对数与对数函数习题精选
高一数学对数运算及对数函数试题

高一数学对数运算及对数函数试题一:选择题1.若log 7[log 3(log 2x )]=0,则为( )B==.2.23(log 9)(log 4)⋅=( ) (A )14 (B )12(C ) 2 (D )4 【答案】D3.的值是( C )=log 4.实数﹣•+lg4+2lg5的值为( D )﹣+lg4+2lg5= B.6.lgx+lgy=2lg(x﹣2y),则的值的集合是()•=18.设,则a,b,c的大小顺序为()解:因为9.已知幂函数y=f(x)的图象过点,则log2f(2)的值为(A)B10.若非零实数a、b、c满足,则的值等于(),11.已知f(x)=,则f(log23)的值是(A)B=12.已知函数f(x)满足:x≥4,则f(x)=;当x<4时f(x)=f(x+1),则f(2+log23)B C D13.若log a <13,则a 的取值范围是 ( ) A .a >1 B .a 20<<3 C .a 2<<13 D .a 20<<3或a >1【答案】D14.函数2()ln(43x )f x =+-x 的单调递减区间是( ) A. 3(,]2-∞ B. 3[,)2+∞ C. 3(1,]2- D. 3[,4)2【答案】D15.已知函数()()x x f a-=2log 1在其定义域上单调递减,则函数()()21log x x g a -=的单调减区间是( )A. (]0,∞-B. ()0,1-C. [)+∞,0D. [)1,0 【答案】B16.已知函数212()log ()f x x ax a =--,在1()2-∞-,上是增函数,则实数a 的取值范围是( )A .[1)-+∞,B .1[1)2-,C .1[1]2-, D .(1]-∞-,【答案】C17.已知函数xa x f =)(0(>a 且1≠a )与函数x x g a log )(=0(>a 且1≠a )的图象有交点,函数)()()(x g x f x +=ϕ在区间]2,1[上的最大值为21,则)(x ϕ在区间]2,1[上的最小值为( ) A. 21-; B. 21; C. 45; D. 43-. 【答案】D18.当102x <≤时,4log x a x <,则a 的取值范围是 ( )A .(0)B .,1)C .(1)D .,2) 【答案】B二:填空题19.若5a=2,b=log53,则53a﹣2b=.,故答案为:.20.求值:=..故答案为:.21.设=.=t=故答案为:22.方程的解为.时,时,故答案为:23.若函数23()log log 2f x a x b x =++,且()52012f =,则(2012)f 的值为 _ . 【答案】-124.函数y ________.【答案】31{|10}44x x x <≤-≤<或 25.已知函数21()log ()2a f x ax x =-+(01a a >≠且)在[1,2]上恒正,则实数a 的取值范围为 . 【答案】153(,)(,)282+∞ 三:解答题 26.计算.27.若2()f x x x b =-+,且22(log )log [()]2(1)f a b f a a ==≠,.(1)求2(log )f x 的最小值及对应的x 值;(2)若不等式2(log )(1)f x f >的解集记为A ,不等式2log [()](1)f x f <的解集记为B ,求A B .解:(1) ∵ 2()f x x x b =-+∴ 2222(log )log log f a a a b b =-+=,∴ 22log 1log 0a a ==或 ∴ a = 2或a = 1(舍)又 ∵ 2222log [()]log ()log (2)2f a a a b b =-+=+= ∴ 24b += ∴ b = 2∴ 2()2f x x x =-+,22222217(log )log log 2(log )24f x x x x =-+=-+∴ 当21log 2x x =,即2(log )f x 的最小值为74(2) 由2222(log )(1)log log 22f x f x x >-+>得 ∴ 22log (log 1)0x x ->∴ 22log 0log 1x x <>或 ∴ 012x x <<>或,即{|012}A x x x =<<>或 由222log [()](1)log (2)2f x f x x <-+<得 ∴ 202412x x x <-+<-<<解得 ∴ {|12}B x x =-<< ∴ {|01}AB x x =<<28.设函数22()log (4)log (2)f x x x =⋅,144x ≤≤, 若x t 2log =,求t 取值范围;(2)求()f x 的最值,并给出最值时对应的x 的值。
高中数学对数与对数运算训练题(含答案)

高中数学对数与对数运算训练题(含答案)1.2-3=18化为对数式为()A.log182=-3 B.log18(-3)=2C.log218=-3 D.log2(-3)=18解析:选C.根据对数的定义可知选C.2.在b=log(a-2)(5-a)中,实数a的取值范围是() A.a>5或a B.2<a<3或3<a<5C.25 D.3<a<4解析:选B.5-a>0a-2>0且a-21,2<a<3或3<a<5. 3.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx,则x=10;④若e=lnx,则x=e2,其中正确的是()A.①③ B.②④C.①② D.③④解析:选C.lg(lg10)=lg1=0;ln(lne)=ln1=0,故①、②正确;若10=lgx,则x=1010,故③错误;若e=lnx,则x=ee,故④错误.4.方程log3(2x-1)=1的解为x=________.解析:2x-1=3,x=2.答案:21.logab=1成立的条件是()A.a=b B.a=b,且b0C.a0,且a D.a0,a=b1解析:选D.a0且a1,b0,a1=b.2.若loga7b=c,则a、b、c之间满足()A.b7=ac B.b=a7cC.b=7ac D.b=c7a解析:选B.loga7b=cac=7b,b=a7c.3.如果f(ex)=x,则f(e)=()A.1 B.eeC.2e D.0解析:选A.令ex=t(t0),则x=lnt,f(t)=lnt.f(e)=lne=1.4.方程2log3x=14的解是()A.x=19 B.x=x3C.x=3 D.x=9解析:选A.2log3x=2-2,log3x=-2,x=3-2=19. 5.若log2(log3x)=log3(log4y)=log4(log2z)=0,则x +y+z的值为()A.9 B.8C.7 D.6解析:选A.∵log2(log3x)=0,log3x=1,x=3.同理y=4,z=2.x+y+z=9.6.已知logax=2,logbx=1,logcx=4(a,b,c,x>0且1),则logx(abc)=()A.47B.27C.72D.74解析:选D.x=a2=b=c4,所以(abc)4=x7,所以abc=x74.即logx(abc)=74.7.若a0,a2=49,则log23a=________.解析:由a0,a2=(23)2,可知a=23,log23a=log2323=1.答案:18.若lg(lnx)=0,则x=________.解析:lnx=1,x=e.答案:e9.方程9x-63x-7=0的解是________.解析:设3x=t(t0),则原方程可化为t2-6t-7=0,解得t=7或t=-1(舍去),t=7,即3x=7. x=log37.答案:x=log3710.将下列指数式与对数式互化:(1)log216=4;(2)log1327=-3;(3)log3x=6(x>0); (4)43=64;(5)3-2=19; (6)(14)-2=16.解:(1)24=16.(2)(13)-3=27.(3)(3)6=x.(4)log464=3.(5)log319=-2.(6)log1416=-2.11.计算:23+log23+35-log39.解:原式=232log23+353log39=233+359=24+27=51. 12.已知logab=logba(a0,且a1;b0,且b1).求证:a=b或a=1b.证明:设logab=logba=k,则b=ak,a=bk,b=(bk)k=bk2.∵b0,且b1,k2=1,即k=1.当k=-1时,a=1b;当k=1时,a=b.a=b或a=1b,命题得证.。
(对数与对数函数)含有答案-人教版

(对数与对数函数)含有答案-人教版命题人:张立洪 第 2 页 共 10 页高一数学基础训练(六)对数部分:一、选择题: 1.若312=x,则x 等于 (B ) A log 23 B log 231C log 2131 D log 3122.已知log a 8=23,则a 等于 ( D ) A 41 B 21 C2 D 4 3.下列选项中,结论正确的是 (C )A 若log 2x =10,则2x=10B 若2x =3,则log 32=xC 0log )(log 322= D 2332log = 4.以下四个命题:(1)若log x 3=3,则x=9;(2)若log 4x =21,则x=2; (3)若log 3x=0,则x=3;(4)若log 51x=-3,则x=125,其中真命题的个数是(B ) A 1个 B 2个 C 3个 D 4个 5.下列各式中,能成立的是 (D )A log 3(6-4)=log 36-log 34B log3(6-4)=4log 6log 33 C log 35-log 36=5log 5log 33 D log 23+log 210=log 25+log 26 6.下列各式中,正确的是 (D )A lg4-lg7=lg(4-7)B 4lg3=lg3⨯4C lg3+lg7=lg(3+7)D ln Ne N=7.如果()N a a =--3log1,那么a 的取值范围是(D )命题人:张立洪第 3 页共 10 页命题人:张立洪 第 4 页 共 10 页A. 3B. 8C. 4D. log 48 二、填空题:1.把下列指数形式写成对数形式:(1) 45=625 5log 6254= (2)62-=6412log164=-6(3)a3=27 3log 27=a (4) m)(31=5.73 13log5.73m=2.把下列对数式写成指数式(1) 3log 9=2 23=9 (2)5log 125=3 35=125(3)2log 41=-2 22-=14 (4)3log811=-4 43-=1813.利用对数的定义或性质求值:(1) log 3131=1; (2)log 111=0;(3) log 232=5;(4)log 9131=2;4.当底是9时,3的对数等于14命题人:张立洪 第 5 页 共 10 页5.如果对数lga 与lgb 互为相反数,那么a 与b 之间应满足ab=1;6.计算 (1)2log (74×25)=19;(2) lg5100=25;7.如果log094132=--x,则x=-2;8.满足等式()()2lg 2lg 1lg =-+-x x 的∈x {}3. 9.计算:=+50lg 2lg 5lg21.10.求值:=++++3log 15.222ln 1001lg25.6loge 132三、解答题:1.已知xlog 5a =,xlog 3b =,求ba x23+的值。
(完整版)对数和对数函数经典练习题

对数和对数函数练习题1 求下列各式中的x 的值:(1)313x =;(2)6414x =;(3)92x =; (4)1255x 2=;(5)171x 2=-.2 有下列5个等式,其中a 〉0且a ≠1,x 〉0 , y>0①y log x log )y x (log a a a +=+,②y log x log )y x (log a a a ⋅=+, ③y log x log 21y x log a a a -=,④)y x (log y log x log a a a ⋅=⋅, ⑤)y log x (log 2)y x (log a a 22a -=-,将其中正确等式的代号写在横线上_____________.3 化简下列各式:(1)51lg 5lg 32lg 4-+; (2)536lg 27lg 321240lg 9lg 211+--+;(3)3lg 70lg 73lg -+; (4)120lg 5lg 2lg 2-+.4 利用对数恒等式N a N loga =,求下列各式的值: (1)5log 4log 3log354)31()51()41(-+ (2)2log 2log 4log 7101.0317103-+(3)6lg 3log 2log100492575-+ (4)31log 27log 12log 2594532+-5 化简下列各式:(1))2log 2(log )3log 3(log 9384+⋅+; (2)6log ]18log 2log )3log 1[(46626⋅⋅+-6 已知a 5log 3=,75b =,用a 、b 的代数式表示105log 63=________.7 (1))1x (log y 3-= 的定义域为_________值域为____________。
(2)22x log y = 的定义域为__________值域为_____________.8 求下列函数的定义域:(1))2x 3(log x 25y a 2--=;(2))8x 6x (log y 2)1x 2(+-=-;(3))x (log log y 212=.9 (1)已知3log d 30log c 3b 30a 303303....====,,,,将a 、b 、c 、d 四数从小到大排列为_____________________.(2)若02log 2log m n >>时,则m 与n 的关系是( )A .m>n>1B .n 〉m>1C .1>m>n>0D .1〉n>m>010 (1)若a>0且a ≠1,且143log a<,则实数a 的取值范围是( ) A .0〈a 〈1 B .43a 0<< C .43a 043a <<>或 D .43a 0<<或a 〉1 (2)若1<x 〈d ,令)x (log log c x log b )x (log a d d 2d 2d ===,,,则( )A .a<b 〈cB .a 〈c 〈bC .c<b 〈aD .c 〈a<b11 已知函数)x 35(log y )4x 2(log y 3231-=+=,.(1)分别求这两个函数的定义域;(2)求使21y y =的x 的值;(3)求使21y y >的x 值的集合.12 已知函数)x 1x lg()x (f 2-+=(1)求函数的定义域;(2)证明f(x)是减函数.【同步达纲练习】一、选择题1.3log 9log 28的值是( ) A .32 B .1 C .23 D .2 2.函数)1x 2x (log )x (f 22+-=的定义域是( )A .RB .(-∞,1)∪(1,+∞)C .(0,1)D .[1,+∞]3.若函数x 2)x (f =,它的反函数是)x (f 1-,)(f c )4(f b )3(f a 111π===---,,,则下面关系式中正确的是( )A .a<b 〈cB .a 〈c< bC .b 〈c<aD .b 〈a<c4.4log 33的值是( ) A .16 B .4 C .3 D .25.)2x 2x (log )x (f 25+-=,使f(x)是单调增函数的x 值的区间是( )A .RB .(-∞,1)C .[1,+∞]D .(-∞,1)∪(1,+∞) 6.2log 3log 3log 2log )3log 2(log 3223223--+的值是( ) A .6log 2 B .6log 3 C .2 D .17.命题甲:a 〉1且x>y>0 命题乙:y log x log a a >那么甲是乙的( )A .充分而非必要条件B .必要而非充分条件C .充分必要条件D .既不充分也不必要条件8.如果0<a<1,那么下列不等式中正确的是( )A .2131)a 1()a 1(-<- B .1)a 1(a 1>-+C .0)a 1(log )a 1(>+-D .0)a 1(log )a 1(<-+9.5log 222的值是( ) A .5 B .25 C .125 D .62510.函数)x 2(log )x (f 3-=在定义域区间上是( )A .增函数B .减函数C .有时是增函数有时是减函数D .无法确定其单调性11.x log )x (f 2=,若142)a (f 1=--,则实数a 的值是( )A .4B .3C .2D .112.在区间(0,+∞)上是增函数的函数是( )A .1x )32()x (f +=B .)1x (log )x (f 232+=C .)x x lg()x (f 2+=D .x 110)x (f -= 13.3log 15log 15log 5log 52333--的值是( ) A .0 B .1 C .5log 3 D .3log 514.函数2x log y 5+=(x ≥1)的值域是( )A .RB .[2,+∞]C .[3,+∞]D .(-∞,2)15.如果)x 2(log )x (f a -=是增函数,则实数a 的取值范围是( )A .(1,+∞)B .(2,+∞)C .(0,1)D .(0,2)16.函数)3x 2x (log y 23--=是单调增函数的区间是( )A .(1,+∞)B .(3,+∞)C .(-∞,1)D .(-∞,-1)17.如果02log 2log b a >>,那么下面不等关系式中正确的是( )A .0〈a<b 〈1B .0〈b 〈a 〈1C .a 〉b>1D .b>a>1二、填空题1.函数f(x)的定义域是[-1,2],则函数)x (log f 的定义域是_____________.2.若412x log 3=,则x =_____________.3.若)1x (log )x (f 3-=使f(a)=2,那么a =_____________.4.函数)a ax x (log )x (f 23-+=的定义域是R(即(-∞,+∞)),则实数a 的取值范围是_____________.5.函数x )31(y =的图象与函数x log y 3-=的图象关于直线_____________对称. 6.函数)1x (log )x (f 24-=,若f(a)〉2,则实数a 的取值范围是_____________.7.已知1313)x (f x x +-=,则)21(f 1-=_____________. 8.x log )x (f 21=,当]a a [x 2,∈时,函数的最大值比最小值大3,则实数a =_____________.9.])2(log )41)[(log 2(lg 15121--+=_____________.三、解答题1.试比较22x lg )x (lg 与的大小.2.已知)1a (log )x (f x a -=(a>1)(1) 求f (x)的定义域; (2)求使)x (f )x 2(f 1-=的x 的值.3.实数x 满足方程5)312(log x x 2=-+,求x 值的集合.4.已知b 5log a 7log 1414==,,求28log 35(用a 、b 表示).。
对数与对数运算练习题

对数与对数运算练习题在数学中,对数是解决指数问题的一种重要工具。
对数运算是指对数之间的各种运算,包括加法、减法、乘法和除法等。
本文将提供一些对数与对数运算的练习题,以帮助读者更好地理解和掌握这一概念。
练习题一:基础对数运算1. 计算 log₄ 16。
2. 计算 log₂ 8 + log₄ 2。
3. 计算 log₃ 9 - log₅ 125。
4. 计算 log₁₀ 100 - log₁₀ 10。
练习题二:对数的性质运用1. 若logₓ y = 3,计算logₓ √y 的值。
2. 若logₓ y = a,logₓ z = b,求logₓ (yz) 的值。
3. 若logₐ b = x,logₓ b = y,求logₐ x 的值。
4. 若 log₂ a = m,log₂ b = n,求logₐ (ab) 的值。
练习题三:对数方程的求解1. 解方程logₓ (x - 2) = 1。
2. 解方程 log₂ (3x + 1) = log₂ (2x - 4)。
3. 解方程 log₄ (x² - 5x + 4) = 2。
练习题四:对数运算的应用1. 在化学实验中,若酸的浓度 c 可以表示为 pH = -log₁₀ c,若某酸的浓度为 10⁻⁴ mol/L,求其 pH 值。
2. 若一座大楼的高度 H 可以表示为 H = log₂ (t + 5) + 10,其中 t 为某物体从大楼顶部自由下落所需时间(单位:秒),求当 t = 2 时,大楼的高度 H。
以上是对数与对数运算的练习题,通过解题的过程,我们可以更好地理解对数的概念及其运算规律。
希望这些练习题能够帮助读者提高对数的应用能力,并在数学学习中取得更好的成绩。
对数和对数函数练习题(答案).doc

对数与对数函数同步测试.一、选择题:_1.的值是( )A. 2 B. 1 C. - D. 2log23 3 22.若log2[log! (log2 x)] = log3[log! (log3 y)] = log5[log j (log5 z)]=0,则x、>、z 的大小关系是()2 3A. zVxVyB. xVyVzC. yVzVx5D. zVyVx3.已知+1,贝•] logK%3—x—6)等于(、A 3)A,—2B.-C.OD.-4 24.已知lg2=o, lg3=Z?,则电I?等于(). 2a+ bA. ------------a + 2b 2a+ b£). C.D.a +2b1g 15 1 +。
+ /? l + tz + Z? 1 —a + b 1 —a + b5.已知21g(x—2y)=lgx+lgy,则兰的值为( )A・1 B・4 C・1或4 D. 4或一y6.函数疗/log](2x-1)的定义域为( )A. (-, +8)B. [1, +8) C. ( 1] D. (—8,V 2 2 21).7.已知函数y=log !(履+2》+1)的值域为R,则实数。
的取值范围是( )_A. a > 1B. 0GV 1C. 0<a<lD. 0GW18.已知/(eO =x,则/'(5)等于( )A. B. 5e C. In5 D. log5e10.若y = -log2(x2-ax-a)在区间(-co,l-^)上是增函数,则。
的取值范围是( )A. [2 — 20,2]B. [2一2右,2)C.(2 —2右,2]D.(2 —2右,2)_11.设集合A = {x\x2-1>0},B={X\ log2 > 01},则AcB等于( )A. {x\x>l}B. (x | x > 0}C. {x\x<-i}D. {x|x<—l 或x>l}12.函数y = ln^n,xc(l,+oo)的反函数为()x-1e x -1 e x +1 e x -1 e x +1y = —~~ ,XG(0,+oo) B. y= ~~ ,XG (0,+oo)c. y= ~~,XG (-co,0)D.必= ―,xe (^x),0)A e +1 e -1 e +1 e -1二、填空题:13.计算:log2.56.25+lg^ +ln+ 21+1°&3 = —14.函数y=log4(x— 1 )2(xV1 =的反函数为.15.已知m>l,试比较(Igm)09与(lgm)°£的大小___________ 」16.函数y=(log]X)2—log^+S 在2WxW4 时的值域为 .4 4三' 解答题:一17.已知y=\og a(.2-ax)在区间{0, 1}上是x的减函数,求。
对数与对数函数专题练习(含参考答案)

数学 对数与对数函数 [基础达标]一、选择题1.[2018·天津卷]已知a =log 2e ,b =ln2,c =log 1213,则a ,b ,c的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b2.下列函数中,与函数y =2x -2-x 的定义域、单调性与奇偶性均一致的是( )A .y =sin xB .y =x 3C .y =⎝ ⎛⎭⎪⎫12xD .y =log 2x3.已知a =⎝ ⎛⎭⎪⎫120.3,b =log 120.3,c =a b ,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .a <c <bD .b <c <a4.已知a >0且a ≠1,函数f (x )=log a (x +x 2+b )在区间(-∞,+∞)上既是奇函数又是增函数,则函数g (x )=log a ||x |-b |的图象是( )5.若log a (a 2+1)<log a 2a <0,则a 的取值范围是( )A .(0,1) B.⎝ ⎛⎭⎪⎫0,12 C.⎝ ⎛⎭⎪⎫12,1 D .(0,1)∪(1,+∞)二、填空题6.函数f (x )=1-(lg x )2+3lg x -2的定义域是________.7.[2018·全国卷Ⅰ]已知函数f (x )=log 2(x 2+a ).若f (3)=1,则a =________.8.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x ,x ≤0,若关于x 的方程f (x )-a =0有两个实根,则a 的取值范围是________.三、解答题9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.10.已知函数f (x )=log 21+axx -1(a 为常数)是奇函数.(1)求a 的值与函数f (x )的定义域; (2)若当x ∈(1,+∞)时,f (x )+log 2(x -1)>m 恒成立.求实数m 的取值范围.[能力挑战]11.(2018·全国卷Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<abD .ab <0<a +b12.(2017·全国卷Ⅰ)设x ,y ,z 为正数,且2x =3y =5z ,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z13.(2018·荆州模拟)若函数f (x )=⎩⎪⎨⎪⎧log a x ,x >2,-x 2+2x -2,x ≤2(a >0,且a ≠1)的值域是(-∞,-1],则实数a 的取值范围是________.14.(2018·许昌第三次联考)已知f (x )=log a 1-x1+x(a >0,且a ≠1).(1)求f ⎝⎛⎭⎪⎫12 020+f ⎝⎛⎭⎪⎫-12 020的值.(2)当x ∈[-t ,t ](其中t ∈(0,1),且t 为常数)时,f (x )是否存在最小值,如果存在,求出最小值;如果不存在,请说明理由.(3)当a >1时,求满足不等式f (x -2)+f (4-3x )≥0的x 的取值范围.解析:y =2x -2-x 是定义域为R 的单调递增函数,且是奇函数.而y =sin x 不是单调递增函数,不符合题意;y =⎝ ⎛⎭⎪⎫12x是非奇非偶函数,不符合题意;y =log 2x 的定义域是(0,+∞),不符合题意;y =x 3是定义域为R 的单调递增函数,且是奇函数符合题意.故选B.答案:B3.[2019·福建厦门模拟]已知a =⎝ ⎛⎭⎪⎫120.3,b =log 120.3,c =a b ,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .a <c <bD .b <c <a解析:b =log 120.3>log 1212=1>a =⎝ ⎛⎭⎪⎫120.3,c =a b <a .∴c <a <b .故选B.答案:B4.[2019·河南商丘模拟]已知a >0且a ≠1,函数f (x )=log a (x +x 2+b )在区间(-∞,+∞)上既是奇函数又是增函数,则函数g (x )=log a ||x |-b |的图象是( )解析:∵函数f (x )=log a (x +x 2+b )在区间(-∞,+∞)上是奇函数,∴f (0)=0,∴b =1,又函数f (x )=log a (x +x 2+b )在区间(-∞,+∞)上是增函数,所以a >1,所以g (x )=log a ||x |-1|的定义域为{x |x ≠±1},且在(1,+∞)上递增,在(0,1)上递减,故选A. 答案:A5.若log a (a 2+1)<log a 2a <0,则a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫12,1 D .(0,1)∪(1,+∞) 解析:由题意得a >0且a ≠1,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1,同时2a >1,∴a >12.综上,a ∈⎝ ⎛⎭⎪⎫12,1. 答案:C 二、填空题6.[2019·山东济南模拟]函数f (x )=1-(lg x )2+3lg x -2的定义域是________.解析:⎩⎪⎨⎪⎧-(lg x )2+3lg x -2>0,x >0⇒⎩⎪⎨⎪⎧1<lg x <2,x >0⇒⎩⎪⎨⎪⎧10<x <100,x >0⇒10<x <100,故函数的定义域为{x |10<x <100}. 答案:{x |10<x <100}7.[2018·全国卷Ⅰ]已知函数f (x )=log 2(x 2+a ).若f (3)=1,则a =________.解析:∵f (x )=log 2(x 2+a )且f (3)=1,∴1=log 2(9+a ), ∴9+a =2,∴a =-7. 答案:-78.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x ,x ≤0,若关于x 的方程f (x )-a =0有两个实根,则a 的取值范围是________.解析:当x ≤0时,0<2x ≤1,由图象可知方程f (x )-a =0有两个实根,即y =f (x )与y =a 的图象有两个交点,所以由图象可知0<a ≤1.即实数a 的取值范围为(0,1].答案:(0,1] 三、解答题当x >1时,x +1>2, 所以log 2(1+x )>log 22=1.因为x ∈(1,+∞),f (x )+log 2(x -1)>m 恒成立,所以m ≤1,所以m 的取值范围是(-∞,1] [能力挑战]11.(2018·全国卷Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<abD .ab <0<a +b解析:选B.∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0, ∴ab <0.∵a +b ab =1a +1b =log 0.30.2+log 0.32=log 0.30.4, ∴1=log 0.30.3>log 0.30.4>log 0.31=0, ∴0<a +b ab<1,∴ab <a +b <0.故选B.12.(2017·全国卷Ⅰ)设x ,y ,z 为正数,且2x =3y =5z ,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z解析:选D.解法一:(特值法)令x =1,则由已知条件可得3y =2,5z =2,所以y =ln 2ln 3,z =ln 2ln 5,从而3y =3ln 2ln 3=ln 23ln 3<ln 9ln 3=2,5z =5ln 2ln 3=ln 25ln 3>2,则3y <2x <5z ,故选D. 解法二:(数形结合法)由2x =3y =5z ,可设(2)2x =(33)3y =(55)5z=t ,因为x ,y ,z 为正数,所以t >1,因为2=623=68,33=632=69,所以2<33;因为2=1025=1032,55=1025,所以2>55,所以55<2<33.分别作出y =(2)x,y =(33)x,y =(55)x 的图象,如图.则3y <2x <5z ,故选D.解法三:(作商法)由2x =3y =5z ,同时取自然对数,得x ln 2=y ln 3=z ln 5.由2x 3y =2ln 33ln 2=ln 9ln 8>1,可得2x >3y ;由2x 5z =2ln 55ln 2=ln 25ln 32<1,可得2x <5z ,所以3y <2x <5z ,故选D.13.(2018·荆州模拟)若函数f (x )=⎩⎪⎨⎪⎧log a x ,x >2,-x 2+2x -2,x ≤2(a >0,且a ≠1)的值域是(-∞,-1],则实数a 的取值范围是________.解析:x ≤2时,f (x )=-x 2+2x -2=-(x -1)2-1, f (x )在(-∞,1)上递增,在(1,2]上递减,∴f (x )在(-∞,2]上的最大值是-1,又f (x )的值域是(-∞,-1],∴当x >2时,log a x ≤-1,故0<a <1,且log a 2≤-1, ∴12≤a <1. 答案:⎣⎢⎡⎭⎪⎫12,1 14.(2018·许昌第三次联考)已知f (x )=log a 1-x1+x(a >0,且a ≠1).(1)求f ⎝ ⎛⎭⎪⎫12 020+f ⎝ ⎛⎭⎪⎫-12 020的值. (2)当x ∈[-t ,t ](其中t ∈(0,1),且t 为常数)时,f (x )是否存在最小值,如果存在,求出最小值;如果不存在,请说明理由.(3)当a >1时,求满足不等式f (x -2)+f (4-3x )≥0的x 的取值范围.解:(1)由1-x 1+x >0,得-1<x <1,∴f (x )的定义域为(-1,1).又f (-x )=log a 1+x 1-x =log a ⎝ ⎛⎭⎪⎫1-x 1+x -1=-log a1-x 1+x =-f (x ),∴f (x )为奇函数,∴f ⎝ ⎛⎭⎪⎫12 020+f ⎝ ⎛⎭⎪⎫-12 020=0. (2)设-1<x 1<x 2<1,则1-x 11+x 1-1-x 21+x 2=2(x 2-x 1)(1+x 1)(1+x 2). ∵-1<x 1<x 2<1,∴x 2-x 1>0,(1+x 1)(1+x 2)>0,∴1-x 11+x 1>1-x 21+x 2.当a >1时,f (x 1)>f (x 2), f (x )在(-1,1)上是减函数.又t ∈(0,1),∴x ∈[-t ,t ]时,f (x )有最小值,且最小值为f (t )=log a 1-t 1+t.当0<a <1时,f (x 1)<f (x 2),f (x )在(-1,1)上是增函数. 又t ∈(0,1),∴x ∈[-t ,t ]时,f (x )有最小值,且最小值为f (-t )=log a 1+t 1-t.综上,当x ∈[-t ,t ]时,f (x )存在最小值.且当a >1时,f (x )的最小值为log a 1-t1+t,当0<a <1时,f (x )的最小值为log a 1+t1-t .(3)由(1)及f (x -2)+f (4-3x )≥0,得 f (x -2)≥-f (4-3x )=f (3x -4). ∵a >1,∴f (x )在(-1,1)上是减函数,∴⎩⎪⎨⎪⎧x -2≤3x -4,-1<x -2<1,-1<3x -4<1,∴⎩⎪⎨⎪⎧x ≥1,1<x <3,1<x <53,所以1<x <53. ∴x 的取值范围是⎝ ⎛⎭⎪⎫1,53.。
对数与对数的运算精典练习题

对数与对数的运算精典练习题221对数与对数的运算 练习一,、选择题r12、log 7 [log 3 (log 2X )] = 0,则 等于(5、 2log a(M 2N ) log aM 叽 N ,则 M 的值为()7NA 、丄B 、4C 、14D 、4 或 11、—log5 (*5a)2A 、 一 a(a ^ 0)化简得结果是( )B 、a 2C 、 aD aC2;D 、3、log,nr (亦+1-") 等于 (A 1B 、C 、2)D — 24、 已知3a2 ,A 、 a 2 那么log38 2log 3 6用表示是(B、 5a 2C) 、3a(1 a)2D 、3a a 2i6、若log evlog n9<0,那么m,n满足的条件是( )A m>n>1B 、n>m>1C、0<n<m<1 D 、0<m<n<17、若1<x<b,a=log b X,c=log a x,贝V a,b,cA、a<b<c B 、a<c<b C 、c<a<b:、填空题的正数,且x>0, y>0, c = .ab,贝y xy = 9、若lg2 = a, lg3 = b,贝V log 512 =3a= 2,贝V log 38-2log 36=若log a 2 m,log a3 n, a2m n12、Ig25+lg2lg50+(lg2)三、解答题的关系是(c<b<a D8、若log a X = log b y=- I log c2, a, b, c均为不等于110、11、13、2(lg、、2)2Ig .、2lg5 . (Ig 2)2Ig2 114、若Iga、lgb是方程厶2 4x 1 o的两个实根,求ig(ab)(g;)2 的值。
15、若f(x)=1+log x3, g(x)=2log x2,试比较f(x)与g(x)的大小.答案:一、选择题I、C; 2、C;3、B; 4、A; 5、B; 6、C; 7、D二、填空题29、31— a10、a— 2II、1212、2二、解答题13、解:原式lg、2(2lg・2 Ig5) . (lg 2 1)2lgJ2(lg2 Ig5) |lgV2 1|lg』2 1 lg 721lg a lg b 214、解:lga lgb 1 ,©仙)(咱2=(lga+lgb)(lgalgb) 2=2[(lga+lgb) —4lgalgb] 2=2(4 — 4X 1)=415、解:f(x) —g(x)=log x( |x).x 0(1)x i ,即0<x<1 或x>-时,f(x)>g(x)33(x 1)(; X 1) 04x 0(2)x i ,即1<x<4 时,f(x)<g(x)3(x 1)(; x 1) 04(3)x=彳时,f(x)=g(x).2.2.1对数与对数的运算练习二一、选择题1、在b log a 2(5 a)中,实数a的范围是( )A 、 a 5 或 a 2 B、 2 a 5C 、 2 a 3 或 3 a 5 D、 3 a 42、若Iog4【log3(log2x)] 0,则x 2等于( )A 、期B、珅 C 8 D、 43、3叫4的值是( )A 、16 B、 2 C、 3 D、 42 12 cab:、填空题4、已知 log53a,log 54b,则 log2512是( )A 、 a bB 、-(a b) 2C 、 ab5、 已知2log 6 x 1 log 63,则X 的值是()A 、43B 、罷C 、 2 或 26、 计算 lg 32 lg 35 3lg2lg5B 、 3C 、 27、已知2X 3, log 488 y ,则 x 2y 的值为()3A 、 3B 、 8C 、 4D log48& 设a 、b 、c 都是正数,且3a4b6c,则(cabB 、cab cab9、 若 Iog x(j2 1) 1,贝y x= ______________ ,若叫三8 y ,则y= _____________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
}
对数与对数函数习题精选
一. 对数运算
1、若34x
=,则x 的值为( )
A .4log 3
B .64
C .3log 4
D .81 2、给出下列对数式:①lg100=;②lg 01=;③ln1e =;④ln10=.其中正确的是( )
A .①
B .②
C .③
D .④
3、若log 83a =-,则a 的值为( )
A .3
B .
13 C .2 D .12
& 4、38log 2log 9⋅的值为( ) A .
23 B .32 C .2 D .13
5、82log 9log 3的值是( ) A .23 B .1 C .32
D .2 6、已知35a b M ==,且112a b
+=,则M 的值为( ) A .15 B
.3 D .5 7、把下列指数形式写成对数形式:
(1) 45=625 ____________ (2)62-=
641 __________ (3)a 3=27 _____________ (4) m
)(31= _____________
8、把下列对数式写成指数式:
#
(1)3log 92= _________ (2)5log 125=3 _________ (3)2log 41=-2 __________ (4)31log 81
=-4 __________ 9、计算或化简:(1)lg(ln )e =___________(2)ln(lg10)=_____________; 10、求下列各式的值
(1)5log 25 = (2)2log 161= (3) lg = (
4) 127
= 11、 237log 49log 16log 27⋅⋅= ____________ .
12、100lg 20log 25+=____________.
《
13、若234log [log (log )]0x =,则x = ____________.
14、计算:(1)2log 642
; (2)32log 93; (3)51log 225+
(4)33
1lg8log 9lg125log 9+++; (5
)1324lg lg lg 2493-+
(6)22(lg 5)2lg 2(lg 2)+-; (7)2
2271log log 12log 42482
+- [
二.对数函数
1.如果
,那么 、 之间的关系是() A . B . C . D .
2.如图,曲线是对数函数
的图象,已知 的取值 ,则相应于曲线 的 值依次为( ).
A .
B .
C .
D . 4.方程3log 12
4x =的解是 ( ) A .
33 B .3 C .19 D .9
* 5.当a>1时,在同一坐标系中,函数log x a y a y x -==与的图象是 ( )
6.函数12
log (32)y x =-的定义域是( )
A .[1,)+∞
B .2(,)3+∞
C .2[,1]3
D .2
(,1]3
7.三个数60.70.70.76log 6,,的大小关系为( ) A. 60.70.70.7log 66<< B. 60.70.70.76log 6<<
C .0.760.7log 660.7<< D. 60.70.7log 60.76<<
8.若f x x (ln )=+34,则f x ()的表达式为( )
<
A .3ln x
B .3ln 4x +
C .3x e
D .34x
e +
9.若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a 的值为
A .42
B .22
C .41
D .2
1 10.函数lg y x =( )
A.是偶函数,在区间(,0)-∞ 上单调递增
B.是偶函数,在区间(,0)-∞上单调递减
C.是奇函数,在区间(0,)+∞ 上单调递增
D.是奇函数,在区间(0,)+∞上单调递减
11.函数()log 1a f x x =-在(0,1)上递减,那么()f x 在(1,)+∞上( )
A .递增且无最大值
B .递减且无最小值
C .递增且有最大值
D .递减且有最小值
【
12、函数(21)
log 32x y x -=-的定义域是( ) A 、()2,11,3⎛⎫+∞ ⎪⎝⎭ B 、()1,11,2⎛⎫+∞
⎪⎝⎭ C 、2,3⎛⎫+∞ ⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭ 13、函数212log (617)y x x =-+的值域是( )
A 、R
B 、[)8,+∞
C 、(),3-∞-
D 、[)3,+∞
14.已知函数y =log 21 (ax 2+2x +1)的值域为R ,则实数a 的取值范围是
( )
A .a > 1
B .0≤a < 1
C .0<a <1
D .0≤a ≤1 15.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于
( )
A .}1|{>x x
B .}0|{>x x
C .}1|{-<x x
D .}11|{>-<x x x 或
16.已知函数()(
)1,4,21,4,x
x f x f x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪+<⎩.则()22log 3f +的值为 ( )
&
A .13
B .16
C .112
D .124
17.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(1,0)-
和(0,1),则( )
A .2,2a b ==
B .2,2a b ==
C .2,1a b ==
D .2,2a b ==
18.若函数12
log x
y a ⎛⎫= ⎪⎝⎭为减函数,则a 的取值范围是___________. 19.函数 的值域为__________. 20.函数()
212()log 25f x x x =-+的单调区间是___________ ,值域是__________.
21.若函数(
)12log 22++=x ax y 的定义域为R ,则a 的范围为__________。
|
22.若函数()12log 22++=x ax y 的值域为R ,则a 的范围为__________。
23.(1)求函数2()log 32
x f x x -=-
(2)求函数)5,0[,)
31(42∈=-x y x x 的值域。
?
24、 ①求函数y =122)21
(++-x x 的定义域、值域、单调区间.
②求函数y = log 2 (x 2 -5x+6) 的定义域、值域、单调区间.。