2015年新北师大版八年级下第一章三角形的证明测试题

合集下载

2015年新北师大版八年级下第一章三角形的证明测试题[1]

2015年新北师大版八年级下第一章三角形的证明测试题[1]

八年级数学《三角形的证明》试卷二、填空题(每题3分,共24分)9. ___________________________________________________ “等边对等角”的逆命题是 ___________________________________________________________ . 10. 已知/ ABC 中,/ A = 900,角平分线BE CF 交于点O,则/ BOC = 11. 如果等腰三角形的有一个角是80°,那么顶角是 ____________ 度.12. 等腰三角形一腰上的高与另一腰的夹角为 30°,腰长为6,则其底边上的高是 _____________ 13. 如图,△ ABC 中, Z C=90,/ A = 30° ,BD 平分/ ABC 交 AC T D,若 CD= 2cm,则 AC=_一1. 2.3.4. 5. 6. 7.8. 班级 _________ 姓名 _____________、选择题(每题3分,共24分) 到三角形三个顶点的距离相等的点是三角形( A.三个内角平分线B.三边垂直平分线 C.得分 ________ )的交点• 三条中线 D.已知△ ABC 的三边长分别是6cm 8cm 10cm 则厶ABC 的面积是( 2 A.24cm B.30cm已知等腰三角形的两边长分别为 A. 7 cm B . 9 cm 面积相等的两个三角形()A.必定全等B.必定不全等C.40cm 5 cm>C . 12 cm 或者 9 cm 三条咼)2 D.48cm 2 cm,则该等腰三角形的周长是( D . 12 cmC. 不一定全等一个等腰三角形的顶角是40°,则它的底角是(A. 40°B . 50°C . 60D. )以上答案都不对 D . 70° 如图,在厶ABC ffiA DEF 中,已知AC=DFBC=EF 要使△ ABC^A DEF 还需要的条件是(A. / A=Z DB. / ACB 2 FC./ B=Z DEFD./ ACB 2 D如图,△ ABC 中, AB=AC 点 D 在AC 边上,且BD=BC=AD 则/ A 的度数为()A.30 °B.36 °C.45 °D.70 ° 如图,△ ABC^A AEF ,A 吐AE,Z B =Z E,则对于结论①AC = AF ;②/ FA 吐/ EAB ③EF = BC ④/ EAB=Z FAC 其中正确结论的个数是( A.1个B.214. ________________________________________________________________ Rt/ABC中, Z C=9Gb,Z B=30o,则AC与AB两边的关系是______________________________ ,15. 在厶ABC中,边AB BC AC的垂直平分线相交于P,则PA PB PC的大小关系是.16. _________________________________________________________________________ 在厶ABC中, Z A=40°, AB=AC, AB的垂直平分线交AC与D,则Z DBC的度数为____________三.基础题(每题6分,共36分)17. 如图,在△ ABD^P^ ACD中,已知A吐AC; / B=Z C,求证:AD是/ BAC的平分线.18. 如图,/ A=Z D=90°, AC=BD求证:OB=OC19. 如下图,CE L AD, CB1 AB, ABAD,求证:CD=CB21. 如图,CEL AB BF丄AC, CE与BF相交于D,且BD=CD.求证:D在/ BAC的平分线上.20.如图,DC L CA EA! CA22. 如图,ABC中,AB二AC, • A = 50 , DE是腰AB的垂直平分线,求• DBC的度数24. 如图,△ ABC 中,/ B=90 , AB=BC 人。

北师大版八年级下册数学第一章 三角形的证明含答案

北师大版八年级下册数学第一章 三角形的证明含答案

北师大版八年级下册数学第一章三角形的证明含答案一、单选题(共15题,共计45分)1、如图,DE是△ABC中AC边的垂直平分线,若BC=8cm,AB=10cm,则△EBC的周长为()A.16cmB.28cmC.26cmD.18cm2、方程的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为()A.12B.15C.12或15D.183、已知等腰三角形的一个内角为40°,则它的顶角为()A.40°B.100°C.40°或100°D.70°或50°4、等腰三角形的两条边分别为6和8,则等腰三角形的周长是()A.20B.22C.20或22D.不确定5、等腰三角形的周长为30cm,其中一边长12cm,则其腰长为()A.9cmB.12cm或9cmC.10cm或9cmD.以上都不对6、如图,有A,B,C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC,BC两边高线的交点处B.AC,BC两边垂直平分线的交点处 C.AC,BC两边中线的交点处 D.∠A,∠B两内角平分线的交点处7、如图是一副三角尺ABC和与DEF拼成的图案,若将三角尺DEF绕点M按顺时针方向旋转,则边DE与边AB第一次平行时,旋转角的度数是()A.75°B.60°C.45°D.30°8、等腰三角形有一个角为50°,则另两个角分别为()A.50°,50°B.65°,65°C.50°,80°D.50°,80°或65°,65°9、如图7,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE10、△ABC中,∠B=50°,∠A=80°,若AB=6,则AC=()A.6B.8C.5D.1311、如图,在中,,,D,E分别为线段AB,AC 上一点,且,连接BE、CD交于点G,延长AG交BC于点F.以下四个结论正确的是()①;②若,则;③若BE平分,则;④连结EF,若,则.A.①②③B.③④C.①②④D.①②③④12、一张等腰三角形纸片,底边长15cm,底边上的高长22.5cm,现沿底边从下到上依次裁剪宽度均为3cm的矩形纸条(如图所示),则裁得的纸条中恰为张正方形的纸条是()A.第4张B.第5张C.第6张D.第7张13、等腰三角形的两边长分别为3cm和7cm,则周长为()A.13cmB.17cmC.13cm或17cmD.11cm或17cm14、如图,在△ABC中,AB=8,AC=6,BC边的垂直平分线交AB于E,交BC于点D,若CD=5,则AE的长为()A. B.2 C. D.415、反比例函数≠0)的图象在第一象限内的一支如图所示,P是该图=4,则k的值是()象上一点,A是x轴上一点,PO=PA,S△POAA.8B.4C.2D.16二、填空题(共10题,共计30分)16、如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半径为1,点P 是斜边AB上的点,过点P作⊙C的一条切线PQ(点Q是切点),则线段PQ的最小值为________.17、如图,在△ABC中,AB=AC,BD,CE分别是∠ABC,∠ACB的平分线,且DE ∥BC,∠A=36°,则图中等腰三角形共有________个.18、如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC=105°,则∠A的度数是________.19、等腰三角形的一个角是70°,则它的顶角的度数是________.20、等腰三角形的一个角为50°,则另两个角的度数为________.21、如图,在中,,线段的垂直平分线交于点M,交于点N,若的周长为7,则________.22、如图,∠ABE=∠ACD=Rt∠,AE=AD,∠ABC=∠ACB.求证:∠BAE=∠CAD.请补全证明过程,并在括号里写上理由.证明:在△ABC中,∵∠ABC=∠ACB∴AB=________(________)在Rt△ABE和Rt△ACD中,∵________=AC,________=AD∴Rt△ABE≌Rt△ACD(________)∴∠BAE=∠CAD(________ )23、如图,OP平分∠MON,A是边OM上一点,以点A为圆心、大于点A到ON的距离为半径作弧,交ON于点B、C,再分别以点B、C为圆心,大于BC的长为半径作弧,两弧交于点D、作直线AD分别交OP、ON于点E、F.若∠MON=60°,EF=1,则OA=________.24、在△ABC中,AB=AC,AB的垂直平分线DE与AC所在的直线相交于点E,垂足为D,连接BE.已知AE=5,tan∠AED=,则BE+CE=________25、如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为________三、解答题(共5题,共计25分)26、如图,中,于D.求及的长.27、如图,点C、E、B、F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.28、如图,△ABC中,∠CAB的平分线与BC的垂直平分线相交于D,过点D作DE⊥AB,DF⊥AC,求证:BE=CF.29、如图:斜边的中垂线交边于点,若,,求的长.30、如图,给出四个等式:①AB= DC,②BE=CE,③∠B=∠C,④∠BAE=∠CDE.请你从这四个等式中选出两个作为条件,推出是等腰三角形. (要求写出所有符合要求的条件,并给出其中一种条件下的证明过程).参考答案一、单选题(共15题,共计45分)1、D2、B3、C4、C5、B6、B7、C8、D9、D10、A11、D12、C13、B14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。

北师大版八年级数学下册《三角形的证明》单元测试1(含答案)

北师大版八年级数学下册《三角形的证明》单元测试1(含答案)

第一章 三角形的证明单元测试一、选择题(每题3分,共30分)1、△ABC 中,AB = AC ,BD 平分∠ABC 交AC 边于点D ,∠BDC = 75°,则∠A 的度数为( )A 35°B 40°C 70°D 110°2、适合条件∠A =∠B =31∠C 的三角形一定是( )A 锐角三角形B 钝角三角形C 直角三角形D 任意三角形3、用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③正方形;④等腰三角形,一定可以拼成的图形是( )A ①②④B ②④C ①④D ②③④4、已知△ABC 中,AB =AC ,AB 的垂直平分线交AC 于D ,△ABC 和△DBC 的周长分别是60 cm 和38 cm ,则△ABC 的腰和底边长分别为 ( ) A 24 cm 和12 cm B 16 cm 和22 cm C 20 cm 和16 cm D 22 cm 和16 cm5、如图,△ABC 中,AC =BC ,直线l 经过点C ,则 ( ) A l 垂直AB B l 平分AB C l 垂直平分AB D 不能确定6、三角形中,若一个角等于其他两个角的差,则这个三角形是 ( ) A 钝角三角形 B 直角三角形 C 锐角三角形 D 等腰三角形7、已知等腰三角形的两边长分别为6㎝、3㎝,则该等腰三角形的周长是( ) A 9㎝B 12㎝C 12㎝或者15㎝D 15㎝8、如图,已知在△ABC中,AB=AC,D为BC上一点,BE=CD,CF=BD,那么∠EDF等于( )A 90°-∠A B 90°-21∠A C 45°-21∠A D 180°-∠A9、一个正方形和一个等腰三角形有相等的周长,已知等腰三角形有两边长分别为5.6 cm和13.2 cm,则这个正方形的面积为()A 64 cm2B 48 cm2C 36 cm2D 24 cm210、如图,等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A 45°B 55°C 60°D 75°二、填空题(每小题3分,共30分)1、“直角三角形两条直角边的平方和等于斜边的平”的方逆定理是2、等腰三角形的腰长为2cm,面积等于1cm2,则它的顶角的度数为 .3、如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB相交于D点,则∠BCD的度数是 .4、等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是 .5、正三角形的边长为a,则它的面积为.6、在△ABC中,AB=AC,∠A=58°,AB的垂直平分线交AC于N,则∠NBC = .7、在直角三角形中,如果一个锐角为30°,而斜边与较小直角边的和为12,那么斜边长为.8、已知:如图,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=.9、在等腰三角形ABC中,AB=AC=5,BC=6,D是BC上一点,作DE⊥AB,DF⊥AC,则DE+DF= .10、如图,一张直角三角形的纸片,象图中那样折叠,使A与B重合,∠B=30°,AC=3,则折痕DE等于.三、解答题(本题共8个小题,共60分)1、(7分)已知:如图,等腰三角形ABC 中,AC =BC ,∠ACB =90°,直线l 经过点C(点A 、B 都在直线l 的同侧),AD ⊥l ,BE ⊥l ,垂足分别为D 、E .求证:△ADC ≌△CEB.2、(7分)用反证法证明一个三角形中不能有两个角是直角.3、(8分)如图,在△ABC 中,AD 是高,CE 是中线,DC=BE ,DG ⊥CE 于G .求证:①G 是CE 的中点. ②∠B=2∠BCE .4、(7分)在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,且AE =21(AB +AD ),求∠ABC +∠ADC 的度数.ABCDEGABCED5、(7分)如图,△ABC 中,E 是BC 边上的中点,DE ⊥BC 于E ,交∠BAC 的平分线AD 于D ,过D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,试证明:BM =CN .6、(7分)已知:如图,在Rt △ABC 中,∠ACB=90°,AC=BC ,点D 是BC 的中点,CE ⊥AD ,垂足为点E ,BF//AC 交CE 的延长线于点F . 求证:AC=2BF .7、(7分)在△ABC 中,AB =AC ,D 是AB 上一点,E 是AC 延长线上一点,且BD =CE . 求证:DM =EM .ABC DMNEBFABCDE8、(10分)已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点?写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.参考答案一、选择题1、B2、B3、A4、D5、D6、B7、D8、B9、A 10、C二、填空题1、如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形2、30°或150°3、10°4、32a 5、234a 6、3°7、 6 8、55° 9、24510、1三、解答题(本题共8个小题,共60分) 1、略 2、略3、提示:连结DE ,由直角三角形斜边中线等于斜边的一半易证.4、提示:过C 点作AD 的延长线的垂线,垂足为F .利用角平分线的性质和AE=21(AB+AD )可知BE=DF ,CF=CE ,再由△CDF ≌CBE 即得. 5、提示:连结BD 、CD 利用角平分线和中垂线的性质证△BDM ≌CDN . 6、提示:证△ACD ≌CBF .7、提示:过D 点作AC 的平行线(或者过E 点作AB 的平行线)利用三角形全等可证.8、(1)∠A = 30°;证明略(2)△ABC。

【完整版】北师大版八年级下册数学第一章 三角形的证明含答案

【完整版】北师大版八年级下册数学第一章 三角形的证明含答案

北师大版八年级下册数学第一章三角形的证明含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=3,DE=5,则线段EC的长为()A.3B.4C.2D.2.52、在△ABC中,AB=AC,AB的垂直平分线与AC所在直线相交所得的锐角为40°,∠B的度数为()A.20°或70°B.30°或60°C.25°或65°D.35°或65°3、下列命题中错误的有()个( 1 )等腰三角形的两个底角相等(2)对角线相等且互相垂直的四边形是正方形(3)对角线相等的四边形为矩形(4)圆的切线垂直于半径(5)平分弦的直径垂直于弦A.1B.2C.3D.44、如图,在△ABC中,AB=AC,AD、CE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ACE的度数是()A.55°B.40°C.35°D.20°5、如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正确的有()A.1个B.2个C.3个D.4个6、如图,在中,,,点E在BC的延长线上,的平分线BD与的平分线CD相交于点D,连接AD,则下列结论中,正确的是( )A. B. C. D.AC=AB7、如图,点O是△ABC中∠ABC与∠ACB的平分线的交点,OD∥AB交BC于D 点,OE∥AC交BC于E点,若BC=20cm,则△ODE的周长为()A.16cmB.18cmC.20cmD.22cm8、等腰三角形一个为50°,则其余两角度数是()A.50°,80°B.65°,65°C.50°,80°或65°,65° D.无法确定9、如图,在中,,则的度数为()A. B. C. D.10、下列命题中正确的命题有()①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;④点P在线段AB外且PA=PB,过P作直线MN,则MN是线段AB的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线.A.1个B.2个C.3个D.4个11、如图,在Rt△ABC中,∠ACB=90°,AC=BC,点M在AC边上,且AM=2,MC=6,动点P在AB边上,连接PC,PM,则PC+PM的最小值是()A.2B.8C.2D.1012、等腰三角形的两边长是6cm和3cm,那么它的周长是( )A.9cmB.12 cmC.12 cm或15 cmD.15 cm13、如图,△ABC中,BC=18,若BD⊥AC于D点,CE⊥AB于E点,F,G分别为BC、DE的中点,若ED=10,则FG的长为( )A. B. C.8 D.914、已知一个等腰三角形的两边长是3cm和7cm,则它的周长为A.13 cmB.17cmC.13cm或17cmD.10cm或13cm15、△ABC中,AB=AC,AB的垂直平分线与直线AC相交所成锐角为40°,则此等腰三角形的顶角为()A.50°B.60°C.150°D.50°或130°二、填空题(共10题,共计30分)16、如图,已知E是正方形ABCD的边AB上一点,点A关于DE的对称点为F,若正方形ABCD的边长为1,且∠BFC=90°,则AE的长为________17、如图,在Rt△ACB中,∠C=90°,∠ABC=30°,AC=4,N是斜边AB上方一点,连接BN,点D是BC的中点,DM垂直平分BN,交AB于点E,连接DN,交AB于点F,当△ANF为直角三角形时,线段AE的长为________.18、如图,在Rt△ABC中,∠ACB=90°,AB边的垂直平分线交AB于点E,交BC于点D,且∠ADC=30°,BD=18cm,则AC的长度是________cm.19、如图,于,于,且.若,,则的大小为________度.20、如图,在中,点在上,,点在的延长线上,,连接,则的度数为________ .21、如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.若∠B=30°,CD=1,则BD的长为________.22、如图,等腰△ABC的周长为27cm,底边BC=7cm,AB的垂直平分线DE交AB 于点D,交AC于点E,则△BEC的周长为________cm .cm23、如图,四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,射线BE交AD于点F,交AC于点O.若点O恰好是AC的中点,则CD的长为________.24、如图, AB的垂直平分线MN交AB于点M,交AC于点D,若∠A=38°,则∠BDM=________度.25、如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有________处。

北师大版八年级数学下册第一章《三角形的证明》检测题(含答案)

北师大版八年级数学下册第一章《三角形的证明》检测题(含答案)

北师大版八年级数学下册第一章《三角形的证明》检测试卷(含答案)一、选择题(每题3分,共30分)1.若等腰三角形的底角为40°,则它的顶角度数为( )A.40° B.50° C.60° D.100°2.已知等腰三角形两边长是8 cm和4 cm,那么它的周长是( )A.12 cm B.16 cm C.16 cm或20 cm D.20 cm3.用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”时,应假设( ) A.a不垂直于c B.a,b都不垂直于cC.a与b相交 D.a⊥b4.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A.3,4, 5 B.1,2, 3C.6,7,8 D.2,3,45.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b 上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是( ) A.30° B.35°C.40° D.45°6.如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为( )A.5 B.6C.8 D.107.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,且AD交BC 于点D,DE⊥AB于点E,则下列说法错误的是( )A.∠CAD=30° B.AD=BDC.BE=2CD D.CD=ED8.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( ) A.∠B=∠C B.AD=AEC.BD=CE D.BE=CD9.如图,在△ABC中,分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为( )A.7 B.14C.17 D.2010.如图,在△ABC中,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F为垂足,则下列四个结论:①∠DEF=∠DFE;②AE=AF;③DA平分∠EDF;④EF垂直平分AD.其中结论正确的有( )A.1个 B.2个 C.3个 D.4个二、填空题(每题3分,共30分)11.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD=________.12.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是________.13.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:____________________________________________,该逆命题是________(填“真”或“假”)命题.14.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β=________.15.如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD,CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC 的长为________.16.如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD 于点O,连接OC,若∠AOC=125°,则∠ABC=________.17.等腰三角形ABC中,BD⊥AC,垂足为点D,且BD=12AC,则等腰三角形ABC底角的度数为________.18.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D,E,AD=3,BE=1,则DE=________.19.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为________.20.如图,等边三角形ABC的边长为12,AD是BC边上的中线,M是AD上的动点,E是AC边上的一点.若AE=4,则EM+CM的最小值为________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.已知:∠ABC,射线BC上一点D(如图所示).求作:等腰三角形PBD,使线段BD为等腰三角形PBD的底边,点P在∠ABC 的内部,且点P到∠ABC两边的距离相等.(要求:请用直尺、圆规作图,不写作法,但要保留作图痕迹)22.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB,CF交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.23.如图,锐角三角形ABC的两条高BE,CD相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.24.如图,在4×4的正方形网格中,每个小正方形的边长均为1,线段AB 的端点在格点上,按要求画图.(1)在图①中画出一个面积为4的等腰三角形ABC(点C在格点上),使A,B,C中任意两点都不在同一条网格线上;(2)在图②中画出一个面积为5的直角三角形ABD(点D在格点上),使A,B,D中任意两点都不在同一条网格线上.25.如图,已知△ABC是边长为6 cm的等边三角形,动点P,Q同时从A,B 两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1 cm/s,点Q 运动的速度是2 cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t s,解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t;若不能,请说明理由.26.数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同.如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.参考答案一、1.D 2.D 3.C 4.B 5.C 6.C 7.C 8.D 9.C 10.C二、11. 110°12. 313.如果两个三角形的面积相等,那么这两个三角形全等;假14.20°15. 2716. 70°17.45°或15°或75°18.219.3 320.47三、21.解:如图,△PBD为所求作的三角形.22.(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F.∵AD是BC边上的中线,∴BD=CD.∴△BDE≌△CDF(AAS).(2)解:∵△BDE≌△CDF,∴BE=CF=2.∴AB=AE+BE=1+2=3.∵AD⊥BC,BD=CD,∴AC=AB=3.23.(1)证明:∵OB=OC,∴∠OBC=∠OCB.∵BE,CD是两条高,∴∠BDC=∠CEB=90°.又∵BC=CB,∴△BDC≌△CEB(AAS).∴∠DBC=∠ECB.∴AB=AC,即△ABC是等腰三角形.(2)解:点O在∠BAC的平分线上.理由:∵△BDC≌△CEB,∴DC=EB.∵OB=OC,∴OD=OE.又∵∠BDC=∠CEB=90°,∴点O在∠BAC的平分线上.24.解:(1)如图①所示.(2)如图②所示.25.解:(1)当点Q到达点C时,PQ与AB垂直.理由:∵点Q到达点C时,BQ=BC=6 cm,∴t=62=3.∴AP=3 cm.∴BP=AB-AP=3 cm=AP.∴点P为AB的中点.∴PQ⊥AB.(2)能.∵∠B=60°,∴当BP=BQ时,△BPQ为等边三角形.∴6-t=2t,解得t=2.∴当t=2时,△BPQ是等边三角形.26.解:(1)若∠A为顶角,则∠B=(180°-80°)÷2=50°;若∠A 为底角,∠B 为顶角,则∠B =180°-2×80°=20°; 若∠A 为底角,∠B 为底角,则∠B =80°.故∠B 为50°或20°或80°.(2)分两种情况:①当90≤x <180时,∠A 只能为顶角,∴∠B 的度数只有一个.②当0<x <90时,若∠A 为顶角,则∠B =⎝ ⎛⎭⎪⎫180-x 2°; 若∠A 为底角,∠B 为顶角,则∠B =(180-2x )°; 若∠A 为底角,∠B 为底角,则∠B =x °.当180-x 2≠180-2x 且180-2x ≠x 且180-x 2≠x , 即x ≠60时,∠B 有三个不同的度数.综上所述,当0<x <90且x ≠60时,∠B 有三个不同的度数.。

新版北师大版八年级下册第1章《三角形的证明》单元测试试卷及答案(3)

新版北师大版八年级下册第1章《三角形的证明》单元测试试卷及答案(3)

新版北师大版八年级下册第1章《三角形的证明》单元测试试题及参考答案(3)一、选择题(共6小题,每小题3分,满分18分)1.(3分)下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A. ①②③B. ①②④C. ①③D. ①②③④2.(3分)(2013•邢台一模)如图,AC=BC=10cm,∠B=15°,AD⊥BC于点D,则AD的长为()A. 3cmB. 4cmC. 5cmD. 6cm3.(3分)(2006•曲靖)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A. 25°B. 30°C. 45°D. 60°4.(3分)如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A. 等腰三角形B. 等边三角形C. 不等边三角形D. 不能确定形状5.(3分)(2004•河南)如图,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA为a米,此时梯子的倾斜角为75°,如果梯子的底端不动,顶端靠在对面墙上,此时梯子的顶端距地面的垂直距离NB为b米,梯子的倾斜角为45°,则这间房子的宽AB为()A.米B.米C. b米D. a米6.(3分)(2012•深圳)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A. 6B. 12C. 32D. 64二、填空题(共4小题,每小题3分,满分12分)7.(3分)如图所示,在△ABC中,AB=AC=20cm,∠BAC=150°,则S△ABC=_________ cm2.8.(3分)(2007•天津)如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=_________.9.(3分)如图所示,∠AOB=30°,OC平分∠AOB,P为OC上任意一点,PD∥OA交OB于点D,PE⊥OA于点E,若PE=2cm,则PD=_________cm.10.(3分)(2011•济宁)如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=_________.三、解答题(共3小题,满分0分)11.(2011•日照)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD 延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.12.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF=_________;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.13.(2013•抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是_________;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D 逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.(3分)下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A. ①②③B. ①②④C. ①③D. ①②③④考点:等边三角形的判定.分析:根据等边三角形的判定判断.解答:解:①两个角为60度,则第三个角也是60度,则其是等边三角形,故正确;②这是等边三角形的判定2,故正确;③三个外角相等则三个内角相等,则其是等边三角形,故正确;④根据等边三角形三线合一性质,故正确.所以都正确.故选D.点评:此题主要考查学生对等边三角形的判定的掌握情况.2.(3分)(2013•邢台一模)如图,AC=BC=10cm,∠B=15°,AD⊥BC于点D,则AD的长为()A. 3cmB. 4cmC. 5cmD. 6cm考点:含30度角的直角三角形.分析:根据等边对等角的性质可得∠B=∠BAC,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ACD=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半解答即可.解答:解:∵AC=BC,∴∠B=∠BAC=15°,∴∠ACD=∠B+∠BAC=15°+15°=30°,∵AD⊥BC,∴AD=AC=×10=5cm.故选C.点评:本题考查了等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.3.(3分)(2006•曲靖)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A. 25°B. 30°C. 45°D. 60°考点:等边三角形的判定与性质.专题:压轴题.分析:先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.解答:解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选B.点评:考查直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力.4.(3分)如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A. 等腰三角形B. 等边三角形C. 不等边三角形D. 不能确定形状考点:等边三角形的判定.分析:先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE是等边三角形.解答:解:∵△ABC为等边三角形∴AB=AC∵∠1=∠2,BE=CD∴△ABE≌△ACD∴AE=AD,∠BAE=∠CAD=60°∴△ADE是等边三角形.故选B.点评:此题主要考查学生对等边三角形的判定及三角形的全等等知识点的掌握.5.(3分)(2004•河南)如图,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA为a米,此时梯子的倾斜角为75°,如果梯子的底端不动,顶端靠在对面墙上,此时梯子的顶端距地面的垂直距离NB为b米,梯子的倾斜角为45°,则这间房子的宽AB为()A.米B.米C. b米D. a米考点:解直角三角形的应用-坡度坡角问题;等边三角形的性质.专题:压轴题.分析:根据CM=CN以及∠MCN的度数可得到△CMN为等边三角形.利用相应的三角函数表示出MN,MC的长,可得到房间宽AB和AM长相等.解答:解:过N点作MA垂线,垂足点D,连接NM.设梯子底端为C点,AB=x,且AB=ND=x.∴△BNC为等腰直角三角形,△CNM为等边三角形(180﹣45﹣75=60°,梯子长度相同∵∠NCB=45°,∴∠DNC=45°,∴∠MND=60°﹣45°=15°,∴cos15°=,又∵∠MCA=75°,∴∠AMC=15°,∴cos15°=,故可得:=.∵△CNM为等边三角形,∴NM=CM.∴x=MA=a.故选D.点评:此题是解直角三角形的知识解决实际生活中的问题,作辅助线很关键.6.(3分)(2012•深圳)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A. 6B. 12C. 32D. 64考点:等边三角形的性质;含30度角的直角三角形.专题:压轴题;规律型.分析:根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.解答:解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.点评:此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.二、填空题(共4小题,每小题3分,满分12分)7.(3分)如图所示,在△ABC中,AB=AC=20cm,∠BAC=150°,则S△ABC=100cm2.考点:含30度角的直角三角形;等腰三角形的性质.分析:过C作CD⊥BA,交BA延长线于D,求出CD,根据三角形面积公式求出即可.解答:解:过C作CD⊥BA,交BA延长线于D,∵∠BAC=150°,∴∠DAC=30°,∴DC=AC=10cm,∴S△ABC=AB×CD=×20×10=100(cm2),故答案为:100.点评:本题考查了三角形的面积,含30度角的直角三角形性质的应用,关键是求出△ABC的高.8.(3分)(2007•天津)如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=3.考点:含30度角的直角三角形.分析:由于∠C=90°,∠ABC=60°,可以得到∠A=30°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=30°,∴BD=AD=6,再30°角所对的直角边等于斜边的一半即可求出结果.解答:解:∵∠C=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠ABD=∠A=30°,∴BD=AD=6,∴CD=BD=6×=3.故填空答案:3.点评:本题利用了直角三角形的性质和角的平分线的性质求解.9.(3分)如图所示,∠AOB=30°,OC平分∠AOB,P为OC上任意一点,PD∥OA交OB于点D,PE⊥OA于点E,若PE=2cm,则PD=4cm.考点:角平分线的性质;含30度角的直角三角形.分析:首先过点P作PF⊥OB于点F,由OC平分∠AOB,PE⊥OA于点E,易得PF=PE,由PD∥OA,可求得∠PDF=30°,然后由含30°角的直角三角形的性质,求得答案.解答:解:过点P作PF⊥OB于点F,∵OC平分∠AOB,PE⊥OA,∴PF=PE=2cm,∵PD∥OA,∴∠PDF=∠AOB=30°,∴PD=2PF=4cm.故答案为:4.点评:此题考查了角平分线的性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10.(3分)(2011•济宁)如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=.考点:等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.专题:压轴题.分析:首先根据题意推出△CAE≌△BCD,可知∠DCB=∠CAE,因此∠AFG=∠CAF+∠ACF=∠ACF+∠DCB=60°,所以∠FAG=30°,即可推出结论.解答:解:∵AD=BE,∴CE=BD,∵等边三角形ABC,∴△CAE≌△DCB,∴∠DCB=∠CAE,∴∠AFG=∠CAF+∠ACF=∠ACF+∠DCB=60°,∵AG⊥CD,∴∠FAG=30°,∴FG:AF=.故答案为.点评:本题主要考查全等三角形的判定和性质、含30度角的直角三角形的性质、等边三角形的性质,解题的关键在于根据题意推出△CAE≌△DCB和∠AFG=∠CAF+∠ACF=∠ACF+∠DCB=60°.三、解答题(共3小题,满分0分)11.(2011•日照)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD 延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.考点:全等三角形的判定与性质;等边三角形的判定与性质;等腰直角三角形.专题:证明题;压轴题.分析:(1)根据等腰直角△ABC,求出CD是边AB的垂直平分线,求出CD平分∠ACB,根据三角形的外角性质求出∠BDE=∠CDE=60°即可.(2)连接MC,可得△MDC是等边三角形,可求证∠EMC=∠ADC.再证明△ADC≌△EMC即可.解答:证明:(1)∵△ABC是等腰直角三角形,∴∠BAC=∠ABC=45°,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°﹣15°=30°,∴BD=AD,∴D在AB的垂直平分线上,∵AC=BC,∴C也在AB的垂直平分线上,即直线CD是AB的垂直平分线,∴∠ACD=∠BCD=45°,∴∠CDE=15°+45°=60°,∴∠BDE=∠DBA+∠BAD=60°;∴∠CDE=∠BDE,即DE平分∠BDC.(2)如图,连接MC.∵DC=DM,且∠MDC=60°,∴△MDC是等边三角形,即CM=CD.∠DMC=∠MDC=60°,∵∠ADC+∠MDC=180°,∠DMC+∠EMC=180°,∴∠EMC=∠ADC.又∵CE=CA,∴∠DAC=∠CEM.在△ADC与△EMC中,,∴△ADC≌△EMC(AAS),∴ME=AD=BD.点评:此题主要考查等腰直角三角形,全等三角形的判定与性质,等边三角形的判定与性质的等知识点,难易程度适中,是一道很典型的题目.12.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF=2;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.考点:含30度角的直角三角形;全等三角形的判定与性质;等边三角形的性质.专题:动点型.分析:(1)根据三角形内角和定理求出∠BAC=60°,再根据平角等于180°求出∠FAC=60°,然后求出∠F=30°,根据30°角所对的直角边等于斜边的一半求解即可;(2)根据三角形的任意一个外角等于与它不相邻的两个内角的和利用∠CBD表示出∠ADE=30°+∠CBD,又∠HBE=30°+∠CBD,从而得到∠ADE=∠HBE,然后根据边角边证明△ADE与△HBE全等,根据全等三角形对应边相等可得AE=HE,对应角相等可得∠AED=∠HEB,然后推出∠AEH=∠BED=60°,再根据等边三角形的判定即可证明.解答:(1)解:∵△BDE是等边三角形,∴∠EDB=60°,∵∠ACB=90°,∠ABC=30°,∴∠BAC=180°﹣90°﹣30°=60°,∴FAC=180°﹣60°﹣60°=60°,∴∠F=180°﹣90°﹣60°=30°,∵∠ACB=90°,∴∠ACF=180°﹣90°,∴AF=2AC=2×1=2;(2)证明:∵△BDE是等边三角形,∴BE=BD,∠EDB=∠EBD=60°,在△BCD中,∠ADE+∠EDB=∠CBD+∠C,即∠ADE+60°=∠CBD+90°,∴∠ADE=30°+∠CBD,∵∠HBE+∠ABD=60°,∠CBD+∠ABD=30°,∴∠HBE=30°+∠CBD,∴∠ADE=∠HBE,在△ADE与△HBE中,,∴△ADE≌△HBE(SAS),∴AE=HE,∠AED=∠HEB,∴∠AED+∠DEH=∠DEH+∠HEB,即∠AEH=∠BED=60°,∴△AEH为等边三角形.点评:本题考查了30°角所对的直角边等于斜边的一半的性质,全等三角形的判定与性质,等边三角形的性质与判定,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,(2)中求出∠ADE=∠HBE是解题的关键.13.(2013•抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是DE=BC;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D 逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.考点:全等三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形.分析:(1)由∠ACB=90°,∠A=30°得到∠B=60°,根据直角三角形斜边上中线性质得到DB=DC,则可判断△DCB为等边三角形,由于DE⊥BC,DE=BC;(2)根据旋转的性质得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,则可根据“SAS”可判断△DCP≌△DBF,则CP=BF,利用CP=BC﹣BP,DE=BC可得到BF+BP=DE;(3)与(2)的证明方法一样得到△DCP≌△DBF得到CP=BF,而CP=BC+BP,则BF﹣BP=BC,所以BF﹣BP=DE.解答:解:(1)∵∠ACB=90°,∠A=30°,∴∠B=60°,∵点D是AB的中点,∴DB=DC,∴△DCB为等边三角形,∵DE⊥BC,∴DE=BC;故答案为DE=BC.(2)BF+BP=DE.理由如下:∵线段DP绕点D逆时针旋转60°,得到线段DF,∴∠PDF=60°,DP=DF,而∠CDB=60°,∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,∴∠CDP=∠BDF,在△DCP和△DBF中,∴△DCP≌△DBF(SAS),∴CP=BF,而CP=BC﹣BP,∴BF+BP=BC,∵DE=BC,∴BC=DE,∴BF+BP=DE;(3)如图,与(2)一样可证明△DCP≌△DBF,∴CP=BF,而CP=BC+BP,∴BF﹣BP=BC,∴BF﹣BP=DE.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质以及含30度的直角三角形三边的关系.。

北师大版数学八年级下册 第一章 三角形的证明 达标测试卷(含答案)

北师大版数学八年级下册 第一章 三角形的证明 达标测试卷(含答案)

第一章三角形的证明达标测试卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的)1.下列长度的三条线段能组成直角三角形的是()A.2,3,4 B.3,4,5C.4,6,7 D.5,11,122.在△ABC中,AB=AC,∠A=50°,则∠B的度数是()A.50°B.65°C.80°D.130°3.对于命题“若x2>y2,则x>y”,能说明它是假命题的反例是() A.x=-2,y=-1 B.x=-1,y=-2C.x=2,y=1 D.x=1,y=24.如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.10(第4题)(第5题)5.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加的一个条件是()A.AE=DF B.∠A=∠DC.∠B=∠C D.AB=DC6.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,且AD交BC于点D,DE⊥AB于点E,则下列说法错误的是()A.∠CAD=30°B.AD=BDC.BE=2CD D.CD=ED7.如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,CE平分∠BCA交AB于点E,AD、CE相交于点F,则∠CF A的度数是()A.100°B.105°C.110°D.120°(第7题)(第8题)(第10题)8.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是() A.30°B.35°C.40°D.45°9.已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使P A+PC=BC,则符合要求的作图痕迹是()10.如图,在△ABC中,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F为垂足,连接EF,则下列四个结论:①∠DEF=∠DFE;②AE=AF;③DA平分∠EDF;④AD垂直平分EF.其中结论正确的有()A.1个B.2个C.3个D.4个二、填空题(本题共6小题,每小题3分,共18分)11.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD=________.12.命题“等边三角形是等腰三角形”的逆命题是________________________,该逆命题是______命题(填“真”或“假”).13.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C 向上拉升3 cm到D,则橡皮筋被拉长了________cm.(第13题)(第14题)14.如图,正方形的网格中,网格线的交点称为格点,已知点A,B是两个格点,若C点也是格点,且使△ABC是等腰三角形,则满足条件的点C的个数为________个.15.如图,△ABC中,AB+AC=6,BC的垂直平分线DE交AB于点D,交BC 于点E,连接CD,则△ACD的周长为________.(第15题)(第16题)16.如图,等边三角形ABC的边长为12,AD是BC边上的中线,M是AD上的动点,E是AC边上的一点.若AE=4,则EM+CM的最小值为________.三、解答题(本题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(8分)已知:∠ABC,射线BC上一点D(如图所示).求作:等腰三角形PBD,使线段BD为等腰三角形PBD的底边,点P在∠ABC 的内部,且点P到∠ABC两边的距离相等.(要求:请用直尺、圆规作图,不写作法,但要保留作图痕迹)318.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C 作CF∥AB,CF交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.19.(8分)如图,锐角三角形ABC的两条高BE,CD相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.20.(8分)如图,AB⊥CD于B,CF交AB于E,CE=AD,BE=BD.(1)求证:△ABD≌△CBE;(2)求证:CF⊥AD;(3)当∠C=30°,CE=8时,直接写出线段AE、CF的长度.21.(10分)如图,已知△ABC是边长为6 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1 cm/s,点Q运动的速度是2 cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t s,解答下列问题:5(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由;(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t;若不能,请说明理由.22.(10分)已知,在△ABC中,∠A=90°,AB=AC=4,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,试探究BE和AF之间的数量关系,并说明四边形AEDF的面积是否为定值,若是,请求出;若不是,请说明理由;(2)如果点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.答案一、1.B 2.B 3.A 4.C 5.D 6.C7.C 8.C点拨:∵AB=AC,∠A=30°,∴∠ACB =12×(180°-30°)=75°.∵∠1=∠A+∠AED=145°,∴∠AED=145°-30°=115°.∵a∥b,∴∠AED=∠2+∠ACB.∴∠2=115°-75°=40°.9.D10.D二、11.110°12.等腰三角形是等边三角形;假13.214.815.616.4 7点拨:如图,在AB上截取AE′=AE=4,连接CE′,CE′与AD交于点M,连接ME,易知此时EM+CM的值最小,即为线段CE′的长度.过点C 作CF⊥AB,垂足为F.∵△ABC是等边三角形,∴AF=12AB=6,∴CF=AC2-AF2=6 3,E′F=AF-AE′=2,∴CE′=CF2+E′F2=4 7.三、17.解:如图,△PBD为所求作的三角形.18.(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F.∵AD是BC边上的中线,∴BD=CD.∴△BDE≌△CDF(AAS).7(2)解:∵△BDE ≌△CDF ,∴BE =CF =2.∴AB =AE +BE =1+2=3.∵AD ⊥BC ,BD =CD ,∴AC =AB =3.19.(1)证明:∵OB =OC ,∴∠OBC =∠OCB .∵BE ,CD 是两条高,∴∠BDC =∠CEB =90°.又∵BC =CB ,∴△BDC ≌△CEB (AAS).∴∠DBC =∠ECB .∴AB =AC ,即△ABC 是等腰三角形.(2)解:点O 在∠BAC 的平分线上.理由:∵△BDC ≌△CEB ,∴DC =EB .∵OB =OC ,∴OD =OE .又∵∠BDC =∠CEB =90°,∴点O 在∠BAC 的平分线上.20.(1)证明:∵AB ⊥CD ,∴∠CBE =∠ABD =90°.在Rt △CBE 和Rt △ABD 中,⎩⎨⎧CE =AD ,BE =BD ,∴Rt △CBE ≌Rt △ABD (HL),(2)证明:∵Rt △CBE ≌Rt △ABD ,∴∠C =∠A .∵∠AEF =∠CEB ,∴∠AFE =∠CBE =90°,∴CF ⊥AD .(3)解:AE =4 3-4,CF =6+2 3.21.解:(1)当点Q 到达点C 时,PQ 与AB 垂直.理由如下:∵点Q 到达点C 时,BQ =BC =6 cm ,∴t =62=3.∴AP =3 cm.∴BP =AB -AP =3 cm =AP .∴点P 为AB 的中点.∴PQ ⊥AB .(2)能.∵∠B =60°,∴当BP =BQ 时,△BPQ 为等边三角形.9 ∴6-t =2t ,解得t =2.∴当t =2时,△BPQ 是等边三角形.22.解:(1)BE =AF ,四边形AEDF 的面积为定值.理由:如图①所示,连接AD .∵∠BAC =90°,AB =AC ,∴△ABC 为等腰直角三角形,∠EBD =45°.∵点D 为BC 的中点,∴AD =12BC =BD ,∠F AD =45°.∵∠BDE +∠EDA =90°,∠EDA +∠ADF =90°,∴∠BDE =∠ADF .在△BDE 和△ADF 中,⎩⎨⎧∠EBD =∠F AD ,BD =AD ,∠BDE =∠ADF ,∴△BDE ≌△ADF (ASA),∴BE =AF ,S △ADF =S △BDE ,∴S 四边形AEDF =S △ADE +S △ADF =S △ADE +S △BDE =S △ABD =12×12×4×4=4, ∴四边形AEDF 的面积是定值,定值为4.(2)BE =AF ,理由如下:连接AD ,如图②所示.∵∠ABD =∠BAD =45°,∴∠EBD =∠F AD =135°.∵∠EDB +∠BDF =90°,∠BDF +∠FDA =90°,∴∠EDB =∠FDA .在△EDB 和△FDA 中,⎩⎨⎧∠EBD =∠F AD ,BD =AD ,∠EDB =∠FDA ,∴△EDB≌△FDA(ASA),∴BE=AF.。

(基础题)北师大版八年级下册数学第一章 三角形的证明含答案

(基础题)北师大版八年级下册数学第一章 三角形的证明含答案

北师大版八年级下册数学第一章三角形的证明含答案一、单选题(共15题,共计45分)1、如图,菱形的边的垂直平分线交于点,交于点,连接.当时,则()A.15°B.30°C.40°D.50°2、如下图,PQ为Rt△MPN斜边上的高,∠M=45°,则图中等腰三角形的个数是()A.1个B.2个C.3个D.4个3、已知等腰三角形的一边长为,另一边长为,则它周长是()A. B. C. D. 或4、如图,△ABC中,AB=AC,BD=CE,CD=BF,若∠A=50°,则∠EDF=()A.80°B.65°C.50°D.20°5、如图,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,DE⊥AB于点E,连接CE交AD于点H,则图中的等腰三角形有()A.5个B.4个C.3个D.2个6、已知等腰三角形的一个外角等于100,则它的顶角是().A.80°B.20°C.80°或20°D.不能确定7、如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF 的中点,连接PG,PC.若∠ABC=∠BEF=60°,则=()A. B. C. D.8、如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2B.3∠1﹣∠2=180° C.∠1+3∠2=180° D.2∠1+∠2=180°9、在等腰三角形ABC中,∠A=80°.则∠B的度数不可能为()A.20°B.40°C.50°D.80°10、如图,在△ABC中,AB=AC,D是BC的中点,连接AD,E在BC的延长线上,连接AE,∠E=2∠CAD,下列结论:①AD⊥BC;②∠E=∠BAC;③CE=2CD;④AE=BE.其中正确的个数是()A.1个B.2个C.3个D.4个11、已知等腰三角形的两边长分别为2和5,则该等腰三角形的周长为()A.7B.9C.9或12D.1212、等腰三角形一边长是3cm,另一边长是8cm,则等腰三角形的周长是()A.14cm或19cmB.19cmC.13cmD.以上都不对13、如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°14、“三等分角”大约是在公元前五世纪由古希腊人提出来的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B CD第6题 第7题 第8题 第13题 八年级数学《三角形的证明》试卷班级 姓名 得分一、选择题(每题3分,共24分)1. 到三角形三个顶点的距离相等的点是三角形( )的交点.A. 三个内角平分线B. 三边垂直平分线C. 三条中线D. 三条高 2.已知△ABC 的三边长分别是6cm 、8cm 、10cm ,则△ABC 的面积 是( )A.24cm 2B.30cm 2C.40cm 2D.48cm 23.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是( ) A .7㎝ B .9㎝ C .12㎝或者9㎝ D .12㎝ 4. 面积相等的两个三角形( )A.必定全等B.必定不全等C.不一定全等D.以上答案都不对 5.一个等腰三角形的顶角是40°,则它的底角是( )A .40°B .50°C .60°D .70°6. 如图,在△ABC 和△DEF 中,已知AC=DF ,BC=EF ,要使△ABC ≌△DEF ,还需要的条件是( )A.∠A=∠DB.∠ACB=∠FC.∠B=∠DEFD.∠ACB=∠D7.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD , 则∠A 的度数为( )A.30°B.36°C.45°D.70° 8.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC ,其中正确结论的个数是( ) A.1个 B.2个 C.3个 D.4个二、填空题(每题3分,共24分)9.“等边对等角”的逆命题是______________________________.10.已知⊿ABC 中,∠A = 090,角平分线BE 、CF 交于点O ,则∠BOC = . 11.如果等腰三角形的有一个角是80°,那么顶角是 度.12.等腰三角形一腰上的高与另一腰的夹角为300,腰长为6,则其底边上的高是 。

13.如图,△ABC 中,∠C=90°,∠A =30° ,BD 平分∠ABC 交AC 于D ,若CD =2cm ,则AC= . 14.Rt ⊿ABC 中,∠C=90º,∠B=30º,则AC 与AB 两边的关系是 ,15.在△ABC 中,边AB 、BC 、AC 的垂直平分线相交于P ,则PA 、PB 、PC 的大小关系是 . 16.在△ABC 中,∠A=40°,AB=AC ,AB 的垂直平分线交AC 与D ,则∠DBC 的度数为 .D EC B A 三.基础题(每题6分,共36分)17.如图,在△ABD 和△ACD 中,已知AB =AC ,∠B =∠C ,求证:AD 是∠BAC的平分线.18.如图,∠A=∠D=90°,AC=BD.求证:OB=OC ;19.如下图,CD ⊥AD ,CB ⊥AB ,AB =AD ,求证:CD=CB .20.如图,DC ⊥CA ,EA ⊥CA , CD=AB ,CB=AE .求证:△BCD ≌△EAB .DA B C 21.如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD. 求证:D 在∠BAC 的平分线上.22.如图,ABC ∆中,DE A AC AB ,, 50=∠=是腰AB 的垂直平分线,求DBC ∠的度数。

四、提高题(每题8分,共16分) 23.作图题:在下图△ABC 所在平面中,(1)作距△ABC 三边距离相等的点P ; (2)作距△ABC 三个顶点距离相等的点Q.24. 如图,△ABC 中,∠B=90°,AB=BC ,AD 是△ABC 的角平分线,若BD=1,求DC 的长.五.综合题(每题10分,共20分)25.如图,已知: D 是△ABC 中BC 边上一点,EB=EC ,∠ABE=∠ACE ,求证:∠BAE=∠CAE. 证明:在△AEB 和△AEC 中, ⎪⎩⎪⎨⎧=∠=∠=AE AE ACE ABE EC EB ∴△AEB ≌△AEC(第一步) ∴∠BAE=∠CAE(第二步)问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程;26.如图,在△ABD 和△ACE 中,有四个等式:①AB=AC ②AD=AE ③∠1=∠2 ④BD=CE . 以其中..三个条件为已知,填入已知栏中,一个为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程。

已知: . 求证: .第一章检测题一、填空1.力是的作用。

力不能脱离_______而存在,物体间力的作用是_____的。

2.力的作用效果与力的、和有关,称为力的三要素。

3.用手拍打课桌,手是物体,课桌是物体;同时手感到疼痛,说明手受到了对它施加的力的作用,由此说明力的作用是的。

4.暴风雨来临前,狂风把小树吹弯了腰,把落叶吹得漫天飞舞。

从力的作用效果分析,风力使小树发生,使落叶的发生了改变。

5.如图所示,用扳手拧螺母时,按通常经验,沿________(“顺时针或逆时针”)方向可使螺母拧紧,沿_______方向可使螺母拧松,这表明力的作用效果与力的________有关;若用同样大的力拧螺母,则把力作用到_____点更容易将螺母拧紧或拧开,这表明力的作用效果与力的_______有关.6.物体运动状态变化反映在:①物体由静止变或由运动变;②物体运动由快变或由慢变;③物体运动改变。

7.手提水桶,施力物体是,受力物体是;手也会感到疼是因为对施力的结果。

这一现象表明。

8.风吹草动,施力物体是,受力物体是。

9.宇宙间任何两个物体,大到天体,小到灰尘之间,都存在互相_________________的力,这就是_____.10.___________________叫做重力,地球上的所有物体,都受_____.11.已知物体的质量,计算物体受到的重力的公式是_____,其中G表示物体的 ______,它的单位要用_________________,m表示物体的 _____ 它的单位要用_____,公式表示的物理意义是_______.12.g=_____________________,它的物理意义是___________________________.13.重2 N的物体放在手掌中,对物体施力的物体有_____________和_________________,手向上运动突然停止,物体被竖直上抛,此时物体受到_____个力的作用,施力物体为______.(空气阻力不计)14.一物体在月球受重力等于地球上所受重力的1/6,将12 kg的物体放到月球上,其质量是 _____ kg,重力是 ______________N.15.建筑房屋时,用来检查墙壁是否竖直的重锤线是根据_______ 制成的.16.质量是10 kg的木块放在斜面上,则它受到的重力大小是____ N,方向 _________,施17.起重机要吊起100 kg 的钢件,使其向上以1 m/s的速度做匀速直线运动,钢丝绳受到的拉力是______,若让物体以2 m/s的速度匀速上升,钢丝绳受到的拉力是_____.18.重5 N的电灯,由灯绳吊着在竖直方向静止不动,电灯受_____力和 _____力作用,施力物体分别是_________________和 _____,这两个力的关系是______ .二.看图做答题:19.如图(A)所示表示:是足球运动员开出角球,队友上来冲顶,球被对方守门员鱼跃接住。

三个运动员对球都有力的作用,这些力的作用效果是使足球__________________发生变化。

如图(B)所示,力可以使物体发生______________。

20.如图所示,(a)(b)表示力的作用效果。

其中(a)主要表示了力可以使物体发生;(b)主要表示了力可以使物体发生改变。

21. 如图3所示,让一条薄钢条的一端固定,现分别用不同的力去推它,使它发生如图3中A、B、C、D所示的性变,如果力F1=F3=F4>F2,那么(1)能说明力的作用效果与力的大小有关的图是图和图。

(2)能说明力的作用效果与力的方向有关的图是图和图。

(3)能说明力的作用效果与力的作用点有关的是图和图。

22.在下面图(a)、(b)、(c)所示的三个情景中,其中图主要表示力能使物体的运动状态发生改变[选填“(a)”、或“(b)”];图主要表示力能使物体发生形变;而图(c)则表示力的作用效果还与力的有关。

三、作图和实验题23.如图12—1所示,斜面上物体的质量是5 kg,画出物体受到的重力.图12—124. 如图12—2所示,物体的重力是20 N,试画出物体所受的力.图12—2五、计算题25.质量是500 g的物体,能否用测量范围是0~5 N的弹簧秤测量其重力?26、月球对它表面物体的引力大约是地球对它表面物体引力的1/6,若物体所受的重力为1200N,球它在月球表面受到的引力是多大?求该物体的质量是多大?证明:物理八年级下册第一章《力》测试卷一、单项选择题1.在发生力的作用时,以下说法正确的是()A.可以没有物体,既没有施力物体,也没有受力物体B.只要有受力物体就行,可以没有施力物体C.只要存在施力物体就行,有没有受力物体是没有关系的D.一定既有受力物体,又有施力物体,离开物体谈不上作用,就没有力了2.托起下列哪一个物体所用的力最接近1N()A.一袋方便面 B.一张学生用板凳C.一枚大头针 D.一块砖3.下列过程中,有一个力的作用效果与其它三个不同类,它是()A.把橡皮泥捏成不同造型 B.进站的火车受阻力缓缓停下C.苹果受重力竖直下落 D.用力把铅球推出4.关于力的认识,下列说法中错误的是()A.力是物体对物体的作用 B.力能使物体发生形变或改变物体的运动状态C.物体间力的作用是相互的 D.只有相互接触的物体才会产生力的作用5.游泳运动员用手和脚向后推水,于是运动员就前进。

下面说法正确的是()A.运动员是施力物体,不是受力物体B.手和脚对水有一个推力,方向向后,则水对手和脚就有一个方向向前的推力C.水只是受力物体,不是施力物体D.手和脚对水的推力和水对手和脚的力相互抵消6.“以卵击石”,石头没有损伤而鸡蛋破了,其中的道理是()A.鸡蛋主动碰的石头B.鸡蛋受到的力比石头受到的力大C.鸡蛋受到力的作用,石头没受到力的作用D.两者受到的力大小相等只是鸡蛋易碎7.关于形变,下列说法正确的是()A.物体发生形变,一定受到力的作用B.物体发生的形变只有弹性形变C.用力压桌子,桌子是坚硬物体,不会发生形变D.橡皮泥受到挤压后变形,它的弹性很好8.关于弹力,下列说法正确的是()A.不相互接触的物体之间也会产生弹力 B.拉力不属于弹力C.压缩的弹簧能产生弹力 D.物体在发生形变时产生的力叫做弹力9.对弹簧测力计的认识,下列说法正确的是()A.弹簧测力计的制作原理是弹簧的长度与它受到的拉力成正比B.弹簧测力计上的最大刻度值就是它的最大测量值C.弹簧测力计的准确程度可以从刻度盘上所标的最小数值看出来D.以上说法都不对10.小明对弹力的认识有以下几种观点,其中正确的是()A.弹力仅仅是形变的物体要恢复原状时,对跟它接触的物体有吸引力B.在弹性限度以内,弹簧的长度越长,产生的弹力就越大C.锻炼身体用的弹簧拉力器挂满弹簧后,拉得越长,产生的弹力越小11.仔细观察每个弹簧测力计可知,弹簧测力计的刻度都是均匀的。

相关文档
最新文档