数列之 等差数列之 前n项和之 二次函数形式
等差数列的前n项和

等差数列的前n项和1.理解并掌握等差数列的前n项和公式及其推导过程,体会等差数列的前n项和公式与二次函数的关系.(重点)2.熟练掌握等差数列的五个基本量a1,d,n,a n,S n之间的联系,能够由其中的任意三个求出其余的两个.(重点)[基础·初探]教材整理等差数列的前n项和1.等差数列的前n项和公式已知量首项、末项与项数首项、公差与项数求和公式S n=n a1+a n2S n=na1+n n-12d2.等差数列前n项和公式的函数特点S n=na1+n n-12d=d2n2+⎝⎛⎭⎪⎫a1-d2n.d≠0时,S n是关于n的二次函数,且无常数项.判断(正确的打“√”,错误的打“×”)(1)公差为零的数列不能应用等差数列的前n项和公式.()(2)数列{n2}可以用等差数列的前n项和公式求其前n项和S n.()(3)若数列{a n}的前n项和为S n=an2+bn,则{a n}是等差数列.()【解析】(1)任何等差数列都能应用等差数列的前n项和公式.(2)数列{n2}不是等差数列,故不能用等差数列的前n项和公式.(3)当公差不为0时,等差数列的前n项和是关于n的二次函数(常数项为0).【答案】(1)×(2)×(3)√[小组合作型]与S n 有关的基本量的计算(1)已知等差数列{a n }中,a 1=32,d =-12,S n =-15,求n 和a n ; (2)已知等差数列{a n }中,S 5=24,求a 2+a 4;(3)数列{a n }是等差数列,a 1=1,a n =-512,S n =-1 022,求公差d ; (4)已知等差数列{a n }中,a 2+a 5=19,S 5=40,求a 10.【精彩点拨】 运用方程的思想,根据已知条件建立方程或方程组求解,另外解题时要注意整体代换.【尝试解答】 (1)S n =n ·32+n n -12·⎝ ⎛⎭⎪⎫-12=-15,整理得n 2-7n -60=0, 解得n =12或n =-5(舍去), 所以a 12=32+(12-1)×⎝ ⎛⎭⎪⎫-12=-4.(2)设等差数列的首项为a 1,公差为d , 则S 5=5a 1+5×5-12d =24, 即5a 1+10d =24,所以a 1+2d =245, 所以a 2+a 4=2(a 1+2d )=2×245=485. (3)因为a n =a 1+(n -1)d ,S n =na 1+n n -12d ,又a 1=1,a n =-512,S n =-1 022, 所以⎩⎪⎨⎪⎧1+n -1d =-512, ①n +12n n -1d =-1 022, ② 把(n -1)d =-513代入②得n +12n ·(-513)=-1 022,解得n =4, 所以d =-171.(4)由已知可得⎩⎪⎨⎪⎧a 1+d +a 1+4d=19,5a 1+5×42d =40,解得a 1=2,d =3,所以a 10=a 1+9d =2+9×3=29.等差数列中基本计算的两个技巧:(1)利用基本量求值.等差数列的通项公式和前n 项和公式中有五个量a 1,d ,n ,a n 和S n ,一般是利用公式列出基本量a 1和d 的方程组,解出a 1和d ,便可解决问题.解题时注意整体代换的思想.(2)利用等差数列的性质解题.等差数列的常用性质:若m +n =p +q (m ,n ,p ,q ∈N +),则a m +a n =a p +a q ,常与求和公式S n =n a 1+a n2结合使用.[再练一题] 1.等差数列中:(1)a 1=105,a n =994,d =7,求S n ; (2)a n =8n +2,d =5,求S 20; (3)d =13,n =37,S n =629,求a 1及a n .【解】 (1)由a n =a 1+(n -1)d 且a 1=105,d =7, 得994=105+(n -1)×7,解得n =128, ∴S n =n a 1+a n2=128×105+9942=70 336. (2)∵a n =8n +2,∴a 1=10,又d =5, ∴S 20=20a 1+20×20-12×5=20×10+10×19×5=1 150. (3)将d =13,n =37,S n =629代入a n =a 1+(n -1)d ,S n =n a 1+a n2,得⎩⎨⎧a n =a 1+12,37·a 1+a n2=629,解得⎩⎨⎧a 1=11,a n =23.等差数列前n 项和公式在实际中的应用为响应教育部下发的《关于在中小学实施“校校通”工程的通知》的要求,某市提出了实施“校校通”工程的总目标:从2011年起用10年的时间,在全市中小学建成不同标准的校园网.据测算,2011年该市用于“校校通”工程的经费为500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2011年起的未来10年内,该市在“校校通”工程中的总投入是多少【精彩点拨】 将该实际问题转化为数列问题求解,由于每年投入资金都比上一年增加50万元,故可考虑利用等差数列求解.【尝试解答】 根据题意,从2011年~2020年,该市每年投入“校校通”工程的经费都比上一年增加50万元,所以,每年投入的资金依次组成等差数列{a n },其中,a 1=500,d =50. 那么,到2020年(n =10),投入的资金总额为 S 10=10×500+10×10-12×50=7 250(万元), 即从2011年~2020年,该市在“校校通”工程中的总投入是7 250万元.有关数列的应用问题,应首先通过对实际问题的研究建立数列的数学模型,最后求出符合实际的答案,可分以下几步考虑:(1)问题中所涉及的数列{a n }有何特征; (2)是求数列{a n }的通项还是求前n 项和; (3)列出等式(或方程)求解. [再练一题]2.如图1-2-2,一个堆放铅笔的V 型架的最下面一层放1支铅笔,往上每一层都比它下面一层多放1支.最上面一层放120支,这个V型架上共放着多少支铅笔图1-2-2【解】由题意可知这个V型架自下而上各层的铅笔数组成等差数列,记为数列{a n},其中a1=1,a120=120.根据等差数列前n项和公式得S120=120×1+1202=7 260.即V型架上共放着7 260支铅笔.[探究共研型]等差数列前n项和的性质探究1设{a n}是等差数列,公差为d,S n是其前n项和,那么S m,S2m-S m,S3m-S2m也成等差数列吗如果是,它们的公差是多少【提示】由S m=a1+a2+…+a m,S2m-S m=a m+1+a m+2+…+a2m=a1+md +a2+md+…+a m+md=S m+m2d,同理S3m-S2m=a2m+1+a2m+2+…+a3m=S2m-S m+m2d,所以S m,S2m-S m,S3m-S2m也成等差数列,公差为m2d.探究2设S n、T n分别为两个等差数列{a n}和{b n}的前n项和,那么a nb n与S2n-1T2n-1有怎样的关系请证明之.【提示】a nb n=S2n-1T2n-1.【证明】a nb n=2a n2b n=a1+a2n-1b1+b2n-1=2n-1a1+a2n-122n-1b1+b2n-12=S2n-1T2n-1.(1)等差数列{a n}的前m项和为30,前2m项和为100,求数列{a n}的前3m 项的和S 3m ;(2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5b5的值.【精彩点拨】 (1)利用S m ,S 2m -S m ,S 3m -S 2m 成等差数列求解.(2)利用前n 项和结合等差数列的性质将项的比值转化为和的比值求解.【尝试解答】 (1)在等差数列中,S m ,S 2m -S m ,S 3m -S 2m 成等差数列,∴30,70,S 3m -100成等差数列,∴2×70=30+(S 3m -100),∴S 3m =210. (2)a 5b 5=2a 52b 5=9a 1+a 99b 1+b 9=S 9T 9=6512.巧妙应用等差数列前n 项和的性质 (1)“片段和”性质.若{a n }为等差数列,前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n ,…构成公差为n 2d 的等差数列.(2)项数(下标)的“等和”性质. S n =n a 1+a n 2=n a m +a n -m +12.(3)项的个数的“奇偶”性质. {a n }为等差数列,公差为d .①若共有2n 项,则S 2n =n (a n +a n +1); S 偶-S 奇=nd ;S 偶S 奇=a n +1a n.②若共有2n +1项,则S 2n +1=(2n +1)a n +1;S 偶-S 奇=-a n +1;S 偶S 奇=nn +1.(4)等差数列{a n }中,若S n =m ,S m =n (m ≠n ),则S m +n =-(m +n ). (5)等差数列{a n }中,若S n =S m (m ≠n ),则S m +n =0. [再练一题]3.已知两个等差数列{a n }与{b n }的前n (n >1)项和分别是S n 和T n ,且S n ∶T n=(2n +1)∶(3n -2),求a 9b 9的值.【解】 a 9b 9=2a 92b 9=a 1+a 17b 1+b 17=a 1+a 172×17b 1+b 172×17=S 17T 17=2×17+13×17-2=3549=57.等差数列前n 项和的最值 探究1 将等差数列前n 项和S n =na 1+n n -12d 变形为S n 关于n 的函数后,该函数是怎样的函数为什么【提示】 由于S n =na 1+n n -12d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,所以当d ≠0时,S n 为关于n 的二次函数,且常数项为0.探究2 类比二次函数的最值情况,等差数列的S n 何时有最大值最小值 【提示】 由二次函数的性质可以得出,当d >0时,S n 有最小值;当d <0时,有最大值,且n 取值最接近对称轴的正整数时,S n 取得最值.在等差数列{a n }中,a 10=18,前5项的和S 5=-15. (1)求数列{a n }的通项公式.(2)求数列{a n }的前n 项和的最小值,并指出何时取最小值.【精彩点拨】 (1)直接根据等差数列的通项公式和前n 项和公式列关于首项a 1和公差d 的方程,求得a 1和d ,进而得解;(2)可先求出前n 项和公式,再利用二次函数求最值的方法求解,也可以利用通项公式,根据等差数列的单调性求解.【尝试解答】 (1)由题意得⎩⎪⎨⎪⎧a 1+9d =18,5a 1+5×42×d =-15,得a 1=-9,d =3, ∴a n =3n -12. (2)S n =n a 1+a n2=12(3n 2-21n )=32⎝ ⎛⎭⎪⎫n -722-1478,∴当n =3或4时,前n 项的和取得最小值S 3=S 4=-18.等差数列前n 项和的最值问题的三种解法:(1)利用a n :当a 1>0,d <0时,前n 项和有最大值,可由a n ≥0且a n +1≤0,求得n 的值;当a 1<0,d >0,前n 项和有最小值,可由a n ≤0且a n +1≥0,求得n 的值.(2)利用S n :由S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n (d ≠0),利用二次函数配方法求得最值时n的值.(3)利用二次函数的图象的对称性. [再练一题]4.在等差数列{a n }中,a 1=25,S 17=S 9,求S n 的最大值. 【解】 利用前n 项和公式和二次函数性质,由S 17=S 9得 25×17+172(17-1)d =25×9+92(9-1)d ,解得d =-2, ∴S n =25n +n2(n -1)(-2)=-(n -13)2+169, ∴由二次函数性质,当n =13时,S n 有最大值169.1.设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4 C .-2 D .2 【解析】 S 8=8a 1+a 82=4(a 3+a 6),又S 8=4a 3,所以a 6=0,又a 7=-2,所以a 8=-4,a 9=-6. 【答案】 A2.记等差数列前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 等于( ) A .2 B .3 C .6 D .7【解析】 由题意得⎩⎨⎧2a 1+d =4,4a 1+6d =20,解得⎩⎪⎨⎪⎧a 1=12,d =3.【答案】 B3.在等差数列{a n }中,a 1=2,前三项和为15,则前6项和为( ) A .57 B .-40 C .-57 D .40 【解析】 由题意知a 1+a 2+a 3=15,∴3a 2=15,a 2=5, ∴d =a 2-a 1=3,∴a n =3n -1, ∴S 6=62+172=57. 【答案】 A4.在等差数列{a n }中,已知a 1=2,d =2,则S 20=________. 【解析】 S 20=20·a 1+20×192×d =20×2+20×192×2=420.【答案】 4205.等差数列{a n }中,a 10=30,a 20=50. (1)求通项公式a n ; (2)若S n =242,求n .【解】 (1)由a n =a 1+(n -1)d ,a 10=30,a 20=50, 得方程组⎩⎨⎧a 1+9d =30,a 1+19d =50,解得⎩⎨⎧a 1=12,d =2,所以a n =2n +10. (2)由S n =na 1+n n -12d ,S n =242,得12n +n n -12×2=242,解得n =11或n =-22(舍去),所以n =11.学业分层测评(五)(建议用时:45分钟)[学业达标]一、选择题1.设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=() A.5B.7 C.9 D.11【解析】法一:∵a1+a5=2a3,∴a1+a3+a5=3a3=3,∴a3=1,∴S5=5a1+a52=5a3=5,故选A.法二:∵a1+a3+a5=a1+(a1+2d)+(a1+4d)=3a1+6d=3,∴a1+2d=1,∴S5=5a1+5×42d=5(a1+2d)=5,故选A.【答案】A2.已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=()C.10 D.12【解析】∵公差为1,∴S8=8a1+8×8-12×1=8a1+28,S4=4a1+6.∵S8=4S4,∴8a1+28=4(4a1+6),解得a1=1 2,∴a10=a1+9d=12+9=192.故选B.【答案】B3.在等差数列{a n}中,若S9=18,S n=240,a n-4=30,则n的值为() A.14 B.15 C.16 D.17【解析】S9=9a1+a92=9a5=18,所以a5=2,S n=n a1+a n2=n a5+a n-42=240,∴n(2+30)=480,∴n=15.【答案】B4.设S n是等差数列{a n}的前n项和,若S3S6=13,则S6S12等于()【解析】由题意S3,S6-S3,S9-S6,S12-S9成等差数列.∵S3S6=13.不妨设S3=1,S6=3,则S6-S3=2,所以S9-S6=3,故S9=6,∴S12-S9=4,故S12=10,∴S6S12=310.【答案】A5.设等差数列{a n}的前n项和为S n,若a1=-11,a4+a6=-6,则当S n取得最小值时,n等于()A.6 B.7 C.8 D.9【解析】设公差为d,由a4+a6=2a5=-6,得a5=-3=a1+4d,解得d=2,∴S n=-11n+n n-12×2=n2-12n,∴当n=6时,S n取得最小值.【答案】A二、填空题6.已知{a n}为等差数列,S n为其前n项和.若a1=6,a3+a5=0,则S6=________.【解析】∵a3+a5=2a4,∴a4=0.∵a1=6,a4=a1+3d,∴d=-2.∴S6=6a1+6×6-12d=6.【答案】67.已知{a n}是等差数列,S n是其前n项和.若a1+a22=-3,S5=10,则a9的值是________.【解析】 法一:设等差数列{a n }的公差为d ,由S 5=10,知S 5=5a 1+5×42d =10,得a 1+2d =2,即a 1=2-2d .所以a 2=a 1+d =2-d ,代入a 1+a 22=-3,化简得d 2-6d +9=0,所以d =3,a 1=-4.故a 9=a 1+8d =-4+24=20.法二:设等差数列{a n }的公差为d ,由S 5=10,知5a 1+a 52=5a 3=10,所以a 3=2.所以由a 1+a 3=2a 2,得a 1=2a 2-2,代入a 1+a 22=-3,化简得a 22+2a 2+1=0,所以a 2=-1.公差d =a 3-a 2=2+1=3,故a 9=a 3+6d =2+18=20. 【答案】 208.等差数列{a n }的前9项的和等于前4项的和,若a 1=1,a k +a 4=0,则k =________.【解析】 设{a n }的公差为d ,由S 9=S 4及a 1=1得9×1+9×82×d =4×1+4×32×d ,所以d =-16,又a k +a 4=0,所以⎣⎢⎡⎦⎥⎤1+k -1×⎝ ⎛⎭⎪⎫-16+⎣⎢⎡⎦⎥⎤1+4-1×⎝ ⎛⎭⎪⎫-16=0,即k =10.【答案】 10 三、解答题9.一个等差数列的前10项之和为100,前100项之和为10,求前110项之和.【解】 设等差数列{a n }的公差为d ,前n 项和为S n ,则 S n =na 1+n n -12d .由已知得⎩⎪⎨⎪⎧10a 1+10×92d =100,①100a 1+100×992d =10, ②①×10-②,整理得d =-1150, 代入①,得a 1=1 099100,所以S 110=110a 1+110×1092d =110×1 099100+110×1092×⎝ ⎛⎭⎪⎫-1150 =110⎝ ⎛⎭⎪⎫1 099-109×11100=-110. 故此数列的前110项之和为-110.10.已知等差数列{a n }中,a 1=9,a 4+a 7=0. (1)求数列{a n }的通项公式;(2)当n 为何值时,数列{a n }的前n 项和取得最大值 【解】 (1)由a 1=9,a 4+a 7=0, 得a 1+3d +a 1+6d =0,解得d =-2, ∴a n =a 1+(n -1)d =11-2n . (2)a 1=9,d =-2, S n =9n +n n -12·(-2)=-n 2+10n=-(n -5)2+25,∴当n =5时,S n 取得最大值.[能力提升]1.在项数为2n +1项的等差数列{a n }中,所有奇数项的和为165,所有偶数项的和为150,则n =( )A .9B .10C .11D .12【解析】 ∵等差数列有2n +1项, ∴S 奇=n +1a 1+a 2n +12,S 偶=n a 2+a 2n2.又a 1+a 2n +1=a 2+a 2n , ∴S 奇S 偶=n +1n =165150, ∴n =10. 【答案】 B2.已知两个等差数列{a n }与{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .5【解析】 a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7n +1+12n +1=7+12n +1,∴n=1,2,3,5,11.【答案】 D3.在等差数列{a n }中,d =2,a n =11,S n =35,则a 1等于________. 【解析】 因为S n =na 1+n n -12d ,所以35=na 1+n n -12×2=na 1+n (n -1)①,又a n =a 1+(n -1)·d =a 1+2(n -1),∴a 1+2(n -1)=11②,由①②可得a 21-2a 1-3=0, 解得a 1=3或-1. 【答案】 3或-14.从4月1日开始,有一新款服装投入某商场销售,4月1日该款服装销售出10件,第二天销售出25件,第三天销售出40件,以后每天售出的件数分别递增15件,直到4月12号日销售量达到最大,然后,每天销售的件数分别递减10件.(1)记该款服装4月份日销售与销售天数n 的关系为a n ,求a n ; (2)求4月份的总销售量;(3)按规律,当该商场销售此服装超过1 200件时,社会上就流行,而且销售量连续下降,且日销售低于100件时,则流行消失,问:该款服装在社会上流行是否超过10天【解】 (1)从4月1日起每天销售量依次组成数列{a n },(n ∈{1,2,…,30}) 依题意,数列a 1,a 2,…,a 12是首项为10,公差为15的等差数列, ∴a n =15n -5(1≤n ≤12).a 13,a 14,a 15,…,a 30是首项为a 13=a 12-10=165,公差为-10的等差数列, ∴a n =165+(n -13)(-10)=-10n +295(13≤n ≤30),∴a n =⎩⎨⎧15n -5 1≤n ≤12,n ∈N +,-10n +295 13≤n ≤30,n ∈N +.(2)4月份的总销售量为 1210+1752+18×165+18×17×-102=2 550(件), (3)4月1日至4月12日销售总数为 12a 1+a 122=1210+1752=1 110<1 200, ∴4月12日前还没有流行.由-10n +295<100得n >392, ∴第20天流行结束,故该服装在社会上流行没有超过10天.等差数列的前n 项和1.理解并掌握等差数列的前n 项和公式及其推导过程,体会等差数列的前n 项和公式与二次函数的关系.(重点)2.熟练掌握等差数列的五个基本量a 1,d ,n ,a n ,S n 之间的联系,能够由其中的任意三个求出其余的两个.(重点)[基础·初探]教材整理 等差数列的前n 项和 1.等差数列的前n 项和公式已知量 首项、末项与项数 首项、公差与项数 求和公式S n =n a 1+a n 2S n =na 1+n n -12d2.等差数列前n 项和公式的函数特点 S n =na 1+n n -12d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n . d ≠0时,S n 是关于n 的二次函数,且无常数项.判断(正确的打“√”,错误的打“×”)(1)公差为零的数列不能应用等差数列的前n 项和公式.( ) (2)数列{n 2}可以用等差数列的前n 项和公式求其前n 项和S n .( ) (3)若数列{a n }的前n 项和为S n =an 2+bn ,则{a n }是等差数列.( ) 【解析】 (1)任何等差数列都能应用等差数列的前n 项和公式. (2)数列{n 2}不是等差数列,故不能用等差数列的前n 项和公式.(3)当公差不为0时,等差数列的前n 项和是关于n 的二次函数(常数项为0).[小组合作型]与S n 有关的基本量的计算(1)已知等差数列{a n }中,a 1=32,d =-12,S n =-15,求n 和a n ; (2)已知等差数列{a n }中,S 5=24,求a 2+a 4;(3)数列{a n }是等差数列,a 1=1,a n =-512,S n =-1 022,求公差d ; (4)已知等差数列{a n }中,a 2+a 5=19,S 5=40,求a 10.【精彩点拨】 运用方程的思想,根据已知条件建立方程或方程组求解,另外解题时要注意整体代换.【尝试解答】 (1)S n =n ·32+n n -12·⎝ ⎛⎭⎪⎫-12=-15,整理得n 2-7n -60=0, 解得n =12或n =-5(舍去), 所以a 12=32+(12-1)×⎝ ⎛⎭⎪⎫-12=-4.(2)设等差数列的首项为a 1,公差为d , 则S 5=5a 1+5×5-12d =24, 即5a 1+10d =24,所以a 1+2d =245, 所以a 2+a 4=2(a 1+2d )=2×245=485.(3)因为a n =a 1+(n -1)d ,S n =na 1+n n -12d ,又a 1=1,a n =-512,S n =-1 022, 所以⎩⎪⎨⎪⎧1+n -1d =-512, ①n +12n n -1d =-1 022, ② 把(n -1)d =-513代入②得n +12n ·(-513)=-1 022,解得n =4, 所以d =-171.(4)由已知可得⎩⎪⎨⎪⎧a 1+d +a 1+4d=19,5a 1+5×42d =40,解得a 1=2,d =3,所以a 10=a 1+9d =2+9×3=29.等差数列中基本计算的两个技巧:(1)利用基本量求值.等差数列的通项公式和前n 项和公式中有五个量a 1,d ,n ,a n 和S n ,一般是利用公式列出基本量a 1和d 的方程组,解出a 1和d ,便可解决问题.解题时注意整体代换的思想.(2)利用等差数列的性质解题.等差数列的常用性质:若m +n =p +q (m ,n ,p ,q ∈N +),则a m +a n =a p +a q ,常与求和公式S n =n a 1+a n2结合使用.[再练一题] 1.等差数列中:(1)a 1=105,a n =994,d =7,求S n ; (2)a n =8n +2,d =5,求S 20; (3)d =13,n =37,S n =629,求a 1及a n .等差数列前n 项和公式在实际中的应用为响应教育部下发的《关于在中小学实施“校校通”工程的通知》的要求,某市提出了实施“校校通”工程的总目标:从2011年起用10年的时间,在全市中小学建成不同标准的校园网.据测算,2011年该市用于“校校通”工程的经费为500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2011年起的未来10年内,该市在“校校通”工程中的总投入是多少【精彩点拨】 将该实际问题转化为数列问题求解,由于每年投入资金都比上一年增加50万元,故可考虑利用等差数列求解.【尝试解答】 根据题意,从2011年~2020年,该市每年投入“校校通”工程的经费都比上一年增加50万元,所以,每年投入的资金依次组成等差数列{a n },其中,a 1=500,d =50. 那么,到2020年(n =10),投入的资金总额为 S 10=10×500+10×10-12×50=7 250(万元), 即从2011年~2020年,该市在“校校通”工程中的总投入是7 250万元.有关数列的应用问题,应首先通过对实际问题的研究建立数列的数学模型,最后求出符合实际的答案,可分以下几步考虑:(1)问题中所涉及的数列{a n }有何特征; (2)是求数列{a n }的通项还是求前n 项和;(3)列出等式(或方程)求解.[再练一题]2.如图1-2-2,一个堆放铅笔的V型架的最下面一层放1支铅笔,往上每一层都比它下面一层多放1支.最上面一层放120支,这个V型架上共放着多少支铅笔图1-2-2[探究共研型]等差数列前n项和的性质探究1n n S m,S2m-S m,S3m-S2m也成等差数列吗如果是,它们的公差是多少【提示】由S m=a1+a2+…+a m,S2m-S m=a m+1+a m+2+…+a2m=a1+md +a2+md+…+a m+md=S m+m2d,同理S3m-S2m=a2m+1+a2m+2+…+a3m=S2m-S m+m2d,所以S m,S2m-S m,S3m-S2m也成等差数列,公差为m2d.探究2设S n、T n分别为两个等差数列{a n}和{b n}的前n项和,那么a nb n与S2n-1T2n-1有怎样的关系请证明之.【提示】a nb n=S2n-1T2n-1.【证明】a nb n=2a n2b n=a1+a2n-1b1+b2n-1=2n-1a1+a2n-122n-1b1+b2n-12=S2n-1T2n-1.(1)等差数列{a n}的前m项和为30,前2m项和为100,求数列{a n}的前3m项的和S3m;(2)两个等差数列{a n},{b n}的前n项和分别为S n和T n,已知S nT n=7n+2n+3,求a5b5的值.【精彩点拨】(1)利用S m,S2m-S m,S3m-S2m成等差数列求解.(2)利用前n项和结合等差数列的性质将项的比值转化为和的比值求解.【尝试解答】(1)在等差数列中,S m,S2m-S m,S3m-S2m成等差数列,∴30,70,S3m-100成等差数列,∴2×70=30+(S3m-100),∴S3m=210.(2)a5b5=2a52b5=9a1+a99b1+b9=S9T9=6512.巧妙应用等差数列前n项和的性质(1)“片段和”性质.若{a n}为等差数列,前n项和为S n,则S n,S2n-S n,S3n-S2n,…构成公差为n2d的等差数列.(2)项数(下标)的“等和”性质.S n=n a1+a n2=n a m+a n-m+12.(3)项的个数的“奇偶”性质.{a n}为等差数列,公差为d.①若共有2n项,则S2n=n(a n+a n+1);S偶-S奇=nd;S偶S奇=a n+1a n.②若共有2n+1项,则S2n+1=(2n+1)a n+1;S偶-S奇=-a n+1;S偶S奇=nn+1.(4)等差数列{a n}中,若S n=m,S m=n(m≠n),则S m+n=-(m+n).(5)等差数列{a n}中,若S n=S m(m≠n),则S m+n=0.[再练一题]3.已知两个等差数列{a n}与{b n}的前n(n>1)项和分别是S n和T n,且S n∶T n=(2n+1)∶(3n-2),求a9b9的值.等差数列前n项和的最值探究1将等差数列前n项和S n=na1+n n-12d变形为S n关于n的函数后,该函数是怎样的函数为什么【提示】由于S n=na1+n n-12d=d2n2+⎝⎛⎭⎪⎫a1-d2n,所以当d≠0时,S n为关于n的二次函数,且常数项为0.探究2类比二次函数的最值情况,等差数列的S n何时有最大值最小值【提示】由二次函数的性质可以得出,当d>0时,S n有最小值;当d<0时,有最大值,且n取值最接近对称轴的正整数时,S n取得最值.在等差数列{a n}中,a10=18,前5项的和S5=-15.(1)求数列{a n}的通项公式.(2)求数列{a n}的前n项和的最小值,并指出何时取最小值.【精彩点拨】(1)直接根据等差数列的通项公式和前n项和公式列关于首项a1和公差d的方程,求得a1和d,进而得解;(2)可先求出前n项和公式,再利用二次函数求最值的方法求解,也可以利用通项公式,根据等差数列的单调性求解.【尝试解答】 (1)由题意得⎩⎪⎨⎪⎧a 1+9d =18,5a 1+5×42×d =-15, 得a 1=-9,d =3, ∴a n =3n -12. (2)S n =n a 1+a n2=12(3n 2-21n )=32⎝ ⎛⎭⎪⎫n -722-1478,∴当n =3或4时,前n 项的和取得最小值S 3=S 4=-18.等差数列前n 项和的最值问题的三种解法:(1)利用a n :当a 1>0,d <0时,前n 项和有最大值,可由a n ≥0且a n +1≤0,求得n 的值;当a 1<0,d >0,前n 项和有最小值,可由a n ≤0且a n +1≥0,求得n 的值.(2)利用S n :由S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n (d ≠0),利用二次函数配方法求得最值时n的值.(3)利用二次函数的图象的对称性. [再练一题]4.在等差数列{a n }中,a 1=25,S 17=S 9,求S n 的最大值.1.设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4 C .-2 D .22.记等差数列前n项和为S n,若S2=4,S4=20,则该数列的公差d等于() A.2 B.3 C.6 D.73.在等差数列{a n}中,a1=2,前三项和为15,则前6项和为()A.57 B.-40 C.-57 D.404.在等差数列{a n}中,已知a1=2,d=2,则S20=________.5.等差数列{a n}中,a10=30,a20=50.(1)求通项公式a n;(2)若S n=242,求n.学业分层测评(五)(建议用时:45分钟)[学业达标]一、选择题1.设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7 C.9 D.112.已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=()C.10 D.123.在等差数列{a n}中,若S9=18,S n=240,a n-4=30,则n的值为()A.14 B.15 C.16 D.174.设S n是等差数列{a n}的前n项和,若S3S6=13,则S6S12等于()5.设等差数列{a n}的前n项和为S n,若a1=-11,a4+a6=-6,则当S n取得最小值时,n等于()A.6 B.7 C.8 D.9二、填空题6.已知{a n}为等差数列,S n为其前n项和.若a1=6,a3+a5=0,则S6=________.7.已知{a n}是等差数列,S n是其前n项和.若a1+a22=-3,S5=10,则a9的值是________.8.等差数列{a n}的前9项的和等于前4项的和,若a1=1,a k+a4=0,则k =________.三、解答题9.一个等差数列的前10项之和为100,前100项之和为10,求前110项之和.10.已知等差数列{a n}中,a1=9,a4+a7=0.(1)求数列{a n}的通项公式;(2)当n为何值时,数列{a n}的前n项和取得最大值[能力提升]1.在项数为2n +1项的等差数列{a n }中,所有奇数项的和为165,所有偶数项的和为150,则n =( )A .9B .10C .11D .122.已知两个等差数列{a n }与{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .53.在等差数列{a n }中,d =2,a n =11,S n =35,则a 1等于________. 4.从4月1日开始,有一新款服装投入某商场销售,4月1日该款服装销售出10件,第二天销售出25件,第三天销售出40件,以后每天售出的件数分别递增15件,直到4月12号日销售量达到最大,然后,每天销售的件数分别递减10件.(1)记该款服装4月份日销售与销售天数n 的关系为a n ,求a n ; (2)求4月份的总销售量;(3)按规律,当该商场销售此服装超过1 200件时,社会上就流行,而且销售量连续下降,且日销售低于100件时,则流行消失,问:该款服装在社会上流行是否超过10天。
4.2.2等差数列的前n项和公式

= 1 +
.
2
作用:已知 a1,d和 n,求 Sn.
典型例题
例1已知数列{an}是等差数列.
(1)若a1=7,a50=101,求 S50;
5
(2)若a1=2,a2= ,求S10;
2
1
1
(3)若a1= ,d= − ,Sn=−5,求n.
2
6
解:(1)∵a1=7,a50=101,
当n=6时,an=0;
所以 an+1<an .所以{an}是递减数列.
当n>6时,an<0.
由 a1=10,dБайду номын сангаас=-2,
得 an=10+(n-1)×(-2) =-2n+12.
所以 , S1<S2<…<S5=S6> S7>…
令 an>0,解得 n <6.
所以,当n=5或6时,Sn最大.
因为5 = 5 × 10
2
= + (1 − ).
2
2
Sn=Sn-1+an(n≥2)
函数思想
课后作业
1.某市一家商场的新年最高促销奖设立了两种领奖方式:第一种,
所以2 = (1 + ) + (1 + ) + ⋯ + (1 + )
= (1 + ).
(1 + )
=
.
2
等差数列的前n项和公式
等差数列{an}的前n项和Sn公式:
(1 + )
=
.
2
作用:已知 a1,an 和 n,求 Sn.
an=a1+(n-1)d,(n∈N*)
,有
2
101 + 45 = 310,
等差数列前n项和的性质

想一想: 在等差数列{an}中,Sn,S2n,S3n三者之间有什么
关系?
S3n=3(S2n-Sn)
思考2:若{an}为等差数列,那么
{Sn n
}是什么数列?
性质:数列{an}是等差数列
(2)∵an=2n-1, ∴bn=2n-112n+1=212n1-1-2n1+1, ∴Bn=b1+b2+b3+…+bn =121-13+2113-15+2115-17+…+122n1-1-2n1+1 =121-2n1+1=2nn+1.
『变式探究』
1.已知在正整数数列{an}中,前 n 项和 Sn 满足: Sn=18(an+2)2, (1)求证:{an}是等差数列; (2)若 bn=12an-30,求数列{bn}的前 n 项和的最小值.
则S2k 1 等于什么? T2k 1
ak S2k 1 bk T2k 1
例4:Sn,Tn分别是等差数列{an}、{bn}的前n项的和,
且
Sn Tn
7n 2 n3
,则
a5 b5
.
『变式探究』
1.已知两个等差数列{an}和{bn}的前n项和分别为An和
Bn,且
An Bn
7n 45,则使得 n3
3.设等差数列{an}的前n项和为Sn,若a1=12,S12>0, S13<0. (1)求数列{an}公差d的取值范围;(2)指出 S1, S2, S3, …,S12中哪一个值最大。
4.数列{an}首项为23,公差为整数的等差数列,且第六 项为正,第七项为负. (1)求数列{an}的公差d; (2)求前n项和Sn的最大值; (3)当Sn>0时,求n的最大值;
(完整版)等差数列的前n项和与首项、末项之间的关系总结

(完整版)等差数列的前n项和与首项、末
项之间的关系总结
一、定义:
等差数列是指数列中的相邻两项之差为常数的数列。
它的一般
形式可以表示为:a₁, a₁+d, a₁+2d, ...,其中a₁为首项,d为公差。
二、前n项和的计算:
等差数列的前n项和可以通过以下公式求得:
Sn = (n/2)(a₁ + an)
其中,Sn表示前n项和,a₁为首项,an为末项(第n项)。
三、首项、末项与前n项和的关系:
1. 首项和末项的关系:
首项a₁和末项an之间的关系可以表示为:
an = a₁ + (n-1)d
其中,d为公差。
2. 前n项和与首项、末项之间的关系:
根据前n项和的计算公式,可以得出以下关系:
Sn = (n/2)(a₁ + a₁ + (n-1)d)
= (n/2)(2a₁ + (n-1)d)
= (n/2)(2a₁ + nd - d)
= n(a₁ + (n-1)d)/2
四、应用示例:
假设有等差数列{2, 5, 8, 11, ...},其中首项a₁=2,公差d=3。
计算该数列前n项和的步骤如下:
1. 根据首项和公差,确定该数列的末项计算公式:an = 2 + (n-
1)3。
2. 根据前n项和的计算公式,将首项a₁、末项an代入计算:Sn = n(2 + (n-1)3)/2。
以上就是对等差数列的前n项和与首项、末项之间的关系进行总结的内容。
注意:本文档的内容仅供参考,不涉及法律问题。
等差数列前n项和性质及应用

2)由于a7<0,a6>0,所以S6最大。
a6 a7 0 S12 0 注意: S13 0 a7 0
等差数列绝对值的前n项和
例5、等差数列{ a n }, S n n 32 n ,
2
求{| a n |}的前n项和为 S
'
n
例.设数列{an}的通项公式为an=2n-7, 则|a1|+|a2|+|a3|+……+|a15|= 153 .
复习回顾
等差数列的前n项和公式:
n(a1 an ) 形式1: Sn 2
形式2:
n(n 1) Sn na1 d 2
.将等差数列前n项和公式
看作是一个关于n的函数,这个函数有什么 特点?
n(n 1)d S n na1 2
d d 令 A , B a1 2 2
2
求 n 为何值时, S n 最大?
变式、等差数列{ a n }, S n n 7n ,
2
求 n 为何值时, S n 最小?
3n 21 例 2、 等差数列{ a n },a n , 求 2 2
n 为何值时, S n 最小?
方法(二) :不等式组法(已知 a n 的表达式用此法)
a n 0 d<0时,前n项和有最大值,可由 求得n的值 a n 1 0
4 1 例6:已知a n 数列满足a1 =4,a n =4- ,令bn . a n-1 an 2 (1)求证数列b n 是等差数列。
(2)求数列an 的通项公式。
4 2(an 2) 解:() 1 a n+1 2 2 an an 1 an 1 1 a n+1 2 2(an 2) 2 an 2 1 1 1 1 . bn1 bn . a n+1 2 an 2 2 2
等差数列的前n项和2 课件-山东省滕州市第一中学高中数学人教A版(2019)选择性必修第二册

a=2q, 即b=0,
p=3q,
所以 Sn=2qn2,Tn=3qn2+qn.
当 n=1 时,ab11=TS11=12;当 n≥2 时,abnn=TSnn- -TSnn--11=23nn- -11
变式练习 有两个等差数列{an},{bn},其前 n 项和分别为 Sn,Tn,若TSnn=7nn++32,求ab75.
①数列{an}为等差数列;②a1=-60,a17=-12,可求得公差d.
解答本题可先分清哪些项是负的,然后再分段求出前n项的绝对值之和.
[解]
a17-a1 -12--60 数列{an}的公差 d= 17-1 = 17-1 =3,
∴an=a1+(n-1)d=-60+(n-1)×3=3n-63.由 an<0,得 3n-63<0,即 n<21.
当 n≥6 时,an<0,An=a1+a2+a3+a4+a5-a6-a7-…-an=a1 +a2+a3+a4+a5-(a6+a7+…+an) =2(a1+a2+a3+a4+a5)-(a1+a2+a3+a4+a5+a6+…+an) =2S5-Sn=2×(-52+50)-(-n2+10n)=n2-10n+50.
没有 常数项 的“ 二次函数 (” 注意 a 还可以是 0)
典型例题 例1.某校新建一个报告厅,要求容纳800个座位,报告厅共 有20排座位,从第2排起后一排都比前一排多2个座位. 问第1排应安排多少个座位.
分析:将第1排到第20排的座位数依次排成一列,构成数列{an}.设数列{an}的 前n项和为Sn ,由题意可知, {an}是等差数列,且公差及前20项的和已知,所 以可利用等差数列的前n项和公式求首项
等差数列前n项和的性质
复习引入 设等差数列{an}的首项为a1,公差为d,末项为
等差数列及其前n项和考点与题型归纳

等差数列及其前n 项和考点与题型归纳一、基础知识1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b 2,其中A 叫做a ,b 的等差中项.在一个等差数列中,从第2项起,每一项有穷等差数列的末项除外都是它的前一项与后一项的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的通项公式及前n 项和公式与函数的关系(1)a n =a 1+(n -1)d 可化为a n =dn +a 1-d 的形式.当d ≠0时,a n 是关于n 的一次函数;当d >0时,数列为递增数列;当d <0时,数列为递减数列.(2)数列{a n }是等差数列,且公差不为0⇔S n =An 2+Bn (A ,B 为常数).二、常用结论已知{a n }为等差数列,d 为公差,S n 为该数列的前n 项和. (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)在等差数列{a n }中,当m +n =p +q 时,a m +a n =a p +a q (m ,n ,p ,q ∈N *).特别地,若m +n =2p ,则2a p =a m +a n (m ,n ,p ∈N *).(3)a k ,a k +m ,a k +2m ,…仍是等差数列,公差为md (k ,m ∈N *). (4)S n ,S 2n -S n ,S 3n -S 2n ,…也成等差数列,公差为n 2d . (5)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(6)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12. (7)若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶=a na n +1.(8)若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=nn -1.(9)在等差数列{a n }中,若a 1>0,d <0,则满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ;若a 1<0,d >0,则满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m .考点一 等差数列的基本运算[典例] (1)(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12(2)已知等差数列{a n }的前n 项和为S n ,若a 2=4,S 4=22,a n =28,则n =( ) A .3 B .7 C .9D .10[解析] (1)设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3(3a 1+3d )=2a 1+d +4a 1+6d ,即3a 1+2d =0.将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)= -10.(2)因为S 4=a 1+a 2+a 3+a 4=4a 2+2d =22,d =(22-4a 2)2=3,a 1=a 2-d =4-3=1,a n=a 1+(n -1)d =1+3(n -1)=3n -2,由3n -2=28,解得n =10.[答案] (1)B (2)D[解题技法] 等差数列的基本运算的解题策略(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程思想.(2)数列的通项公式和前n 项和公式在解题中起到变量代换的作用,而a 1和d 是等差数列的两个基本量,用它们表示已知量和未知量是常用方法.[提醒] 在求解数列基本量运算中,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.[题组训练]1.(2019·开封高三定位考试)已知等差数列{a n }的前n 项和为S n ,且a 1+a 5=10,S 4=16,则数列{a n }的公差为( )A .1B .2C .3D .4解析:选B 设等差数列{a n }的公差为d ,则由题意,得⎩⎪⎨⎪⎧a 1+a 1+4d =10,4a 1+4×32×d =16,解得⎩⎪⎨⎪⎧a 1=1,d =2,故选B. 2.已知等差数列{a n }的前n 项和为S n ,且a 3·a 5=12,a 2=0.若a 1>0,则S 20=( ) A .420 B .340 C .-420D .-340解析:选D 设数列{a n }的公差为d ,则a 3=a 2+d =d ,a 5=a 2+3d =3d ,由a 3·a 5=12得d =±2,由a 1>0,a 2=0,可知d <0,所以d =-2,所以a 1=2,故S 20=20×2+20×192×(-2)=-340,选D.3.在等差数列{a n }中,已知a 5+a 10=12,则3a 7+a 9=( ) A .12 B .18 C .24D .30解析:选C 设等差数列{a n }的首项为a 1,公差为d , 因为a 5+a 10=12, 所以2a 1+13d =12,所以3a 7+a 9=3(a 1+6d )+a 1+8d =4a 1+26d =2(2a 1+13d )=2×12=24.考点二 等差数列的判定与证明[典例] 已知数列{a n }的前n 项和为S n 且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列.(2)求a n 的表达式.[解] (1)证明:因为a n =S n -S n -1(n ≥2),又a n =-2S n ·S n -1,所以S n -1-S n =2S n ·S n -1,S n ≠0. 因此1S n -1S n -1=2(n ≥2).故由等差数列的定义知⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,2为公差的等差数列.(2)由(1)知1S n =1S 1+(n -1)d =2+(n -1)×2=2n ,即S n =12n.由于当n ≥2时,有a n =-2S n ·S n -1=-12n (n -1),又因为a 1=12,不适合上式.所以a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.[题组训练]1.(2019·陕西质检)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R )且a 2=3,a 6=11,则S 7等于( )A .13B .49C .35D .63解析:选B 由S n=an 2+bn (a ,b ∈R )可知数列{an }是等差数列,所以S 7=7(a 1+a 7)2=7(a 2+a 6)2=49. 2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1(n ≥2),∴a n +1=2-1a n .∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1,∴{b n }是首项为b 1=12-1=1,公差为1的等差数列.考点三 等差数列的性质及应用考法(一) 等差数列项的性质[典例] (1)已知在等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( ) A .10 B .20 C .40D .2+log 25(2)(2019·福建模拟)设S n ,T n 分别是等差数列{a n },{b n }的前n 项和,若a 5=2b 5,则S 9T 9=( )A .2B .3C .4D .6[解析] (1)因为2a 1·2a 2·…·2a 10=2a 1+a 2+…+a 10=25(a 5+a 6)=25×4, 所以log 2(2a 1·2a 2·…·2a 10)=log 225×4=20.选B.(2)由a 5=2b 5,得a 5b 5=2,所以S 9T 9=9(a 1+a 9)29(b 1+b 9)2=a 5b 5=2,故选A.[答案] (1)B (2)A考法(二) 等差数列前n 项和的性质[典例] 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36D .27[解析] 由{a n }是等差数列, 得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45,故选B. [答案] B考法(三) 等差数列前n 项和的最值[典例] 在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17[解析] ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值. [答案] A[解题技法]1.应用等差数列的性质解题的2个注意点(1)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件;若求a m 项,可由a m =12(a m -n +a m +n )转化为求a m -n ,a m +n 或a m +n +a m -n 的值.(2)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等.2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[题组训练]1.在等差数列{a n }中,若a 3=-5,a 5=-9,则a 7=( )A .-12B .-13C .12D .13解析:选B 法一:设公差为d ,则2d =a 5-a 3=-9+5=-4,则d =-2,故a 7=a 3+4d =-5+4×(-2)=-13,选B.法二:由等差数列的性质得a 7=2a 5-a 3=2×(-9)-(-5)=-13,选B.2.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C 因为a 1>0,a 6a 7<0,所以a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,所以S 12>0,S 13<0,所以满足S n >0的最大自然数n 的值为12.3.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216, ∴a 1+a n =36,又S n =n (a 1+a n )2=324,∴18n =324,∴n =18. 答案:18[课时跟踪检测]A 级1.在数列{a n }中,a 1=2,a n +1=a n +2,S n 为{a n }的前n 项和,则S 10等于( ) A .90 B .100 C .110D .130解析:选C 由递推公式可知该数列是公差为2的等差数列,S 10=10×2+10×92×2=110.故选C.2.(2018·北京东城区二模)已知等差数列{a n }的前n 项和为S n ,a 3=3,a 5=5,则S 7的值是( )A .30B .29C .28D .27解析:选C 由题意,设等差数列的公差为d ,则d =a 5-a 35-3=1,故a 4=a 3+d =4,所以S 7=7(a 1+a 7)2=7×2a 42=7×4=28.故选C.3.(2019·山西五校联考)在数列{a n }中,a n =28-5n ,S n 为数列{a n }的前n 项和,当S n 最大时,n =( )A .2B .3C .5D .6解析:选C ∵a n =28-5n ,∴数列{a n }为递减数列. 令a n =28-5n ≥0,则n ≤285,又n ∈N *,∴n ≤5.∵S n 为数列{a n }的前n 项和,∴当n =5时,S n 最大.故选C.4.(2019·广东中山一中统测)设数列{a n }的前n 项和为S n ,且a n =-2n +1,则数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为( )A .-45B .-50C .-55D .-66解析:选D ∵a n =-2n +1,∴数列{a n }是以-1为首项,-2为公差的等差数列, ∴S n =n [-1+(-2n +1)]2=-n 2,∴S n n =-n 2n =-n ,∴数列⎩⎨⎧⎭⎬⎫S n n 是以-1为首项,-1为公差的等差数列,∴数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为11×(-1)+11×102×(-1)=-66,故选D.5.(2018·南昌模拟)已知等差数列{a n }的前n 项和为S n ,且S 5=50,S 10=200,则a 10+a 11的值为( )A .20B .40C .60D .80解析:选D 设等差数列{a n }的公差为d ,由已知得⎩⎨⎧S 5=5a 1+5×42d =50,S 10=10a 1+10×92d =200,即⎩⎪⎨⎪⎧a 1+2d =10,a 1+92d =20,解得⎩⎪⎨⎪⎧a 1=2,d =4. ∴a 10+a 11=2a 1+19d =80.故选D.6.(2019·广州高中综合测试)等差数列{a n }的各项均不为零,其前n 项和为S n .若a 2n +1=a n +2+a n ,则S 2n +1=( )A .4n +2B .4nC .2n +1D .2n解析:选A 因为{a n }为等差数列,所以a n +2+a n =2a n +1,又a 2n +1=a n +2+a n ,所以a 2n +1=2a n +1.因为数列{a n }的各项均不为零,所以a n +1=2,所以S 2n +1=(a 1+a 2n +1)(2n +1)2=2×a n +1×(2n +1)2=4n +2.故选A.7.已知等差数列5,427,347,…,则前n 项和S n =________.解析:由题知公差d =-57,所以S n =na 1+n (n -1)2d =514(15n -n 2).答案:514(15n -n 2)8.已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________. 解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6×6-30=6.答案:69.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5.答案:S 510.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________.解析:因为S 100=1002(a 1+a 100)=45,所以a 1+a 100=910,a 1+a 99=a 1+a 100-d =25,则a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×25=10.答案:1011.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值. 解:(1)设{a n }的公差为d , 由题意得3a 1+3d =-15. 又a 1=-7,所以d =2.所以{a n }的通项公式为a n =2n -9.(2)由(1)得S n =n (a 1+a n )2=n 2-8n =(n -4)2-16,所以当n =4时,S n 取得最小值,最小值为-16.12.(2019·山东五校联考)已知等差数列{a n }为递增数列,其前3项的和为-3,前3项的积为8.(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n .解:(1)设等差数列{a n }的公差为d ,d >0,∵等差数列{a n }的前3项的和为-3,前3项的积为8,∴⎩⎪⎨⎪⎧3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8, ∴⎩⎪⎨⎪⎧a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.∵d >0,∴a 1=-4,d =3,∴a n =3n -7.(2)∵a n =3n -7,∴a 1=3-7=-4,∴S n =n (-4+3n -7)2=n (3n -11)2.B 级1.设a n =(n +1)2,b n =n 2-n (n ∈N *),则下列命题中不正确的是( )A .{a n +1-a n }是等差数列B .{b n +1-b n }是等差数列C .{a n -b n }是等差数列D .{a n +b n }是等差数列 解析:选D 对于A ,因为a n =(n +1)2, 所以a n +1-a n =(n +2)2-(n +1)2=2n +3, 设c n =2n +3,所以c n +1-c n =2.所以{a n +1-a n }是等差数列,故A 正确; 对于B ,因为b n =n 2-n (n ∈N *),所以b n +1-b n =2n , 设c n =2n ,所以c n +1-c n =2,所以{b n +1-b n }是等差数列,故B 正确; 对于C ,因为a n =(n +1)2,b n =n 2-n (n ∈N *), 所以a n -b n =(n +1)2-(n 2-n )=3n +1, 设c n =3n +1,所以c n +1-c n =3, 所以{a n -b n }是等差数列,故C 正确; 对于D ,a n +b n =2n 2+n +1,设c n =a n +b n ,c n +1-c n 不是常数,故D 错误.2.(2019·武汉调研)设等差数列{a n }满足a 3+a 7=36,a 4a 6=275,且a n a n +1有最小值,则这个最小值为________.解析:设等差数列{a n }的公差为d ,∵a 3+a 7=36, ∴a 4+a 6=36,又a 4a 6=275,联立,解得⎩⎪⎨⎪⎧ a 4=11,a 6=25或⎩⎪⎨⎪⎧ a 4=25,a 6=11,当⎩⎪⎨⎪⎧ a 4=11,a 6=25时,可得⎩⎪⎨⎪⎧ a 1=-10,d =7,此时a n =7n -17,a 2=-3,a 3=4,易知当n ≤2时,a n <0,当n ≥3时,a n >0,∴a 2a 3=-12为a n a n +1的最小值; 当⎩⎪⎨⎪⎧ a 4=25,a 6=11时,可得⎩⎪⎨⎪⎧a 1=46,d =-7,此时a n =-7n +53,a 7=4,a 8=-3,易知当n ≤7时,a n >0,当n ≥8时,a n <0,∴a 7a 8=-12为a n a n +1的最小值. 综上,a n a n +1的最小值为-12. 答案:-123.(2018·辽宁五校协作体模考)已知数列{a n }是等差数列,且a 1,a 2(a 1<a 2)分别为方程x 2-6x +5=0的两个实根.(1)求数列{a n }的前n 项和S n ;(2)在(1)中,设b n =S n n +c,求证:当c =-12时,数列{b n }是等差数列. 解:(1)∵a 1,a 2(a 1<a 2)分别为方程x 2-6x +5=0的两个实根, ∴a 1=1,a 2=5,∴等差数列{a n }的公差为4,∴S n =n ×1+n (n -1)2×4=2n 2-n . (2)证明:当c =-12时,b n =S n n +c =2n 2-n n -12=2n , ∴b n +1-b n =2(n +1)-2n =2,b 1=2. ∴数列{b n }是以2为首项,2为公差的等差数列.。
等差数列前n项和(2)

an an1
2) an (n 1)a2
n 1 n2
an an1 a2
数列an是以a2为公差a1为首项的等差数列。
例9:已知数列an, an
N
, Sn
1 8
(an
2)2.
(1)求证an是等差数列.
(2)若b n
=
1 2
a
n
-30,求数列bn
的前n项和的最小值
S偶
a中
an
,
S奇 S偶
=
n n-1
若等差数列{an}共有2n项,则S偶-S奇=nd, S奇 = an S偶 an+1
如{an}为等差数列,项数为奇数,奇数项和为44, 偶数项和为33,求数列的中间项和项数。
a中 =11,n=7
性质5、{an}为等差数列,求Sn的最值。 若a1 >0,d<0且 aann+100,则Sn最大。 若a1 <0,d>0且 aann+100,则Sn最小。
解:a n+1
Sn1
Sn
1 8
(a
n+1
2)2
1 8
(a
n
2)2
(an1 an )(an1 an 4) 0, an N
an1 an 4数列an是等差数列。
例9:已知数列an, an
N , Sn
1 8
(an
2)2.
(1)求证an是等差数列.
即n≤12时,an>0而n≥14时an<0
所以S12和S13最大