Gamma-ray flux variability in the sample of EGRET blazars

合集下载

伽马射线暴的光度-光变复杂度关系

伽马射线暴的光度-光变复杂度关系

伽马射线暴的光度-光变复杂度关系李兆升;陈黎;王德华【期刊名称】《天文学进展》【年(卷),期】2011(029)002【摘要】The variability of Gamma-ray Burst is a quantitative measure of whether its light curve is spiky or smooth. From the detected spectroscopic redshift, peak fluxes, and highresolution light curves of long Gamma-ray Burst, it was found that the isotropic peak luminosity positively correlate with the variability of light curves: the more variable bursts(with larger V) tend to have higher intrinsic isotropic luminosities L. This correlation was originally found by Reichart et al. using a sample of 18 Gamma-ray Bursts. In this paper, the definition and algorithm of variability are detailedly investigated and analyzed. The V - L correlation and fitting results are also listed. If L - V relation can be confirmed, it can be adopted as rough distance indicators and redshift estimators of a Gamma-ray Burst from parameters measured merely at gamma-ray prompt emission and it can be used to constrain cosmological parameters.%伽马射线暴的光变复杂度是描述其光变曲线复杂程度的物理量.由已知红移的伽马射线暴,Reichart等人发现其光变复杂度与各向同性光度之间有正相关性(LαVα,α在1.77~3.5之间),即光变越复杂,光度越高.此相关性类似于造父变星的周光关系,可用来估计伽马暴的距离和红移.调研、分析了各种光变复杂度的定义、算法和光变复杂度-各向同性光度关系的拟合结果,最后对光变复杂度和光度之间的关系做了总结和展望.【总页数】7页(P168-174)【作者】李兆升;陈黎;王德华【作者单位】北京师范大学,天文系,北京,100875;北京师范大学,天文系,北京,100875;北京师范大学,天文系,北京,100875【正文语种】中文【中图分类】P172.3【相关文献】1.高能伽玛射线暴内光度和峰值能量的关系 [J], 尹跃;张太荣;李明军;刘海2.共动系中伽玛暴峰值能量的分布及其与光度的关系 [J], 林一清;程再军3.伽玛射线暴内光度和峰值能量关系的再研究 [J], 尹跃;柏杨;张太荣;李明军4.观测系中伽马射线暴内光度与峰值能量关系的研究 [J], 尹跃; 柏杨; 陈函5.Fermi伽马射线暴的光谱能量关系 [J], 骆娟娟; 米立功因版权原因,仅展示原文概要,查看原文内容请购买。

共振声子辅助的太赫兹量子级联激光器中杂质散射的蒙特卡洛模拟(英文)

共振声子辅助的太赫兹量子级联激光器中杂质散射的蒙特卡洛模拟(英文)

共振声子辅助的太赫兹量子级联激光器中杂质散射的蒙特卡洛
模拟(英文)
曹俊诚;吕京涛
【期刊名称】《半导体学报:英文版》
【年(卷),期】2006(27)2
【摘要】通过蒙特卡洛方法研究了基于共振声子散射的太赫兹量子级联激光器中杂质散射对激光器性能的影响.使用单子带静态屏蔽模型来处理电子与杂质的散射过程.发现电子与杂质的散射为电子在有源区中的注入和抽取过程提供了另外一个通道.这一过程可以影响电子在不同子带的占据数以及器件的电流.所以,在考虑基于共振声子散射的太赫兹量子级联激光器中的电子输运过程时,需要包含电子与杂质的散射过程.
【总页数】5页(P304-308)
【关键词】太赫兹;量子级联激光器;蒙特卡洛方法
【作者】曹俊诚;吕京涛
【作者单位】中国科学院上海微系统与信息技术研究所信息功能材料国家重点实验室
【正文语种】中文
【中图分类】TN302
【相关文献】
1.共振声子弛豫的太赫兹量子级联激光器有源区结构设计 [J], 宋亚峰;朱勤生
2.共振声子太赫兹量子级联激光器研究 [J], 黎华;韩英军;谭智勇;张戎;郭旭光;曹俊诚
3.基于太赫兹量子阱探测器的太赫兹量子级联激光器发射谱研究 [J], 谭智勇;郭旭光;曹俊诚;黎华;韩英军
4.太赫兹Si/SiGe量子级联激光器波导模拟(英文) [J], 陈锐;林桂江;陈松岩;李成;赖虹凯;余金中
5.共振声子太赫兹量子级联激光器研究(英文) [J], 曹俊诚;黎华;吕京涛
因版权原因,仅展示原文概要,查看原文内容请购买。

微观世界一隅—原子光谱和能级寿命

微观世界一隅—原子光谱和能级寿命

微观世界一隅—原子光谱和能级寿命
邹亚明
【期刊名称】《世界科学》
【年(卷),期】1998(000)004
【总页数】2页(P25-26)
【作者】邹亚明
【作者单位】上海交通大学应用物理系
【正文语种】中文
【中图分类】O562.3
【相关文献】
1.氢原子光谱与钠原子光谱的塞曼效应 [J], 倪行;包建春
2.有源光纤中稀土离子激光上能级寿命测量的研究 [J], 刘恒; 张钧翔; 付士杰; 盛泉; 史伟; 姚建铨
3.化学蒸气发生—原子光谱分析(1)氢化物发生—原子光谱分析 [J], 高舸
4.原子光谱联用技术(原子光谱分析技术丛书) [J],
5.高电离态原子光谱和能级寿命自动测量控制系统 [J], 李宁溪;杨治虎;黄新民;苏

因版权原因,仅展示原文概要,查看原文内容请购买。

放射性同位素伽玛源准直照射辐射场模拟研究

放射性同位素伽玛源准直照射辐射场模拟研究

·核科学与工程·放射性同位素伽玛源准直照射辐射场模拟研究*黄宇晨1,2, 钱易坤1,2, 冯 鹏2, 刘易鑫1, 张 颂1,2,何 鹏2, 魏 彪2, 毛本将1, 朱亚地1(1. 中国工程物理研究院 核物理与化学研究所,四川 绵阳 621900; 2. 重庆大学 光电技术及系统教育部重点实验室,重庆 400044)摘 要: 针对各向同性伽玛源参考辐射场尺寸关键技术问题,GB/T 12162系列标准虽然进行了相关规定,但是该规定并未对准直照射状态下照射室尺寸提出具体要求。

为减小用于辐射检测或监测类仪器仪表检定与量值校准时伽玛参考辐射场内散射影响,本文采用蒙特卡罗方法,研究了同位素放射源准直照射时,照射室尺寸变化对检验点处的剂量率值与能量分布的影响情况,获得了准直照射时伽玛辐射场照射室尺寸的边界条件,建立并完善了伽玛参考辐射场边界研究方法及相关标准细节,为准直照射状态下照射室尺寸设计提供了一种新方法或途径。

关键词: 核仪器仪表校准; 参考辐射; 准直照射; 蒙特卡罗; 边界条件 中图分类号: TL72 文献标志码: A doi : 10.11884/HPLPB202133.200294Simulation of radiation field from isotopic gamma source collimationHuang Yuchen 1,2, Qian Yikun 1,2, Feng Peng 2, Liu Yixin 1, Zhang Song 1,2,He Peng 2, Wei Biao 2, Mao Benjiang 1, Zhu Yadi 1(1. Institute of Nuclear Physics and Chemistry , CAEP , Mianyang 621900, China ;2. Key Laboratory of Optoelectronic Technology & Systems , Ministry of Education , Chongqing University , Chongqing 400044, China )Abstract : Aiming at the key technical issues of the reference radiation field size of isotropic sources, GB/T 12162 series of GB standards stipulates the size of the reference radiation field when using an isotropic source.However, there is no specific regulation for the size of the irradiation under collimation. To reduce the influence of scattering in the gamma reference radiation field when used for radiation detection or monitoring instrument verification and value calibration, Monte Carlo simulation was carried out to explore the effect of the size change of the irradiation chamber on the energy distribution and dose rate value during the radiation source collimation. The boundary conditions of the collimated gamma radiation irradiation chamber were obtained, and the details of the gamma reference radiation field boundary research method and related standards are established and improved. The study provides a new method or approach for the size design of the irradiation chamber under the collimated irradiation state.Key words : nuclear instrument calibration ; reference radiation ; collimated irradiation ; Monte Carlo ;boundary conditions众所周知,核电站与核设施场所中,伽玛射线辐射剂量(率)仪表不仅是辐射防护工作必需的重要工具,更是监测和保障核应用场所与射线应用装置安全的必要条件。

宇宙线传播的GALPROP模型讨论

宇宙线传播的GALPROP模型讨论

宇宙线传播的GALPROP模型讨论宇宙线是一种高能粒子射线,它来自外太空,带着宇宙线起源及其传播的重要信息。

宇宙线粒子产生之后,在星际空间经过很长时间的飞行后才到达探测器,要经历一个传播过程。

由于星际空间比较复杂,宇宙线在被探测器探测到之前,会历经一个非常复杂的过程[1]。

因此,对于从有限的信息中获得宇宙线起源及传播的信息就尤为重要。

1 宇宙线传播的近似模型宇宙线的传播实际上是非常复杂的,因为星际空间中充满了星际介质和各种场,致使宇宙线粒子的传播更加复杂。

宇宙线传播的复杂性导致了求解宇宙线传播方程的难度极大,对此通常以近似的方法进行求解。

研究宇宙线传播近似模型有漏箱模型和扩散模型。

漏箱模型对宇宙线的传播进行了简化处理。

[2]在漏箱模型中,宇宙线粒子被束缚在某一空间中,在此空间中宇宙线自由传播,并以常数概率逃逸该空间[3]。

一般用平均逃逸时间来表示逃逸概率的大小,τesch/c,其中为漏箱尺度;为光速。

在漏箱模型中仅用逃逸概率来解释宇宙线的观测特性,[4]虽然此模型简单,在处理束缚空间内的宇宙线的分布时存在一定的局限性,但是能有效地解释宇宙线的某些观测特征。

该讨论主要以宇宙线原子核为主,没有考虑能量的再分布。

但是对于宇宙线电子而言,其能量损失非常大。

所以,牵涉宇宙线电子传播时漏箱模型就会有较大的误差,此模型就不能正确反映其物理本质[5]。

为了克服漏箱模型的不足,人们提出了扩散模型。

在扩散模型中,宇宙线密度是不均匀的,随着扩散的发生,密度梯度和各向异性就会出现,根据不同的粒子和边界条件可以把扩散简化为不同的形式[6]。

对于不同的宇宙线粒子需要采用不同的简化方法,每个简化忽略的物理过程也不相同,其解也是多种多样,缺少统一性。

2 宇宙线传播的GALPROP数值模型由于宇宙线传播过程的复杂性,直接求解特别复杂,人们就需要寻求一种新的计算方法。

随着观测手段的进步,计算理论的完善,人们开发出了数值求解宇宙线传播模型的GALPROP程序包。

Gamma-ray spectrometry

Gamma-ray spectrometry

专利名称:Gamma-ray spectrometry发明人:David Ramsden申请号:US14417552申请日:20130620公开号:US09535177B2公开日:20170103专利内容由知识产权出版社提供专利附图:摘要:A calibration source for a gamma-ray spectrometer is provided, comprising a scintillator body having a cavity in which a radioactive material is received. A scintillator body may be cuboid and the cavity may be a hole drilled into the scintillator body. The radioactive material comprises an isotope having a decay transition associated withemission of a radiation particle and a gamma-ray of known energy. A photodetector is optically coupled to the scintillator body and arranged to detect scintillation photons generated when radiation particles emitted from the radioactive material interact with the surrounding scintillator. A gating circuit is arranged to receive detection signals to generate corresponding gating signals for a data acquisition circuit of an associated gamma-ray spectrometer to indicate that gamma-ray detections in the gamma-ray spectrometer occurring within a time window defined by the gating signal are associated with a decay transition in the radioactive isotope.申请人:Symetrica Limited地址:Southhampton Hampshire GB国籍:GB代理机构:Fitzsimmons IP Law更多信息请下载全文后查看。

波导制备用铒镱掺杂磷酸盐玻璃的光学光谱参数

波导制备用铒镱掺杂磷酸盐玻璃的光学光谱参数

波导制备用铒镱掺杂磷酸盐玻璃的光学光谱参数申权;张晶晶;柳鸣;王志强;赵昕【摘要】制备了一种具有优异化学稳定性的碱性铝磷酸盐玻璃,将该玻璃样品浸入390℃下的KNO3熔盐中离子交换2h后得到了平面波导.有效扩散系数为0.11 μm2/min,说明该玻璃实现了高效的离子交换.通过光谱分析可得,4 I13/2→ 4I15/2能级跃迁的半高宽和最大发射截面分别为30 nm和6.80×1021 cm2.结果表明,当4I13/2能级上Er3+的比例达到80%时,计算得到的理论增益可以达到2.97dB/cm.%Alkaline aluminum phosphate glasses were fabricated,and planar waveguide was obtained on Er3+/Yb3+ co-doped NMAP glass after submerging the glass sample into the KNO3 fused salt under 390 ℃ for 2 h.The effective diffusion coefficient was deduced to 0.11μm2/min,indicating that the ion exchange process was achieved efficiently.According to the spectrum analysis,the full width at half maximum and maximum stimulated emission cross section of 4I13/2→I15/2 energy level transition were 30 nm and 6.80 × 10-21 cm2.Results showed that the calculated theoretical gain could achieve 2.97 dB/cm when the ratio of Er3+ in 4I13/2 energy level reached to 80%.【期刊名称】《大连工业大学学报》【年(卷),期】2017(036)001【总页数】4页(P54-57)【关键词】铒镱共掺;磷酸盐玻璃;钾钠离子交换;光波导【作者】申权;张晶晶;柳鸣;王志强;赵昕【作者单位】大连工业大学信息科学与工程学院,辽宁大连 116034;大连工业大学纺织与材料工程学院,辽宁大连 116034;大连工业大学纺织与材料工程学院,辽宁大连 116034;大连工业大学纺织与材料工程学院,辽宁大连 116034;大连工业大学信息科学与工程学院,辽宁大连 116034【正文语种】中文【中图分类】TQ160.5在过去的数十年中,光波导作为集成光学器件里最基础而不可或缺的部件,受到了越来越多的关注[1]。

美国阿特拉斯户外紫外加速试验系统跟踪研究

美国阿特拉斯户外紫外加速试验系统跟踪研究

美国阿特拉斯户外紫外加速试验系统跟踪研究朱玉琴;杨华明;杨晓然;张燕【摘要】The structure composition and function of Atlas’s UV-accelerated weathering system were analyzed in detail in this paper. At the same time, by comparing the UV radiant exposure of the sample on the ultra-accelerated device in a single year exposure with that in a SAE J2527 xenon arc exposure in 45° South Florida measured using the ASTM G90 standard me-thod, the acceleration and correlation of the system were described.%详细剖析了美国阿特拉斯研发的紫外加速试验系统(UAWS)的结构构成和功能,同时通过该系统样品暴露1年接受的紫外辐射量与佛罗里达州南45°、使用SAE J2527氙弧暴露、ASTM G90标准方法之间的量值比较,对该系统的加速性和相关性进行了阐述。

【期刊名称】《装备环境工程》【年(卷),期】2016(013)003【总页数】5页(P111-115)【关键词】UAWS;加速性;相关性【作者】朱玉琴;杨华明;杨晓然;张燕【作者单位】西南技术工程研究所,重庆 400039; 重庆市环境腐蚀与防护工程技术研究中心,重庆 400039;西南技术工程研究所,重庆 400039; 重庆市环境腐蚀与防护工程技术研究中心,重庆 400039;西南技术工程研究所,重庆 400039; 重庆市环境腐蚀与防护工程技术研究中心,重庆 400039;西南技术工程研究所,重庆 400039【正文语种】中文【中图分类】TJ05近年美国阿特拉斯耐候试验集团开发了一种新型户外加速试验设备——紫外加速气候系统,该系统利用菲涅尔反射镜可聚焦自然光中的紫外部分,聚焦后的强度是自然光的50~100倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :a s t r o -p h /9707205v 1 17 J u l 1997Gamma-ray flux variability in the sample ofEGRET blazarsPawe l Magdziarz 1,Rafa l Moderski23,Greg M.Madejski 41Astronomical Observatory,Jagiellonian University,Orla 171,30-244Cracow,Poland 2UPR 176du CNRS,DARC,Observatoire de Paris,Meudon,France 3N.Copernicus Astronomical Center,Bartycka 18,00-716Warsaw,Poland 4LHEA,NASA/Goddard Space Flight Center,Greenbelt,MD 20771,USA Abstract:We analyze average γ–ray variability statistics for the sample of blazars detected by CGRO /EGRET.We re-reduce all the available EGRET observations and analyze light curves by Monte Carlo modeling of the variability statistics including ob-servational artifacts.We show that the observed variability behavior is dominated by the distribution of measurement errors which leads to strong systematical effects in all of the these statistics.General variability behavior detected by us is consistent with non-linear models and shows marginal correlation at long time scales in the structure function.We determine limits on distributions of the variability parameters with synthesis of flare pop-ulation.We conclude that this method shows that all blazar light curves are consistent with a superposition of multiple flares.1IntroductionThe EGRET archive provides important opportunity to study variability behav-ior of the high energy Compton component of γ-ray blazars,which is crucial for multi-wavelength cross-correlation analysis and for further developing of theoreti-cal models (e.g.,Urry 1996;Madejski et al.1996).Although the EGRET archive was investigated extensively (e.g.,McLaughlin 1996),the complex nature of the EGRET instrument (Thomson et al.1993;1995)together with a complex,non-stationary pattern of blazar variability,makes conclusions uncertain.Effects of relativistic Doppler beaming produce a broad range of time scales and amplitudes which are strongly confused due to limited photon statistics and poor sampling.Relatively short observations also prevent simple auto-correlation analysis.More-over,statistical behavior of EGRET flux measurements is still far from being understood (e.g.,Mattox et al.1996),and confuses significantly the analysis.In order to understand the real content of physical information,we re-analyze all2P.Magdziarz,R.Moderski,G.M.Madejskipublicly available EGRET observations of blazars and model average variability statistics including effects coming from complex distribution of measurement er-rors.This paper presents preliminary results from our analysis based on a method offlares population synthesis(Magdziarz&Machalski1993).2Data ReductionThe results presented here are based on EGRET data in viewing periods from 0.2to428(1991April22to1995September20).We use all events at E>100 MeV,and we get positions of sources from EGRET catalogues(Thompson et al. 1995,1996).Theflux is calculated using maximum likelihood method(Mattox et al.1996)with the LIKE v5.0software,and Galactic diffuse radiation is described using the model by Hunter et al.(1996).The dominant contribution to the error of flux measurements comes fromfitting and subtraction procedure of the composite background model which leads to complex,strongly non-linearflux-error relation and makes the measurement error distributions hard to estimate(Willis1996).Fig.1.A light curve from EGRET observations of PKS0528.Upper limits mark detec-tion below1σlevel,error bars correspond to95per cent confidence limit.Fig.1shows an example of a light curve produced from EGRET observations of a bright blazar PKS0528.Although the baseline of emission seems to be well observed in this particular source,sensitivity of the EGRET detector(Thompson et al.1993)is relatively low in respect to that necessary for observation of complete light curves in most of the blazar sources.Moreover,strongflaring behavior of the variability makes the light curves dominated by observations near the detection limit.On average about60per cent of observational measurements in the EGRET sample of52blazars give detection below1σlimit at the positions of sources known from measurableflux inflaring epochs.The light curves also show also that most of observations do not resolveflaring events in time,since an average of20pointings per source is spread over4years of observation.Variability of EGRET blazars3 3Variability AnalysisAssuming aflaring behavior of EGRET blazars light curves,we construct a simplephenomenological model of variability.Theflares of radiation are described by amplitude,duration time,and a repetition time lag.The resulting light curve is asuperposition of a population offlares(cf.Magdziarz&Machalski1993).Physicsof the source determines some distributions of the above phenomenological pa-rameters which we constrain from the data.In a such treatment,the non-linearbehavior of variability produces correlations between the parameter distributions. The instrument sensitivity prevents an analysis of theflare duration,since thedata binned in time to a reasonable counts limit cannot resolveflares appearing on time scales<∼1day.This makes thefirst order structure function degenerate, such that it is constant as characteristic for pure,zero time scale,noise process (cf.Wagner1996).On the other hand,all blazars in the EGRET sample showin their time history at least some measurement epochs with apparentflux below sensitivity limit of the instrument.This suggests that all of the EGRET measure-ments detectflare events only,and any quiescent level of blazar emission is under detection limit(cf.Hartman1996;Willis1996).Then the distribution of theflux measurements corresponds directly to the distribution offlare amplitudes.We in-vestigate the variability characteristics as an average over the whole sample since the data quality prevents conclusive analysis of the most of individual sources.This treatment is supported by the evidence that the emission mechanism in blazars is related exclusively to the relativistic jet(e.g.,Urry&Padovani1995),and all of the EGRET blazars show significant variability when taking into account selection effects by instrument detection limit(McLaughlin et al.1996).3.1Distribution of Apparent AmplitudeFig.2presents an average distribution of normalizedflux measurements in the sample.We normalize a light curve of each source to its averageflux,and next calculate by Monte Carlo method the distribution offluxes including measurement errors.Theflux scale is renormalized to the average over the parison of the distributions for all of the EGRET measurements(the solid line)and for measurements on the level higher that1σ(the short-dashed line)shows homogene-ity of the sample up to the level of the detection limit.However,the distribution simulated under assumption of constant internalflux of the source(the dashed line)indicates that the overall behavior of theflux distribution is dominated by measurement(i.e.,statistical)errors.Deconvolution of the internalflux distribu-tion needs more sophisticated methods since the reduction procedure produces a complex correlation between the measuredflux and its error,and the distribution of measurement errors is Gaussian for high level detections only(Willis1996). The apparentflux distribution shows trace of internal variability up to theflux of ∼80×10−8photons cm−2s−1where statistical errors begin to dominate.This corresponds to the maximum apparent amplitude of order∼7(in the scale of averageflux over the sample)which is,a posteriori,consistent with the non-linear4P.Magdziarz,R.Moderski,G.M.Madejskicharacter of variability (e.g.,McHardy 1996).A luminosity function for EGRET sample is poorly determined (cf.Willis 1996for discussion),and thus the conver-sion of physical scales is uncertain making the flux distribution smeared out by space distribution ofsources.Fig.2.Distribution of normalized fluxmeasurements averaged over the sample.The solid curve shows the distribution in-cluding all of the observations,the short-dashed curve,result for detections betterthan 1σ,and the long-dashed curve de-termines the distribution derived withoutinternalvariability.Fig.3.Distribution of normalized,ap-parent gradient averaged over the sam-ple of EGRET blazars.The distribution is homogeneous,and well described by a power law functional dependence.The gradient scale is renormalized to the flux average over the sample.3.2Distribution of Apparent GradientThe observed light curves in EGRET sample have in average 20data points,much less than necessary to study correlation decaying time scales (e.g.,Sugihara &May 1990).However,some information may be still retrieved from an average distribution of flux temporal gradients which corresponds to a distribution of the first derivative of the observed light curve.Fig.3presents the average gradient distribution over the sample calculated using the Monte Carlo method and includ-ing measurement errors.The gradient scale is defined in respect to the average flux,just as for the amplitude distribution.The distribution indicates no internal structure and shows pure power-law functional dependence.The steep index of the distribution indicates that small flares are much more frequent than strong ones.However,despite of complex structure of light curves,the variability process appears to be homogeneous up to the Nyquist frequency limit of ∼0.07day −1defined by sampling.This is generally consistent with the light curve produced by superposition of identical flares of radiation with no indication for any duty cycles.The average variability gradient estimated from the sample is ∼10−6pho-Variability of EGRET blazars 5tons cm −2s −1day −1,however,since the light curves are undersampled in time,this may be treated as an upper limit only.3.3First Order Structure FunctionWe calculated an average structure function over the sample by normalizing the light curve of each source to its dispersion.This normalizes the structure func-tion at its asymptotic long time scale range and preserves information on auto-correlation function over the averaging procedure,assuming that the process is stationary.The dispersion is reasonably approximated for the EGRET data since the light curves undersample the variability time scales.On the other hand,an undersampled light curve of pure stochastic stationary process should give flat structure function (Rutman 1978)which was indeed found in some EGRET data (e.g.,Wagner 1996;von Montigny &Wagner 1996).The average structure func-tion we derived (Fig.4)fails the standard behavior,and indicates clearly internal correlations on time scales longer than ∼1200days.Fig.4.The average first order struc-ture function in the sample of EGRETblazars.The time process is normalizedto its average dispersion.Vertical errorbars indicate 95per cent confidencelimit.Fig.5.The average structure function of measurement errors,calculated under as-sumption that the internal flux of each source is constant (normalization is the same as on Fig.4).The structure function is additive with any uncorrelated short time scale noise,well representing measurement errors (Simonetti et al.1985).This allows the de-termination of the basic level of observational artifacts affecting the structure function.Fig.5presents the average structure function calculated over the ob-servations of EGRET sample,but under assumption of constant internal source flux.The function,however,shows similar basic level and similar behavior as that calculated for the measurement flux.This indicates that the time process is dom-inated by measurement errors or by the nature of the sampling,and the flux measurements are indeed strongly correlated with their errors.6P.Magdziarz,R.Moderski,G.M.Madejski:Variability of EGRET blazars4ConclusionsOur preliminary analysis shows that the variability pattern in the EGRET sample of blazars is strongly affected by measurement errors,and correct understanding of theflux measurement statistics is crucial for understanding physical content of the EGRET data.The variability shows generally uniform pattern with power law distribution of temporalflux changes.All of the statistics are consistent with non-linear models of variability which may produce,contrary to the linear ones,flaring light curves with saturation of time scales(e.g.,Vio et al.1992).There is a little evidence in the structure function for suppressing the long time scales which may be manifestation of reducedflaring probability near largeflares.This behavior is well described by self-organizing critically models,and seems to be universal in accreting systems(Leighly&O’Brien1997).Acknowledgments We thank Dr.R.C.Hartman for helpful discussion. ReferencesHartman,R.C.1996,1996,ASP Conf.Ser.,Vol.110,Blazar Continuum Variability,eds.Miller,H.R.,Webb,J.R.,&Noble,J.C.,p.334Leighly,K.M.,&O’Brien,P.T.1997,ApJ,481,L15Lindsay,W.E.,&Chie,C.M.1976,Proc.IEEE,64,1652Madejski,G.M.,et al.1997,X-ray Imaging and Spectroscopy of Cosmic Hot Plasmas, eds.Makino,F.,&Mitsuda,K.,p.229Magdziarz,P.,&Machalski,J.1993,A&A,275,405Mattox,J.R.,et al.1996,ApJ,461,396McHardy,I.1996,1996,ASP Conf.Ser.,Vol.110,Blazar Continuum Variability,eds.Miller,H.R.,Webb,J.R.,&Noble,J.C.,p.293McLaughlin,M.A.,et al.1996,ApJ,473,763Rutman,J.1978,Proc.IEEE,66,1048Simonetti,J.H.,Cordes,J.M.,&Heeschen,D.S.1985,ApJ,296,46Sugihara,G.,&May,R.1990,Nat,344,734Thomson,D.J.,et al.1993,ApJS,86,629Thomson,D.J.,et al.1995,ApJS,101,259Urry,C.M.1996,ASP Conf.Ser.,Vol.110,Blazar Continuum Variability,ler,H.R.,Webb,J.R.,&Noble,J.C.,p.391Urry,C.M.,&Padovani,P.1995,PASP,107,803Vio,R.,et al.1992,ApJ,391,518von Montigny,C.,&Wagner,S.1996,MPI H-V37-1996,Proc.of the Heidelberg Work-shop onγ–ray emitting AGN,eds.Kirk,J.,et al.,p.113Wagner,S.1996,MPI H-V37-1996,Proc.of the Heidelberg Workshop onγ–ray emitting AGN,eds.Kirk,J.,et al.,p.117Willis,T.D.1996,Ph.D.Thesis,Stanford UniversityThis book was processed by the author using the T E X macro package from Springer-Verlag.。

相关文档
最新文档