自动控制原理实验报告--典型二阶系统的时域特性

合集下载

自动控制原理实验一 典型系统的时域响应和稳定性分析

自动控制原理实验一 典型系统的时域响应和稳定性分析

实验一典型系统的时域响应和稳定性分析一、实验目的1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。

二、实验设备PC机一台,TD-ACC+教学实验系统一套。

三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图1-1所示。

图1-1(2)图1-2(3) 理论分析系统开环传递函数为:G(s)=K1T0⁄s(T1s+1)开环增益:K= K1T0⁄先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中由图1-2,可以确地1-1中的参数。

T0= 1s , T1= 0.1s ,K1= 200R , K= 200R系统闭环传递函数为:W(s)=5Ks2+5s+5K其中自然振荡角频率:?n ω= 10√10R;阻尼比:?ζ= √10R402.典型的三阶系统稳定性分析(1) 结构框图:如图1-3所示。

图1-3(2) 模拟电路图:如图1-4所示。

图1-4(3) 理论分析系统的开环传函为: G(s)H(s)=20K s 3+12s 2+20s系统的特征方程为:1()()0G s H s += : s 3+12s 2+20s+20K=0 (4) 实验内容实验前由Routh 判断得Routh 行列式为:S 3 1 20 S 2 12 20K S 1 20-5/3*K 0 S 0 20K为了保证系统稳定,第一列各值应为正数,因此可以确定系统稳定 K 值的范围 : 0<K <12 R >41.7k系统临界稳定K: K=12 R =41.7k 系统不稳定K 值的范围: K >12 R <41.7k四、实验步骤1)将信号源单元的“ST ”端插针与“S ”端插针用“短路块”短接。

自控原理实验报告

自控原理实验报告

自动控制原理实验报告目录2.2典型环节模拟电路及其数学模型1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据记录3.1典型二阶系统模拟电路及其动态性能分析1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据纪录3.4三阶控制系统的稳定性分析1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据记录3.5基于Matlab告诫控制系统的时域响应动态性能分析1. 实验目的2. 实验内容3. 实验数据纪录4.1基于Matlab控制系统的根轨迹及其性能分析1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据记录5.4 基于MATLAB控制系统的博德图及其频域分析1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据记录2.2典型环节模拟电路及其数学模型1.实验目的1)掌握典型环节模拟电路的构成,学习运用模拟电子组件构造控制系统。

2)观察和安装个典型环节的单位节阶跃响应曲线,掌握它们各自特性。

3)掌握各典型环节的特性参数的测量方法,并根据阶跃响应曲线建立传递函数。

2.实验原理本实验通过实验测试法建立控制系统的实验模型。

实验测试法是人为地给系统施加某种测试信号,记录基本输出响应,并用适当的数学模型区逼近。

常用的实验测试法有三种:时域测试法,频域测试法和统计相关测试法。

通过控制系统的时域测试,可以测量系统的静态特性和动态特性指标。

静态特性是指系统稳态是的输入与输出的关系,用静态特性参数来表征,如增益和稳态误差。

动态性能指标是表征系统输入一定控制信号,输出量随时间变化的响应,常用的动态性能指标有超调量、调节时间、上升时间、峰值时间和振荡次数等。

静态特性可以采用逐点测量法,及给新一个输入量,新颖测量被控对象的一个稳态输出量,利用一组数据绘出静态特性曲线求出其斜率,就可以确定被测对象的增益。

动态特性可以采用阶跃响应或脉冲响应测试法,给定被测对象施加阶跃输入信号或脉冲信号,利用示波器或记录仪测量被测对象的输出响应,如为使测量尽可能的得到理想的数学模型,应注意以下几点:1)被测对象应处于实际经常使用的负荷情况,并且在较为稳定的状态下进行测试。

基于ELVIS的自动控制原理实验

基于ELVIS的自动控制原理实验

实验一 线性系统时域特性分析一、实验目的1.掌握测试系统响应曲线的模拟实验方法。

2.研究二阶系统的特征参量ζ阻尼比和n ω自然频率对阶跃响应瞬态指标的影响。

二、实验设备与器件计算机一台,NI ELVIS Ⅱ多功能虚拟仪器综合实验平台一套,万用表一个,通用型运算放大器4个,电阻若干,电容若干,导线若干。

三、实验原理典型二阶系统开环传递函数为:)2()1()(2n ns s Ts s K s G ζωω+=+= ,一种是时间常数表达式,一种是零极点表达式。

时间常数表达式中包含三个环节:比例、积分和一阶惯性环节。

其中,K 开环放大系数,T 为一阶惯性环节的时间常数。

零极点表达式中包含两个特征参数:ζ阻尼比和n ω自然频率。

二阶系统的瞬态性能就由特征参数ζ和n ω决定。

典型二阶系统方块图如图1-1所示,系统闭环传递函数为:)()1()(2)()(10112101222T T K s T s T T K s s s R s C n n n ++=++=ωζωω ,图1-1典型二阶系统方块图阻尼比与自然频率为:11010111212121K T T T T K T T n ===ωζ, 101T T K n =ω典型环节与模拟电路的阻容参数的关系如下: 积分环节ST 01:000C R T = 一阶惯性环节111+S T K :f f C R T =1,if R R K =1四、实验内容Cf图1-2二阶系统闭环模拟电路图1.已知系统的模拟电路如图1-2所示,在NI ELVIS Ⅱ教学实验板上,利用运算放大器、电阻、电容自行搭建二阶模拟闭环系统。

阶跃信号由实验板模拟量输出接口AO0输出,接到二阶系统的输入端。

将二阶系统的输入端与输出端分别接实验板模拟量输入接口AI0(+)与AI1(+),采样阶跃输入信号与二阶系统的阶跃响应信号。

搭建模拟电路时,应特别注意:运算放大器的Vcc 与Vee 分别接实验板的+15V 与-15V ,正输入端IN+应接实验板的Ground ,实验板模拟量输入接口AI0(-)与AI1(-)应接实验板的Ground ,电容负端接运放负端输入IN-。

自动控制原理 3-3二阶系统的时域分析

自动控制原理 3-3二阶系统的时域分析

(a)根分布
(b)单位阶跃响应
图3-12 临界阻尼情况(z =1)
3. >1,称为过阻尼情况 当阻尼比 >1时,系统有两个不相等的实数根:
s1,2 ( 2 1)n 对于单位阶跃输入,C(s)为
(3.27)
C(s) 1 [2 2 1(
2 1)]1 [2 2 1(
2 1)]1
% e 12 100%
e 或 %
tg
100%
取5%
ln
1 2
h(t) 由包络线求调节时间ts
取2%
ln 1 2
0.05 2.997
0.05 3.913
0.1 0.2 0.3
3.001 3.016 3.043
ts
31.5 n
,取5% e 1
n t
12
ts
4.5 n
,取2%
0.1 0.2 0.3
2%, 0.78; 5%, 0.7
当0< <0.9时,则
ts
3
n
3T
(按到达稳态值的95%~105%计)

ts
4
n
4T
(按到达稳态值的98%~102%计)
(3.40)
由此可见, n大,ts就小,当n一定,则ts与成反比,这与tp, tr与的关系正好相反。
根据以上分析,如何选取和n来满足系统设计要求,总结几点
令 dh(t) ab(c a) eat ab(a b) ebt 0
dt c(b a)
c(a b)
j
ca
分子正分母负,t<0,
ln 得:t c b
-c -b -a 0

无解!
ab
j

分子出错,无解! j

自动控制原理实验报告模板

自动控制原理实验报告模板
7
示波器联接
A10(OUT)→B2(CH2)
(2)运行、观察、记录:
分别将(A11)中的直读式可变电阻分别调整为4K、40K、70K,选择线性系统时域分析/二阶系统瞬态响应和稳定性实验,确认信号参数默认值后,点击《下载》、《开始》键后,实验运行。
实验停止后,用示波器观察在三种增益K下,A10输出端C(t)的系统阶跃响应。
4.2实验现象
(1)实验参数: R=4KΩ Ui=2V
图1-1
图1-2
图1-3
图1-1用两横游标置于最高和稳态处测得△V=1.687V,峰值时间为0.196s
图1-2将两横游标放于稳态值的10%和90%处,测得时间为0.048s
图1-3中测得调节时间为1.119s
震荡次数为3次
(2)实验参数: R=40KΩ Ui=2V
自动控制原理实验报告
时间:2016年12月9日
地点:航空楼A610
1实验名称:
二阶系统时域特性的研究
2实验目的
(1)了解和掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。
(2)研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn、阻尼比ξ对过渡过程的影响。
(3)掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标σp、tp、ts的计算。
图3-1-7Ⅰ型二阶闭环系统模拟电路
该电路的开环传递函数为:
该电路的闭环传递Βιβλιοθήκη 数为:实验内容及步骤观察图3-1-7的阻尼比ξ对该系统的过渡过程的影响。改变A3单中输入电阻R来调整系统的开环增益K,从而改变系统的结构参数。
(1)构造模拟电路:按图3-1-7安置短路套及插孔连线,表如下。
(a)安置短路套(b)插孔连线

自动控制原理实验报告实验一-一、二阶系统的电子模拟及时域响应的动态测试

自动控制原理实验报告实验一-一、二阶系统的电子模拟及时域响应的动态测试

分组:成绩:__ _______北京航空航天大学自动控制原理实验报告实验一一、二阶系统的电子模拟及时域响应的动态测试学院专业方向班级学号学生姓名指导教师2014年11月目录一、实验目的 (1)二、实验内容 (1)三、实验原理 (1)四、实验设备 (2)五、实验步骤 (2)六、实验数据 (3)1.一阶系统实验数据及图形 (3)2.二阶系统实验数据及图形 (4)七、结论和误差分析 (6)结论: (6)误差分析: (7)八、收获与体会 (7)附录 (7)实验时间2014.11.1 同组同学 无一、实验目的1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2.学习在电子模拟机上建立典型环节系统模型的方法。

3.学习阶跃响应的测试方法。

二、实验内容1.建立一阶系统的电子模型,观测并记录在不同时间常数T 时的阶跃响应曲线,并测定其过渡过程时间Ts 。

2.建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的阶跃响应曲线,并测定其超调量σ%及过渡过程时间Ts 。

三、实验原理1.一阶系统实验原理系统传递函数为:()()()1C S Ks R S TS φ==+模拟运算电路如图1所示:图1212R R Uo(s)K ==Ui(s)CSR +1Ts+1在实验中始终取R2=R1,则K=1,T=R2*C 取不同的时间常数T ,T=0.25s ,T=0.5s ,T=1s记录不同的时间常数下阶跃响应曲线,测量并记录其过渡时间Ts (Ts=3T )2.二阶系统实验原理 其传递函数为:222()()()(2)n n n C S S R S S S ωζωωΦ==++令1n ω=弧度/秒,二阶系统模拟线路下图2所示:图2取R2*C1=1,R3*C2=1,则R4/R3=R4*C2=1/(2*ζ)及ζ=1/(2*R4*C2)理论值:3(0.05)s nt ζω≈∆=,%σ100%e =⨯四、实验设备1. HHMN-1 型电子模拟机一台2. PC 机一台3. 数字式万用表一块。

自动控制原理3.3~3.4 二阶系统时域分析

自动控制原理3.3~3.4 二阶系统时域分析

闭环特征方程: D( s ) s 2 2 s 2 0 n n 闭环特征根: s1, 2 n n
2
1
二、二阶系统单位阶跃响应
单位阶跃输入r(t)=1(t)时,其二阶系统的输出的拉氏变换为
2 2 n n 1 C ( s ) ( s ) R( s ) 2 2 s 2 n s n s s( s s1 )(s s2 )
e
(ζ ζ 2 1 ) n t
ζ 2 1 ) n t
c(t ) 1
1
2 ζ 2 1 (ζ ζ 2 1) 1 (ζ e 2 ζ 2 1 (ζ ζ 2 1)
e
(ζ ζ 2 1 ) n t
ζ 2 1 ) n t
c(t)
1
0 t
单调上升过程
2.0 1.8 1.6 1.4 1.2 c(t) 1.0 0.8 0.6 0.4 0.2 0
=0
0.4 0.5 0.6 0.7 0.8
0.1 0.2 0.3
1.0 2.0
1
2
3
4
5
• 在0<<1, 越小,超调量越大,平稳性越差,调节时间ts长; • =0.7,调节时间短,而超调量%<5%,平稳性也好,故称 ζ=0.7为最佳阻尼比。工程希望=0.4~0.8为宜; •在≥1 , 越大,系统响应速度慢,调节时间ts也长。
例题:设角度随动系统如图所示,T=0.1为伺服电机时间常数, 若要求系统的单位阶跃响应无超调,且调节时间ts≤1s,问K应 取多大?此时上升时间等于多少?
Θi(s)
_
K s(Ts 1)
Θo(s)
解:闭环传递函数为
K K K /T s (Ts 1) (s) 2 2 K Ts s K s s / T K / T 1 s (Ts 1)

自动控制原理第三章二阶系统

自动控制原理第三章二阶系统

1. ζ >1 过阻尼
1 T
e-t/T
c(t)=1-e-t/T
r(t)=t
c(t)=t-T+Te-t/T
可知: 系统输入信号导数的输出响应,等 于该输入信号输出响应的导数;根据一种 典型信号的响应,就可推知于其它。
自动控制原理第三章二阶系统
第二节 一阶系统性能分析
设例ФKk(若=s一 调 t)=s1要=阶 节000CR求系 时.1((ss:sK统 间)),=H的t=求1s+0结(反t1.11s0构0±=馈000•如/5K.系S1%HR图/s(数Ss)),。;=试(_E如0(求.则s0果)11系://K要KKS统HkH求)的S+C1(s) 解Ф:(系s)统=t s=闭CR3((T环ss=))传=3×1递+K01H1函.000=010数0•/./0K3S.1H/=SK0k .=K1HT0.s=11S00K+.0H11/KH
有性任何着 能=二对 指S2阶应 标+GR系(的 与sS1)/=统/L关 其L+CUU的1系 参rc(/(ssL动))C数。=态L间求C=性S的出2能S+2关标R+1指C2系准Sζω标+ω形,1n。2n 式S便+ω的可n动求2
ቤተ መጻሕፍቲ ባይዱ
态 得
2ζ ω n=R/L
得:
ω
2 n
=
1/LC
ω n=1/ LC
ζ=
RC 2L
一阶系统ts =单3位T 阶跃响应:
(±R5%(s))=
1 S
C(s)= tФs =(s4)•TS1
=
1 TS+1

1S(=±1S2%- S)+11/T
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科实验报告
课程名称:自动控制原理
实验项目:典型二阶系统的时域特性实验地点:电机馆自控实验室
专业班级:学号:
学生姓名:
指导教师:
2012 年5 月15 日
一、实验目的和要求:
学会利用自动控制实验箱对二阶控制系统进行时域分析。

二、实验内容和原理:
1、二阶系统动态特性的测试
1. 典型二阶系统的方框图和模拟电路图
① 典型二阶系统的方框图及传函
图1-2是典型二阶系统的原理方框图,其中T 0=1s ,T 1=0.1s ,K 1分别为10、5、2.5和1。

开环传函: )
11.0()1()(11+=+=s s K s T s K s G 其中:===101/K T K K 开环增益。

闭环传函: 2n
n 22n 2)(ωζωω++=s s s W 其中:2//;/110011n T K T T T K ==ξω
表1-2列出有关二阶系统在三种情况(欠阻尼、临界阻尼和过阻尼)下具体参数的表达式,以便计算理论值。

② 模拟电路图见图1-3。

三、主要仪器设备:
TDN-AC/ACS+型控制系统实验箱一套、安装Windows 98系统和ACS2002应用软件的计算机一台。

四、操作方法与实验步骤:
准备:将“信号源单元”(U1SG)的ST插针和+5V插针用“短路块”短接,使运算放大器反馈网络上的场效应管3DJ6夹断。

二阶系统瞬态性能指标的测试步骤:
①按图1-3接线,R=10K。

②用示波器观察系统阶跃响应C(t),测量并记录超调量M p,峰值时间T p和调节时间t s,并记录在表1-3中。

③分别按R=20K;40K;100K改变系统开环增益,观察响应的阶跃响应C(t),测量并记录性能指标M p,T p和t s,及系统的稳定性。

并将测量值和计算值(实验前必须按公式计算出)进行比较,参数取值及响应曲线,详见表1-3。

五、实验数据记录和处理:
(1)R=50K阶跃响应图:
(2)R=100K阶跃响应图:
六、讨论、心得:
通过实验,让我对二阶系统的时域响应有了进一步的了解,也对这种新的实验方法有了进一步的认识,自控是一门不错的课,希望今后能有更多的机会去实践它。

相关文档
最新文档