环,其输出结果k=5.【解析】 圆x 2+y 2=4的圆心O(0,0)到直线3x+4y-5=0的距离d=|-5|5=1,则10. 1725 【解析】 f π2θ3⎛⎫+ ⎪⎝⎭ππ2θ-312⎛⎫+ ⎪⎝⎭·cos π2θ4⎛⎫+ ⎪⎝⎭=cos 2θ-sin 2θ,因为cos θ=35,θ∈3π,2π2⎛⎫ ⎪⎝⎭,所以sin θ=-45,所以sin 2θ=2sin θcos θ=-2425,cos 2θ=cos 2θ-sin 2θ=-725,所以f π2θ3⎛⎫+ ⎪⎝⎭=cos 2θ-sin 2θ=-725-24-25⎛⎫ ⎪⎝⎭=1725.11. 2 【解析】 由题意得z=x 2-3xy+4y 2,所以z xy =22x -3xy 4y xy +=x y +4y x -3≥当且仅当x y =4yx ,即x=2y 时,等号成立,所以x+2y-z=2y+2y-(4y 2-6y 2+4y 2)=-2(y-1)2+2≤2.12. 直角三角形 【解析】 对任意的k ∈R ,|BA -k BC |≥|CA |恒成立可以转化为:对任意的k ∈R ,k 2|BC |2-2k BA ·BC +2BA -2CA ≥0,所以(BA ·BC )2-BC 2(2BA -2CA )≤0,所以a 2c 2cos 2B-a 2(c 2-b 2)≤0,所以c 2cos 2B-c 2+b 2≤0,由正弦定理得sin 2C ≥1,所以C=π2.13. 57 【解析】由余弦定理得62=BF 2+102-2·10·BF ·45,解得BF=8,所以点A 到右焦点的距离也是8.由椭圆定义有2a=6+8=14,又2c=10,所以e=1014=57.14. 1 【解析】方法一:显然x>0,若x ≤0,则mx-1<0,而当m 充分大时,3m 2-(x+1)m-1>0,与题设矛盾.而当x>0时,要使(mx-1)[3m 2-(x+1)m-1]≥0,对任意的m ∈(0,+∞)恒成立.则关于m 的方程mx-1=0与3m 2-(x+1)m-1=0在(0,+∞)内有相同的根.所以321x ⎛⎫ ⎪⎝⎭-(x+1)1x -1=0,解得x=1,x=-32(舍去).(第14题)方法二:设函数y 1=mx-1,y 2=3m 2-(x+1)m-1,要使不等式(mx-1)[3m 2-(x+1)m-1]≥0对任意的m ∈(0,+∞)恒成立,则必有x>0,作出两个函数图象如图所示,则有两个函数图象交于点1,0x ⎛⎫ ⎪⎝⎭,即m=1x 是方程3m 2-(x+1)m-1=0的根,则有213x ⎛⎫ ⎪⎝⎭-(x+1)1x -1=0,解得x=1,x=-32(舍去).15. (1) 由已知得2sin C 2cos C 2+1-2sin 2C2=1-sin C2, 即sin C C C 2cos -2sin 1222⎛⎫+ ⎪⎝⎭=0, 由sin C 2≠0得2cos C 2-2sin C2+1=0, 即sin C 2-cos C 2=12,两边平方得sin C=34.7分(2) 由sin C 2-cos C 2=12>0知sin C 2>cos C 2,则π4<C 2<π2,即π2<C<π,则由sin C=34得cos.因为a 2+b 2=4(a+b)-8,所以a2-4a+4+b2-4b+4=0,(a-2)2+(b-2)2=0, 所以a=2,b=2.由余弦定理得c2=a2+b2所以+1. 14分16. (1) 因为四边形ABCD为矩形,故DA⊥AB. 因为平面ABCD⊥平面ABEF,且DA平面ABCD, 平面ABCD∩平面ABEF=AB,故DA⊥平面ABEF.3分因为BF平面ABEF,故DA⊥BF.4分因为AB为直径,故BF⊥AF.因为DA,AF为平面DAF内的两条相交直线,所以BF⊥平面DAF.7分(2) 因为∠BAF=π3,AB∥EF,所以EF=12AB. 8分取DA的中点N,连接NF,MN,因为M为BD的中点,所以MN∥AB,且MN=12AB,所以四边形MNFE为平行四边形,所以ME∥NF.11分因为NF平面DAF,ME⊄平面DAF,所以ME∥平面DAF.14分注:第(2)问,亦可先证明平面DAF∥平面MOE.17. (1) S1=12asin θ·acos θ=14a2sin 2θ;设正方形的边长为x,则BQ=xtanθ,RC=xtan θ,所以xtanθ+xtan θ+x=a,所以x=a1tan θ1tan θ++=asin2θ2sin2θ+,S 2=2asin2θ2sin2θ⎛⎫ ⎪+⎝⎭=222a sin 2θ4sin 2θ4sin2θ++ . 7分 (2) 当a 固定,θ变化时,12S S =14(4sin2θ+sin 2θ+4),令sin 2θ=t,则12S S =14t 44t⎛⎫++ ⎪⎝⎭(0<t ≤1),利用单调性求得当t=1时,12min S S ⎛⎫ ⎪⎝⎭=94. 14分18. (1) 因为2b=4,所以b=2.因为e=,所以a 2=8,所以椭圆C 1:2y 8+2x 4=1. 2分因为椭圆C 1的焦点为(0,2),(0,-2),所以p=4, 所以抛物线C 2:x 2=8y.4分(2) 设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4),Q(x 0,y 0).由(1)知C 2:y=2x 8,y'=x4,所以过点A 抛物线C 2的切线方程为y-y 1=1x 4(x-x 1),即y=1xx 4-y 1.同理,过点B 的抛物线C 2的切线方程为y=2xx 4-y 2.又因为这两条直线均过点Q,所以y 0=01x x 4-y 1,y 0=02x x 4-y 2,所以点A,B 均在直线y 0=0x x4-y 上,所以直线AB的方程为y=x x4-y0,又因为直线AB过点M(0,1),所以y0=-1,所以直线AB的方程为y=14x0x+1. 8分方法一:联立方程组22y x1, 841y x x1,4⎧+=⎪⎪⎨⎪=+⎪⎩得(2x+32)x2+8x0x-7×16=0,x3+x4=2-8xx32+,x3·x4=2-716x32⨯+,3-x4|=0,点Q到直线AB2.所以△QCD的面积S=02=0. 12分令,则t≥.所以S(t)==224-4ttt⎛⎫⎪⎪⎪+⎝⎭,所以当t ∈∞)时,S(t)单调递增.所以S min. 16分方法二:设k=14x 0,联立方程组221,28,y kx y x =+⎧⎨+=⎩ 消去y 得,(2+k 2)x 2+2kx-7=0, 由C(x 3,y 3),D(x 4,y 4),则x 3+x 4=-222k k +,x 3·x 4=2-72k +,·, 8分设Q 到直线的距离为d,则2, 故△QCD 的面积S=.令则m,S(m)=,S(m)==46m-1m m ⎛⎫⎪⎪⎪+⎝⎭, 函数S(m)=m-61m m +在,+∞)上单调递增,所以S min. 14分另法,令S=f(m),f'(m)=4×222222(3m -5)(m 1)-m(m -1)2m (m 1)+⋅+=4×2222(m 4)-16(m 1)++,因为m≥,所以f'(m)>0,函数f(m)在∞)上单调递增.所以S min. 16分19. (1) 在等式S m+n=12(S2n+S2m)-(n-m)2中,分别令m=1,m=2,得S n+1=12(S2n+S2)-(n-1)2, ①S n+2=12(S2n+S4)-(n-2)2, ②②-①,得a n+2=2n-3+42S-S2. 3分在等式S n+m=12(S2n+S2m)-(n-m2)中,令n=1,m=2,得S3=12(S2+S4)-1,由题设知,S2=11,S3=19,故S4=29.所以a n+2=2n+6(n∈N*),即a n=2n+2(n≥3,n∈N*). 又a2=6也适合上式,故a n=5,n1,2n2,n2,=⎧⎨+≥⎩ 5分S n=25,n1,n3n1,n2,=⎧⎨++≥⎩即Sn=n2+3n+1,n∈N*. 6分(2) 记2nS-32an+33=k2,(*)n=1时,无正整数k满足等式(*);n≥2时,等式(*)即为(n2+3n+1)2-3(n-10)=k2.8分①当n=10时,k=131.9分②当n>10时,则k<n2+3n+1,又k2-(n2+3n)2=2n2+3n+31>0,所以k>n2+3n.从而n2+3n<k<n2+3n+1.又因为n,k∈N*,所以k不存在,从而无正整数k满足等式(*).12分③当n<10时,则k>n2+3n+1,因为k∈N*,所以k≥n2+3n+2.从而(n2+3n+1)2-3(n-10)≥(n2+3n+2)2.即2n2+9n-27≤0.因为n∈N*,所以n=1或2.14分当n=1时,k2=52,无正整数解;当n=2时,k2=145,无正整数解.综上所述,满足等式(*)的n,k分别为n=10,k=131.16分20. (1) 当n=2时,b=1,c=-1时,f2(x)=x2+x-1,令f2(x)=0,得x=,所以f2(x)在区间1,12⎛⎫⎪⎝⎭内的零点是x=. 4分(2) 因为f n12⎛⎫⎪⎝⎭<0,fn(1)>0,所以f n12⎛⎫⎪⎝⎭·fn(1)<0,所以f n(x)在1,12⎛⎫⎪⎝⎭内存在零点.任取x1,x2∈1,12⎛⎫⎪⎝⎭,且x1<x2,则f n(x1)-f n(x2)=(n1x-n2x)+(x1-x2)<0,所以f n(x)在1,12⎛⎫⎪⎝⎭内单调递增,所以fn(x)在1,12⎛⎫⎪⎝⎭内存在唯一的零点. 10分(3) 当n=2时,f2(x)=x2+bx+c,对任意的x1,x2∈[-1,1].有|f2(x1)-f2(x2)|≤4等价于f2(x)在[-1,1]上的最大值与最小值之差M ≤4.据此分类讨论如下:①当b2>1,即|b|>2时,M=|f2(1)-f2(-1)|=2|b|>4,与题设矛盾.②当-1≤-b2<0,即0<b≤2时,M=f2(1)-f2b-2⎛⎫⎪⎝⎭=2b12⎛⎫+⎪⎝⎭≤4恒成立.③当0≤-b2≤1,即-2≤b≤0时,M=f2(-1)-f2b-2⎛⎫⎪⎝⎭=2b-12⎛⎫⎪⎝⎭≤4恒成立.综上可知,实数b的取值范围为[-2,2]. 注:②③也可合并证明如下:用max{a,b}表示a,b中的较大者.当-1≤-b2≤1,即-2≤b≤2时,M=max{f2(1),f2(-1)}-f2b -2⎛⎫ ⎪⎝⎭=22f(-1)f(1)2++22|f(-1)-f(1)|2-f2(-b2)=1+c+|b|-2b-c4⎛⎫+ ⎪⎝⎭=2|b|12⎛⎫+⎪⎝⎭≤4恒成立. 16分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知m ,n ,m +n 成等差数列,m ,n ,mn 成等比数列,则抛物线mx 2=ny 的焦点坐标是( )A .(0,12)B .(12,0)C .(0,14)D .(14,0)解析:选A.由题意知,2n =m +m +n 且n 2=m ·mn ,解得m =2,n =4,故抛物线为x 2=2y ,其焦点坐标为(0,12).2.已知抛物线C 与双曲线x 2-y 2=1有相同的焦点,且顶点在原点,则抛物线C 的方程是( )A .y 2=±22xB .y 2=±2xC .y 2=±4xD .y 2=±42x解析:选D.因为双曲线的焦点为(-2,0),(2,0).设抛物线方程为y 2=±2px (p >0),则p2=2,所以p =22,所以抛物线方程为y 2=±42x .3.(2014·高考课标全国卷Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( )A.303B .6C .12D .7 3解析:选C.∵F 为抛物线C :y 2=3x 的焦点, ∴F ⎝⎛⎭⎫34,0,∴AB 的方程为y -0=tan 30°⎝⎛⎭⎫x -34,即y =33x -34. 联立⎩⎪⎨⎪⎧y 2=3x ,y =33x -34,得13x 2-72x +316=0. ∴x 1+x 2=--7213=212,即x A +x B =212.由于|AB |=x A +x B +p ,所以|AB |=212+32=12. 4.已知点A (2,0),抛物线C :x 2=4y 的焦点为F ,射线F A 与抛物线C 相交于点M ,与其准线相交于点N ,则|FM |∶|MN |=( )A .2∶ 5B .1∶2C .1∶ 5D .1∶3解析:选C.直线F A :y =-12x +1,与x 2=4y 联立,得x M =5-1,直线F A :y =-12x+1,与y =-1联立,得N (4,-1),由三角形相似知|FM ||MN |=x M 4-x M =15. 5.(2015·衡水中学调研)已知等边△ABF 的顶点F 是抛物线C 1:y 2=2px (p >0)的焦点,顶点B 在抛物线的准线l 上且AB ⊥l ,则点A 的位置( )A .在C 1开口内B .在C 1上 C .在C 1开口外D .与p 值有关解析:选B.设B (-p 2,m ),由已知有AB 中点的横坐标为p 2,则A (3p2,m ),△ABF 是边长|AB |=2p 的等边三角形,即|AF |=(3p 2-p2)2+m 2=2p ,∴p 2+m 2=4p 2,∴m =±3p ,∴A (3p2,±3p ),代入y 2=2px 中,得点A 在抛物线上,故选B.6.(2015·四川资阳模拟)顶点在原点,对称轴是y 轴,并且经过点P (-4,-2)的抛物线方程是________.解析:设抛物线方程为x 2=my ,将点P (-4,-2)代入x 2=my ,得m =-8. 所以抛物线方程是x 2=-8y .答案:x 2=-8y 7.(2015·厦门质检)已知点P 在抛物线y 2=4x 上,且点P 到y 轴的距离与其到焦点的距离之比为12,则点P 到x 轴的距离为________.解析:设点P 的坐标为(x P ,y P ),抛物线y 2=4x 的准线方程为x =-1,根据抛物线的定义,点P 到焦点的距离等于点P 到准线的距离,故x P x P -(-1)=12,解得x P =1,∴y 2P =4,∴|y P |=2.答案:2 8. (2015·兰州市、张掖市联考)如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 依次交抛物线及其准线于点A 、B 、C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程是________.解析:分别过点A 、B 作准线的垂线AE 、BD ,分别交准线于点E 、D ,则|BF |=|BD |,∵|BC |=2|BF |,∴|BC |=2|BD |,∴∠BCD =30°,又∵|AE |=|AF |=3,∴|AC |=6,即点F 是AC 的中点,根据题意得p =32,∴抛物线的方程是y 2=3x .答案:y 2=3x9.抛物线顶点在原点,它的准线过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点,并与双曲线实轴垂直,已知抛物线与双曲线的一个交点为(32,6),求抛物线与双曲线的方程.解:由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点, ∴p =2c .设抛物线方程为y 2=4c ·x , ∵抛物线过点(32,6),∴6=4c ·32,∴c =1,故抛物线方程为y 2=4x .又双曲线x 2a 2-y 2b 2=1过点(32,6),∴94a 2-6b 2=1.又a 2+b 2=c 2=1, ∴94a 2-61-a 2=1. ∴a 2=14或a 2=9(舍去).∴b 2=34,故双曲线方程为4x 2-4y 23=1.10.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥F A ,垂足为N ,求点N 的坐标.解:(1)抛物线y 2=2px 的准线为x =-p2,于是4+p2=5,∴p =2.∴抛物线方程为y 2=4x . (2)∵点A 的坐标是(4,4), 由题意得B (0,4),M (0,2). 又∵F (1,0),∴k F A =43,∵MN ⊥F A ,∴k MN =-34.又F A 的方程为y =43(x -1),①MN 的方程为y -2=-34x ,②联立①②,解得x =85,y =45,∴N 的坐标为⎝⎛⎭⎫85,45.1.(2015·河南郑州模拟)已知抛物线y 2=2px (p >0),过其焦点且斜率为-1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为-2,则该抛物线的准线方程为( )A .x =1B .x =2C .x =-1D .x =-2解析:选C.由题意可设直线方程为y =-(x -p 2),设A (x 1,y 1),B (x 2,y 2), 联立方程⎩⎪⎨⎪⎧y =-(x -p 2),y 2=2px ,整理得y 2+2py -p 2=0, ∴y 1+y 2=-2p .∵线段AB 的中点的纵坐标为-2, ∴-2p 2=-2.∴p =2. ∴抛物线的准线方程为x =-1.2.(2015·江西上饶模拟)过抛物线x 2=4y 的焦点F 作直线AB ,CD 与抛物线交于A ,B ,C ,D 四点,且AB ⊥CD ,则F A →·FB →+FC →·FD →的最大值等于( )A .-4B .-16C .4D .-8解析:选B.依题意可得,F A →·FB →=-(|F A →|·|FB →|). 又因为|F A →|=y A +1,|FB →|=y B +1, 所以F A →·FB →=-(y A y B +y A +y B +1). 设直线AB 的方程为y =kx +1(k ≠0), 联立x 2=4y ,可得x 2-4kx -4=0, 所以x A +x B =4k ,x A x B =-4. 所以y A y B =1,y A +y B =4k 2+2. 所以F A →·FB →=-(4k 2+4). 同理FC →·FD →=-(4k2+4).所以F A →·FB →+FC →·FD →=-(4k 2+4k 2+8)≤-16.当且仅当k =±1时等号成立.3.(2015·山西省忻州市联考)已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是________.解析:由题意知,圆x 2+(y -4)2=1的圆心为C (0,4),半径为1,抛物线的焦点为F (1,0),根据抛物线的定义,点P 到点Q 的距离与点P 到抛物线准线的距离之和即点P 到点Q 的距离与点P 到抛物线焦点的距离之和,因此|PQ |+|PF |≥|PC |+|PF |-1≥|CF |-1=17-1.答案:17-14.已知抛物线x 2=2y ,过抛物线的焦点F 的直线l 交抛物线于P ,Q 两点,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.解析:由x 2=2y ,得y =12x 2,∴y ′=x .设P (x 1,y 1),Q (x 2,y 2),∴抛物线在P ,Q 两点处的切线的斜率分别为x 1,x 2,∴过点P 的抛物线的切线方程为y -y 1=x 1(x -x 1),又x 21=2y 1,∴切线方程为y =x 1x -x 212,同理可得过点Q 的切线方程为y =x 2x -x 222,两切线方程联立解得⎩⎪⎨⎪⎧x A =x 1+x22y A=x 1x 22. 又抛物线焦点F 的坐标为(0,12),易知直线l 的斜率存在,可设直线l 的方程为y =mx+12,由⎩⎪⎨⎪⎧y =mx +12x 2=2y ,得x 2-2mx -1=0,所以x 1x 2=-1,所以y A =-12. 答案:-125.(2015·厦门模拟) 如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当P A 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率. 解:(1)由已知条件,可设抛物线的方程为y 2=2px (p >0).∵点P (1,2)在抛物线上,∴22=2p ×1,解得p =2.故所求抛物线的方程是y 2=4x ,准线方程是x =-1.(2)设直线P A 的斜率为k P A ,直线PB 的斜率为k PB ,则k P A =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1),∵P A 与PB 的斜率存在且倾斜角互补,∴k P A =-k PB . 由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得y 21=4x 1,① y 22=4x 2,②∴y 1-214y 21-1=-y 2-214y 22-1, ∴y 1+2=-(y 2+2). ∴y 1+y 2=-4.由①-②得,y 21-y 22=4(x 1-x 2),∴k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1.6.(选做题)(2015·吉林长春调研)已知抛物线C :y 2=2px (p >0)的焦点为F ,若过点F 且斜率为1的直线与抛物线相交于M ,N 两点,且|MN |=8. (1)求抛物线C 的方程;(2)设直线l 为抛物线C 的切线,且l ∥MN ,P 为l 上一点,求PM →·PN →的最小值. 解:(1)由题可知F (p2,0),则该直线方程为y =x -p2,代入y 2=2px (p >0),得x 2-3px +p 24=0.设M (x 1,y 1),N (x 2,y 2), 则有x 1+x 2=3p . ∵|MN |=8,∴x 1+x 2+p =8,即3p +p =8,解得p =2, ∴抛物线的方程为y 2=4x .(2)设直线l 的方程为y =x +b ,代入y 2=4x ,得x 2+(2b -4)x +b 2=0. ∵l 为抛物线C 的切线,∴Δ=0,解得b =1. ∴l 的方程为y =x +1.设P (m ,m +1),则PM →=(x 1-m ,y 1-(m +1)),PN →=(x 2-m ,y 2-(m +1)), ∴PM →·PN →=(x 1-m )(x 2-m )+[y 1-(m +1)][y 2-(m +1)] =x 1x 2-m (x 1+x 2)+m 2+y 1y 2-(m +1)(y 1+y 2)+(m +1)2. 由(1)可知:x 1+x 2=6,x 1x 2=1, ∴(y 1y 2)2=16x 1x 2=16,y 1y 2=-4.∵y 21-y 22=4(x 1-x 2),∴y 1+y 2=4x 1-x 2y 1-y 2=4,∴PM →·PN →=1-6m +m 2-4-4(m +1)+(m +1)2 =2(m 2-4m -3)=2[(m -2)2-7]≥-14,当且仅当m =2,即点P 的坐标为(2,3)时,PM →·PN →的最小值为-14.。

相关文档
最新文档