函数描述了自然界中量的依存关系

合集下载

高考数学第二轮复习专题一函数与导数

高考数学第二轮复习专题一函数与导数

公开课教案 【专题一】函数[第五讲] 函数与导数 [教授人] 冯青松 [时间] 2011-4-18[地点] 宿松县隘口中学307教室【考情分析】1.函数是高考数学的重点内容之一,函数的观点和思想方法是高中数学的一条重要的主线,选择、填空、解答三种题型每年都有,函数题的身影频现,而且常考常新.以基本函数为背景的综合题和应用题是近几年的高考命题的新趋势.函数的图象也是高考命题的热点之一.近几年来考查导数的综合题基本已经定位到压轴题的位置了.2.对于函数与导数部分考查的重点为:导数的基本公式,复合函数的求导法则;导数的几何意义;可导函数的单调性与其导数的关系,利用导数来解决一些函数的极值与最值问题;函数、方程和不等式的综合问题;应用函数知识解决一些实际问题等。

[知识梳理 ]1. 导数的定义:0000000000()()()()(2)()()limlim lim2x x x x f x x f x f x f x f x x f x f x x x x x∆→→∆→+∆--+∆-'===∆-∆ 2. 导数的几何意义:(1)函数()y f x =在点0x 处的导数0()f x ',就是曲线()y f x =在点00(,)P x y 处的切线的斜率;(2)函数()s s t =在点0t 处的导数0()S t ',就是物体的运动方程()s s t =在时刻0t 时的瞬时速度; 3.要熟记求导公式、导数的运算法则、复合函数的导数等。

4.求函数单调区间的步骤:1)、确定f(x)的定义域,2)、求导数y ′,3)、令y ′>0(y ′<0),解出相应的x 的范围。

当y ′>0时,f(x)在相应区间上是增函数;当y ′<0时,f(x)在相应区间上是减函数5.求极值常按如下步骤:1) 确定函数的定义域; 2) 求方程/y =0的根3)通过列表法, 检查在可能极值点的左右两侧的符号,确定极值点。

数学思想方法在教学中的实施

数学思想方法在教学中的实施

数学思想方法在教学中的实施[摘要]数学思想方法是形成学生的良好认识结构的纽带,是由知识转化为能力的桥梁,是成优良的思维素质的关键,对数学教学有着重要的指导作用。

[关键词]数学思想方法;教学;灵魂;策略数学科学的内容,包括数学知识和蕴涵于知识中的思想方法两个组成部分。

在教材中,按逻辑体系编排的知识是数学学科的外在形式,也是教师教和学生学的主要依据;蕴含于知识的发生、发展和应用过程中的思想方法是数学发展的内在动力。

数学思想方法是形成学生的良好认识结构的纽带,是由知识转化为能力的桥梁,是形成优良的思维素质的关键,对,数学教学有着重要的指导作用。

一、数学思想方法简述数学中的数学思想方法蕴涵于各类知识中,是知识转化为能力的桥梁。

主要有数形结合的思想,函数与方程的思想,分类讨论的思想,等价转换的思想等。

这些重要的思想方法,在教学的各个阶段都起着重要的作用。

突出这些主要的数学思想,相当于抓住了数学知识的精髓。

1.数形结合的思想数形结合的思想就是“形”中“觅”数,“数”中“思”形,其实质是将抽象的数学语言和直观的图形结合起来,使抽象思维和形象思维结合起来,通过对图形的处理,发挥直观对抽象的支柱作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观。

根据解决问题的需要,可以把数量关系的问题转化为图形的性质问题讨论,或者把图形的性质问题转化为数量关系的问题来研究。

在代数中,正式借助数形结合的载体——数轴、坐标系,介绍了数与点,数对与点的对应关系,一元一次不等式组,绝对值不等式的解法,增函数,减函数的概念大大减少了难度。

在几何中,应用不等式、函数、方程等进行分析论证,降低了纯几何形式的论证的难度。

数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域、最值问题中,在求复数和三角函数解题中,运用数形结思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。

这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野。

高中一年级函数知识点总结

高中一年级函数知识点总结

高中一年级函数知识点总结函数是数学中重要的概念,它在数学和其它科学领域中都有广泛的应用。

在高中一年级,学生将会深入学习函数的定义、性质、图像和应用等知识,为进一步学习数学打下坚实的基础。

本文将对高中一年级函数的知识点进行总结,帮助学生更好地掌握这一重要内容。

一、函数的概念函数是数学中一个非常重要的概念,它是一种特殊的关系。

在数学中,函数用来描述自变量和因变量之间的依赖关系,即对于每一个自变量,都有且只有一个对应的因变量与之对应。

简单来说,函数就是一种映射关系,它把一个集合中的每一个元素都对应到另一个集合中的唯一元素。

在函数的定义中,自变量和因变量是其中的两个关键概念。

自变量是输入到函数中的数,它的取值范围被称为定义域;而因变量则是函数根据自变量的取值计算得出的数,它的取值范围被称为值域。

函数通常用一个字母来表示,如y=f(x),其中y表示因变量,x表示自变量,而f(x)则表示函数。

二、函数的表示方法在高中一年级,学生将会学习到函数的多种表示方法,包括显式表达式、隐式表达式、参数方程、函数图像等。

其中,显式表达式是最为常见的一种表示方法,它通过一个公式来表示函数的计算规则。

比如,y=x^2就是一个显式的函数表达式,它表示y是x的平方。

除了显式表达式之外,函数还可以通过隐式表达式来表示,比如x^2+y^2=1就是一个隐式的函数表达式。

此外,还有参数方程表示法,即将自变量和因变量都表示为另外一个变量的函数。

最后,函数还可以通过函数图像来展示,学生需要学会如何根据函数的计算规则来绘制函数的图像。

三、函数的性质函数具有多种性质,其中包括单调性、奇偶性、周期性、极值等。

在高中一年级,学生将会学习到这些函数性质的概念和应用。

单调性是指函数在定义域内的增减性质。

若函数的导数恒大于0或者恒小于0,则称该函数在定义域内是单调递增或者单调递减的。

奇偶性是指函数的对称性质。

若对于任意x∈D,都有f(–x)=f(x) 成立,则称该函数为偶函数;若对于任意x∈D,都有f(–x)=–f(x) 成立,则称该函数为奇函数。

高考数学总复习第一讲:函数与方程

高考数学总复习第一讲:函数与方程

高考数学总复习第一讲:函数与方程函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律.函数思想的实质是剔除问题的非数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.在解决某些数字问题时,先设定一些未知数,然后把它们当作数,根据题设本身各量间的制约,列出等式,所设未知数沟通了变量之间的关系,这就是方程的思想.函数与方程是两个不同的概念,但它们之间有着密切的联系,一个函数假设有解析表达式,那么这个表达式就可看成是一个方程.一个二元方程,两个变量存在着对应关系,如果这个对应关系是函数,那么这个方程可以看成是一个函数,一个一元方程,它的两端可以分别看成函数,方程的解即为两个函数图象交点的横坐标,因此,许多有关方程的问题可以用函数的方法解决;反之,许多有关函数的问题那么可以用方程的方法解决.总之,在复习中要注意领悟蕴含在知识和解题过程中函数和方程的思想,用它来指导解题.在解题中,同时要注意从不同的角度去观察探索,寻求多种方法,从而得到最正确解题方案.一、例题分析例1.F(x)=xα-xβ在x∈(0,1)时函数值为正数,试比拟α,β的大小.分析:一般情况下,F〔x〕可以看成两个幂函数的差.函数值为正数,即f1(x)=xα的图象在x∈(0,1)上位于f2(x)=xβ的图象的上方,这时为了判断幂指数α,β的大小,就需要讨论α,β的值在〔1,+∞〕上,或是在〔0,1〕上,或是在〔0,1〕内的常数,于是F〔x〕成为两个同底数指数函数之差,由于指数函数y=a t(0<α<1)是减函数,又由于xα-xβ>0,所以得α<β.例2.0<a<1,试比拟的大小.分析:为比拟aα与(aα) α的大小,将它们看成指数相同的两个幂,由于幂函数在区间[0,+∞]上是增函数,因此只须比拟底数a与aα的大小,由于指数函数y=a x(0<a<1)为减函数,且1>a,所以a<aα,从而aα<(aα) α.比拟aα与(aα) α的大小,也可以将它们看成底数相同〔都是aα〕的两个幂,于是可以利用指数函数是减函数,由于1>a,得到aα<(aα) α.由于a<aα,函数y=a x(0<a<1)是减函数,因此aα>(aα) α.综上, .解以上两个例题的关键都在于适当地选取某一个函数,函数选得恰当,解决问题简单.例3.关于x的方程有实根,且根大于3,求实数a的范围.分析:先将原方程化简为a x=3,但要注意0<x<3且x≠1.现将a x看成以a为底的指数函数,考虑底数a为何值时,函数值为3.如图〔1〕,过〔3,3〕点的指数函数的底,现要求0<x<3时,a x=3,所以,又由于x≠1,在图〔1〕中,过〔1,3〕点的指数函数的底a=3,所以.假设将a x=3变形为,令,现研究指数函数a=3t,由0<x<1且x≠1,得,如图〔2〕,很容易得到:.通过本例,说明有些问题可借助函数来解决,函数选择得当,解决就便利.例4.函数f(x)是定义在实数集上的周期函数,且是偶函数,当x∈[2,3]时,f(x)=x,那么当x∈[-2,0]时,f(x)的解析式是〔〕.〔A〕f(x)=x+4 〔B〕f(x)=2-x〔C〕f(x)=3-|x+1| 〔D〕f(x)=3+|x+1|解法一、∵f(-2)=f(2)=2 f(-1)=f(3)=3,∴只有〔A〕、〔C〕可能正确.又∵f(0)=f(2)=2,∴〔A〕错,〔C〕对,选〔C〕.解法二、依题意,在区间[2,3]上,函数的图象是线段AB, ∵函数周期是2, ∴线段AB左移两个单位得[0,1]上的图象线段CD;再左移两个单位得[–2,1]上的图象线段EF .∵函数是偶函数, ∴把线段CD沿y轴翻折到左边,得[–1,0]上的图象线段FC.于是由直线的点斜式方程,得函数在[–2,0]上的解析式:即由于x∈[-2,-1]时,x+1≤0,x∈(-1,0)时,x+1>0, 所以y=3-|x+1|, x∈[-2,0].解法三、当x∈[-2,-1]时,x+4∈[2,3],∵函数周期是2,∴f(x+4)=f(x).而f(x+4)=x+4, ∴x∈[-2,-1]时,f(x)=x+4=3+(x+1).当x∈[-1,0]时,-x∈[0,1], 且-x+2∈[2,3].∵函数是偶函数,周期又是2,∴ ,于是在[–2,0]上, .由于x∈[-2,-1]时,x+1≤0,x∈(-1,0)时,x+1>0, 根据绝对值定义有x∈[-2,0]时,f(x)=3-|x+1|.此题应抓住“偶函数〞“周期性〞这两个概念的实质去解决问题.例5.y=log a(2-ax)在[0,1]上是x的减函数,那么a的取值范围是〔〕.〔A〕〔0,1〕〔B〕〔1,2〕〔C〕〔0,2〕〔D〕[2,+∞]分析:设t=2-ax,那么y=log a t, 因此,函数是上面这两个函数的复合函数,其增减性要考查这两个函数的单调性,另外,还要考虑零和负数无对数以及参数a对底数和真数的制约作用.解法一、由于a≠1,所以〔C〕是错误的.又a=2时,真数为2–2x,于是x≠1,这和矛盾,所以〔D〕是错的.当0<a<1时,t=2-ax是减函数,而y=log a t也是减函数, 故y=log a(2-ax)是x的增函数,所以〔A〕是错的.于是应选〔B〕.解法二、设t=2-ax,y=log a t 由于a>0,所以t=2-ax是x的减函数, 因此,只有当a>1,y=log a t是增函数时,y=log a(2-ax)在[0,1]上才是减函数;又x=1时,y=log a(2-a), 依题意,此时,函数有定义,故2–a>0 综上可知:1<a<2, 故应选〔B〕.例6. ,函数y=g(x)的图象与函数y=f-1(x+1)的图象关于y’=x对称,那么g(5)=_____________-解法一、由去分母,得 ,解出x,得 , 故 ,于是 , 设 ,去分母得, ,解出x,得 ,∴的反函数.∴.解法二、由 ,那么 , ∴ ,∴.即的反函数为 ,根据:∴.解法三、如图,f(x)和f-1(x)互为反函数,当f-1(x)的图象沿x轴负方向平移一个单位时,做为“镜面〞的另一侧的“象〞f(x)的图象一定向下平移1个单位,因此f-1(x+1)的图象与f(x)-1的图象关于y=x对称.故f-1(x+1)的反函数是g(x)=f(x)-1,∴.本解法从图象的运动变化中,探求出f-1(x+1)的反函数,表达了数形结合的优势出二、稳固练习(1)函数在区间上的最大值为1,求实数a的值.〔1〕解:f(x)在区间上最大值可能在端点外取得,也可能在顶点外取得, , ,而顶点横坐标 ,最大值在顶点外取得,故此解舍去.当最大值为f(2)时,f(2)=1, ,顶点在应在区间右端点取得最大值,此解合理.当最大值在顶点处取得时,由 ,解得 ,当,此时,顶点不在区间内,应舍去.综上,.〔2〕函数的定义域是[a,b],值域也是[a,b],求a.b的值.2〕解:y=f(x)的图象如图,分三种情况讨论.当a<b≤0时,f(x)为递增函数,有 ,解得, ,由于b>0,应舍去.当0≤a<b时,f(x)为递减函数,有 ,解得:a=1,b=2.当a<0<b时,f(x)最大值在顶点处取得,故 , ,所以最小值应在a处取得.〔2〕解:y=f(x)的图象如图,分三种情况讨论.当a<b≤0时,f(x)为递增函数,有 ,解得, ,由于b>0,应舍去.当0≤a<b时,f(x)为递减函数,有 ,解得:a=1,b=2.当a<0<b时,f(x)最大值在顶点处取得,故 , ,所以最小值应在a处取得.,解得: ,综上,或〔3〕求函数的最小值.解〔3〕分析:由于对数的底已明确是2,所以只须求的最小值.〔3〕解法一:∵ ,∴x>2.设 ,那么 ,由于该方程有实根,且实根大于2,∴解之,μ≥8.当μ=8时,x=4,故等号能成立.于是log2≥0且x=4时,等号成立,因此的最小值是3.解法二:∵ ,∴x>2设 ,那么 =∴μ≥8且 ,即x=4时,等号成立,∴log2μ≥3且x=4时,等号成立.故的最小值是3.〔4〕a>0,a≠1,试求方程有解时k的取值范围. 4〕解法一:原方程由②可得:③,当k=0时,③无解,原方程无解;当k≠0时,③解为 ,代入①式,.解法二:原方程 ,原方程有解,应方程组,即两曲线有交点,那么ak<-a或0<ak<a(a>0)∴k<-1或0<k<1.〔5〕设函数〔Ⅰ〕解不等式f(x)≤1〔Ⅱ〕求a的取值范围,使f(x)在[0,+∞]上是单调函数.5〕解〔Ⅰ〕,不等式f(x≤1),即由此得:1≤1+ax即ax≥0,其中常数a>0, ∴原不等式即∴当0<a<1时,所给不等式解集为 ,当a≥1时,所给不等式解集为{x|x≥0}.〔Ⅱ〕在区间[0,+∞)上任取x1,x2,使得x1<x2,〔ⅰ〕当a≥1时,∵∴又∴所以,当a≥1时,函数f(x)在区间[0,+∞)上是单调递减函数.〔ⅱ〕当0<a<1时,在[0,+∞)上存在两点满足f(x1)=1,f(x2)=1 ,即f(x1)=f(x2),∴函数f(x)在区间[0,+∞)上不是单调函数.。

高中数学函数论文

高中数学函数论文

高中数学函数论文函数是高中数学第一个比较抽象,难理解的概念之一。

下面店铺给你分享高中数学函数论文,欢迎阅读。

高中数学函数论文篇一【摘要】随着教学内容的推进,许多更为复杂的数学知识渗透到课堂教学中.对于高中阶段的数学教学,函数是引进的一种重要的数学模型.这一模型在其他学科或是我们的日常生活中都有深远的影响,尤为重要的一点,函数的思想贯穿于整个高中数学的始终,是学生学习高中数学的重点之一.因此,本文重点阐述了在进行函数教学时应注意的几个方面,以及如何利用函数的图像去解决问题.【关键词】高中数学;函数;函数图像;解题应用初中阶段是学生接触到函数这一数学思想的时期,此时的函数思想是较为简单,是比较容易理解的.当学生进入高中以后,新的函数概念逐渐增加,内容较为复杂,主要以映射的观点来阐明函数.这就要求学生对自己的知识理解提出更高的要求,深入理解函数的内涵,熟悉并应用之解决问题.还需明确的一点是,函数的思想来源并不抽象,它来源于我们的现实生活.人类社会一直都是运动变化着的,主要是以量的变化为主要的呈现方式,为了解决社会中各个变量间关系的问题,函数的思想应运而生,被人类运用于解决现实生活中的问题.一、进行函数教学时应注意的几个问题函数思想贯穿于整个中学阶段包括初中与高中,并且在整个数学教学过程中具有主线作用.教师的教学应着重这一点.1.初始阶段:兴趣为先,使学生产生学习动机教师应在学习的每个学习阶段把握好侧重点.在学生刚开始接触到函数思想的时候,就应该以学生的学习兴趣为先导.通过日常生活的一些例子和提问的导入方式,调动学生的学习积极性,使学生产生学习动机.与此同时,教师应注意让学生正确把握函数的定义式,抽象概括函数的数学定义.函数关系是两个变量的对应关系,如何阐释得更为具体一些,函数的图像则是函数的直观展示.尤其在直角坐标系中,函数图像就能形象生动地把变量x和y展示出来.2.深入学习阶段:建立模型,使知识具体化随着函数学习的深入,学生不可能长期处于抽象的讨论中,必须佐以重要的实习模型.这些实习模型可以帮助学生理解函数和其他数学知识之间的关系.关于指数函数的单调性这一性质,指数的底数相同,那么值的大小就可通过函数的单调性来判断.但是必须注意的一点是有一些函数的单调性是有区间的,不能一概而论.教师还需多指导学生认识一些具体的函数模型,比如幂函数、对数函数和三角函数等.三角函数在日常生活中运用的范围相当广泛.3.应用阶段:联系生活实际,解决问题由于上文所述,我们了解到,函数并不是凭空捏造,而是随着现实社会生活中的需要而产生的,因此,必然是来源于生活、应用于生活了.比如,我们日常生活中所接触到的很多场景都有函数规律或是函数应用的存在,如机场、酒店等.一个酒店的采购部采购物品包括食物的数量都是有严格规定的,他们是如何界定的呢?他们会根据客流量的多少来确定应采购物品的种类及数量,那么这些变量之间的关系就是一个函数关系.二、利用函数图像解决问题函数的图像犹如砍柴的柴刀一样,是一项非常重要的解决数学问题的工具.数学是一门较为抽象的学科,因此,以图像作为教学辅助,帮助学生们深入了解数学思想是相当科学的.利用函数的图像解答填空、选择题,所用时间较为简短,学生在考试中可尽量使用这种方法.2.利用函数图像解答应用题举例说明有一座抛物线形拱桥(如图),正常水位时桥下河面宽20 m,河面距拱顶4 m.(1)在如图所示的平面直角坐标系中,求出抛物线解析式;(2)为了保证过往船只顺利航行,桥下水面的宽度不得小于18 m.求水面在正常水位基础上涨多少米时,就会影响过往船只.分析根据抛物线在坐标系的特殊位置,本题可以设抛物线的顶点式、交点式或者一般式,求出抛物线解析式,再运用解析式解决实际问题.解首先要画出抛物线的图像(有了直观图像就能够明了解题思路).三、结束语综上所述,数学思想中的函数思想是较为重要的,因此,教师与学生都应当高度重视.教师在仔细梳理教学重点之后,注意结合学生的学习阶段,采用不一样的教学策略,帮助学生更快更好地掌握函数的思想,并且让学生学会利用函数图像去解答不仅是考试中还有生活中的问题,学以致用.高中数学函数论文篇二数学是作为衡量一个人能力的一门重要学科,高中数学是初中数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量、计算和形象思维,而高中数学语言表达抽象,逻辑严密,思维严谨,知识连贯性和系统性强。

中考数学“拉分”版块解题技巧

中考数学“拉分”版块解题技巧

中考数学“拉分”版块解题技巧纵观近五年的数学中考试题,我们不难发现,数学“拉分”的重点都放在高中将继续学习必须的综合问题上。

此类题在中考中往往有要求较全面的特点。

常常以数与形、代数计算与几何证明、相似三角形和四边形的判定与性质、画图分析与列方程求解、勾股定理与函数、圆和三角比相结合的综合性试题。

同时考查学生初中数学中最重要的数学思想方法如数形结合的思想、分类讨论的思想和几何运动变化等数学思想。

此类题融入了动态几何的变和不变,对给定的图形(或其一部分)施行平移、翻折和旋转的位置变化,然后在新的图形中分析有关图形之间的关系。

其特点是:注重考查学生的实验、猜想、证明的探索能力。

此类题还常常会以几个小问题出现,相当于几个台阶,这种恰当的铺垫给了考生较宽的入口,有利于考生正常水平的发挥。

而通过层层设问,拾级而上,逐步深入,能够使一部分优秀学生数学水平得到体现。

中考数学“拉分”的综合题主要有四大板块,为此,笔者为考生介绍以下解题技巧。

一、联系实际问题求解实际问题,其一般程序可分以下几步:1.审题。

仔细阅读题目,弄清题意,理顺关系。

读题时要注意对语言去粗取精,提炼加工,抓住关键的字词句。

2.建模。

选取基本变量,将文字语言抽象概括成数学语言,依据有关定义、公理和数学知识,建立数学模型。

3.解模。

根据数学知识和数学方法,求解数学模型,得到数学问题的结果。

4.检验(回归)。

把数学结果回归到实际问题中去,通过分析、判断、验证得到实际问题的结果,回归时要利用实际意义的条件进行检验取舍,找出正确结果。

初中阶段常用的数学模型,由所建立的模型来分主要归类为列方程(组)解应用题;列不等式(组)解应用题;建立函数的解析式、图像、图表解应用题、利用统计的统计量(平均数、中位数、众数、方差)和一表五图(统计表、扇形图、折线图、条形图、频数直方图、频率直方图)解应用题;建立直角三角形用锐角三角比解应用题;建立几何模型、三角形模型、直角坐标系模型(实际上就是线性规划)解应用题等几种,涵盖了大部分中学数学模型类题型。

中学数学中函数思想方法的研究【开题报告】

中学数学中函数思想方法的研究【开题报告】

开题报告数学与应用数学中学数学中函数思想方法的研究一、综述本课题国内外研究动态, 说明选题的依据和意义1.1 “函数”思想的形成和目前国内外的研究状况函数描述了自然界中量的依存关系, 反映了一个事物随着另一个事物变化而变化的关系和规律. 函数的思想方法就是提取问题的数学特征, 用联系的变化的观点提出数学对象, 抽象其数学特征, 建立函数关系, 并利用函数的性质研究、解决问题的一种数学思想方法.函数是中学数学的一个重要概念, 初中阶段主要学习一次函数、正比例函数、反比例函数和二次函数. 尽管内容不多, 但函数的思想已经有所体现, 仍占据着重要地位. 基础知识是否牢固, 函数的思想是否基本形成, 对高中阶段的进一步学习都有着相当大的影响.函数的思想方法主要包括以下几方面: 运用函数的有关性质解决函数的某些问题; 以运动变化的观点, 分析和研究具体问题中的数量关系, 建立函数关系, 运用函数的知识, 使问题得到解决; 经过适当的数学变化和构造, 使一个非函数的问题转化为函数的形式, 并运用函数的性质来处理这一问题.但是, 一说到函数, 我们就会联系到方程. 接下来, 我就来简述一下方程与函数思想在国内外的研究成果.方程与函数是数学教育的重要内容. 方程在17世纪以前可以说是代数的代名词, 从算术到方程是数学思想方法的一次重大飞跃. 函数的产生为数学注入了活力, 使数学成为研究变化世界的有力工具. 运用方程与函数的观点和方法处理和解决自然和社会中未知数或变[1]量之间的关系问题是一种重要的数学思想方法.函数思想是最基本的数学思想, 它形成于17世纪, 300多年来得到了发挥并有着广泛的应用. 函数思想的本质特征是反映量与量之间的运动变化的关系, 其核心内容是对应关系[2].1.2目前中学生对函数思想的认识现在的中学生, 在学习过程中, 数学学科可以说是既比较重要, 但又对一般学生而言是比较困难的学科. 尤其是在学函数这一块内容的时候. 因为函数这个内容之前也说过, 是比较抽象的, 它是研究运动方面的, 而非静止的. 说起来这函数的内容也不多, 主要包括函数的概念, 定义域值域等有关性质, 还有就是函数图象等等. 可是要真正理解甚至更深一层的掌握它们确实不是件容易的事, 尤其是要真正地理解函数思想了, 他们只会一味地去做题目, 可是有谁会去真的了解函数思想本身的内涵呢. 可以说是很少的. 甚至是有些优等生, 也只是掌握了函数的解题方法, 可是要说到思想方面, 那就比较薄弱了. 所以我们要提倡对函数思想本身的学习与认识, 这样才能真正帮助我们更好地理解与掌握函数方面的内容及其本质. 因此, 在教学中, 教师应注意揭示函数与这内容的内在联系, 引导学生在整个数学[3]课程的学习中不断体会、理解函数思想带来的好处.1.3 函数思想的几个重要问题首先是对于初等函数这一概念, 我们说基本初等函数的类型有: 常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数. 而上述六类函数以及由它们经有限次四则运[4]算与复合而得到的函数, 统称为初等函数.对于求函数定义域的问题, 要注意以下几点: 1、要熟练掌握中学阶段学习的初等函数;2、实际问题建立的函数其定义域还要受实际中具体条件的限制;3、函数的定义域是一个[5]集合, 要用集合的表示法或实数的区间表示.函数图像应用与函数性质的研究是极为重要的. 熟练地应用图像的特征, 对于解题会起到很大的作用, 并对于形数结合, 综合运用知识, 也具有重要的意义, 这就首先要求能作出[6]其图像. 研究函数性质的基本方法是作出函数图像、借助直观、观察归纳、和对解析式[7]进行讨论, 进而证明观察所得出的结论.1.4进行函数思想与方法研究的现实意义首先, 不得不承认函数这一块内容在中学数学中的重要性与所占比重是多么的大. 函数可以说是中学数学中最重要的组成部分之一. 我觉得函数可以连接几何学与代数学的有关知识. 因为有的时候几何的有关知识可以借助函数来理解, 而几何学的有关题目, 可以通过建立函数, 并且往往这样做会更使我们印象深刻. 还有, 函数这块内容是始终贯穿整个数学学习的, 从最简单的一次函数, 二次函数, 到后面的三角函数、指数函数、对数函数等等, 再到幂函数等更为复杂的函数类型. 还有一些是复合的函数研究, 这些内容都是紧紧贯穿整个中学阶段的数学学习的. 函数这一块内容在中学数学中所占的比重, 以及它在具体考试中所涉及到的内容与比例那就更为的明显了. 函数有几个重要的知识点与考点.本文主要研究的有三块内容, 包括对中学阶段的有关函数知识的论述与讨论, 函数思想及其应用, 包括函数思想与数形结合思想、分类讨论思想、方程思想等的关系. 还有就]8[是对函数思想在整个中学阶段的教学过程中所应该注意的问题与所应该遵循的原则等情况加以阐述.对于有关函数知识层面上的讨论主要是着重挑选几个比较有深度, 值得探讨的问题. 对于第二块内容本文主要会结合具体的例子来进行讨论, 本文会着重对数形结合思想加以论述, 这就要求对函数图像进行分析讨论. 尤其是对复合函数图像的讨论, 更是重要. 比如说, , 等函数图像的比较. 在这块当中, 本文还讨论了有关抽象函数的问sin x 3sin x 5sin x [9]题, 因为它理解起来较难. 因为它没有给出具体的表达式, 但规定了若干逻辑规则. 第三]10[块内容的论述本文主要讨论函数的教学的注意点与原则等等. 比如说: 从三个维度引导学生理解函数的本质; 重视函数模型的作用, 加强数学应用意识等等.可以给学生介绍函数思[3]想发展的历程. 分为函数概念的萌芽时期; 函数概念的解析定义时期; 函数概念的对应定义时期; 函数概念的集合定义时期加以讨论.[11]二、研究的基本内容, 拟解决的主要问题研究的基本内容:中学数学中函数思想与方法的研究解决的主要问题: 1函数思想与方法研究的现实意义;2函数思想与方法研究的具体内容;3函数思想与方法研究的具体过程.三、研究步骤、方法及措施研究步骤: 1. 查阅相关资料, 做好笔记;2. 仔细阅读研究文献资料;3. 在老师指导下, 确定整个论文的思路, 列出论文提纲, 撰写开题报告;4. 翻译英文资料, 修改英文翻译, 撰写文献综述;5. 开题报告通过后, 撰写毕业论文;6. 上交论文初稿;7. 反复修改论文;8. 论文定稿.方法、措施: 通过到图书馆、上网等查阅收集资料, 上万方数据库查找文章, 参考相关内.在老师指导下,与同组同学研究讨论,用文献综合的方法来解决问题.四、参考文献[1] 顾泠沅. 作为教育任务的数学思想与方法[M].上海: 上海教育出版社, 2009, 9.[2] 曾超益, 袁德辉, 赵坤. 新课程中函数思想及其教学思考[J]. 韩山师范学院学报. 200829(03) 91~95.[3] 夏德奇. 中职学生函数思想的培养[J]. 湖南农业大学学报(社会科学版), 2008(7)73~74.[4] 叶景梅. 初等代数解题方法指导[M]. 宁夏: 宁夏人民出版社, 1984, 7.[5] 汪景瑛, 郝德志. 数学解题思路.方法.技巧和策略答问[M]. 北京: 地震出版社, 1998, 8.[6] 蔡道法. 中学数学解题方法与技巧[M]. 安徽: 安徽教育出版社, 1983, 10.[7] 邓禹绩, 肖钰, 薛川坪等. 初等数学解题思路[M].第1版. 北京: 海洋出版社, 1983, 9.[8] 普映娟. 函数思想与其它数学思想的关系研究[J]. 保山师专学报. 2009 28(5)14~15.[9] L. SHORT. Function Sketching [J]. TEACHING MATHEMATICS AND ITSAPPLICATIONS. 1992 11(2): 88~91.[10] 陈斌. 抽象函数问题的求解策略 [J]. 中学生理科月刊. 2005(1)19~20.[11] 韦程东, 伊长明. 函数教学中渗透函数思想史的探索与实践[J]. 高教论坛. 2005 12(6)109~112.。

初中数学中的数学思想

初中数学中的数学思想

初中数学中的数学思想作者:迟佰君来源:《黑河教育》2011年第09期所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。

初中数学中涉及的数学思想有:数形结合思想、转化思想、分类思想、类比思想、函数与方程思想、统计思想。

掌握数学思想,就是掌握数学的精髓。

一、数形结合思想数学是研究现实世界的数量关系和空间形式的科学,数和形本来就具有密切的关系。

我国著名数学家华罗庚先生说:“数无形时不直观,形无数时难入微。

”这句话形象简练地指出了数和形的互相依赖、相互制约的辩证关系。

因此,我们在研究问题的数量关系时,常常联系到图形,在研究图形时,常常将其数量化,使数量关系和对应图形结合起来,这就是数形结合的思想。

如:学习有理数部分时充分利用数轴,列方程解应用题时利用直线形、圆形示意图,探求一元一次不等式(组)的解集时在数轴上表示……可以说数形结合的思想贯穿于初中数学的始终。

二、转化思想客观事物总是在不断变化,并在一定条件下进行转化。

事物之间的转化,反映在数学上就是转化思想,又称化归思想。

转化思想是数学思想的核心,其内涵十分丰富:有复杂向简单的转化、抽象向直观的转化、多元向一元的转化、高次向低次的转化、未知向已知的转化、一般向特殊的转化等等。

转化思想在数学中无时不有,无处不在。

就其内容而言,有运算的转化,如加法与减法的转化、乘法与除法的转化;有式的转化,如无理式向有理式的转化、分式向整式的转化、函数式向方程式的转化;还有方法的转化,等式不等式形态的转化,问题表达方式的转化,解题过程中的一系列转化等等。

转化思想贯穿于解题过程的始终。

它是最重要的应用最广的数字思想。

三、分类思想当一个数学问题难以解决时,有时可按某一标准把这个问题分成若干种不同的情况,然后对每种情况分别进行讨论,这种解决数学问题的思想就是分类思想。

分类思想是初中阶段的重要思想方法之一。

运用分类思想处理数学问题时要注意两点:一是分类标准相同;二是不重复、不遗漏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关
系的一种动态刻画。

函数知识揭示了在运动与变化过程中,量与量之间存在的一般性规律。

函数思想泛指利用函数知识分析、解决问题的基本思想方法,是一种考虑运动变化、相依关系,以一种状态确定地刻划另一种状态过渡到研究变化过程的思想方法,是函数概念、性质等知识更高层次的提炼和概括。

函数思想的实质是运用运动变化、相互联系、相互制约的观点去处理有关的数学问题。

数学家张景中指出:“小学生学的数学很初等,很简单。

尽管简单,里面却蕴涵着一些深刻的数学思想。

最重要的,首推函数思想。

"小学阶段教师要在教学中渗透函数思想。

何所谓渗透呢?即教者有心而学者无意。

我们要渗透什么样的函数思想呢?认识到这个世界是普遍联系的,各个量之间总是有互相依存的关系,即“普遍联系”的观点;于“变化”中寻求“规律(关系式)”,即“模式化”思想;于“规律”中追求“有序”“结构化”“对称”等思想;感悟“变化”有快有慢,有时变化的速度是固定的,有时是变动的;根据“规律”判断发展趋势,预测未来,并把握未来,即“预测”的思想。

数学教材为我们设置了多个“点”,教师可以抓住这些“点”有意识的渗透函数思想。

函数是研究变量和变量之间关系的重要的数学模型,是中学阶段数学学习的一条主线。

使小学生经历一些函数的雏形,丰富他们对函数的感受,有助于小学生数学学习的深刻性,有助于中小学数学教学的衔接。

本次研究基于对当前小学数学教师对函数认识的现状的调查所暴露出的一些问题,试图通过澄清函数的概念、什么是函数思想后点明在小学数学教学中应如何渗透函数思想,帮助教师更
好地服务于教学。

在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。

例如,三位数乘两位数教学中,对于积的变化规律,一节的教学,引导学生发现因数的变化引起的积的变化的规律等,都较好的渗透了函数的思想,其目的都在于帮助学生形成初步的函数概念。

所以我要为了学生们能在初高中更好的理解与应用函数思想,在以后的教学中要研究适合学生年龄特征的教学设计。

以达到教师在小学教学中有意识、有目的、有计划的渗透函数思想
对关系的体验体现在对“一对一”、“多对一”、“一个确定一个”,“多个确
定一个”。

例如:折线统计图体会一一对应。

四舍五入体会一个对应多个等。

函数反映的是变量之间的关系,所以必须借助数字以外的符号来表示。

常用的有:语言描述、表格、图像和解析式四种方法。

相关文档
最新文档