九年级数学28.2.2 第2课时利用方位角、坡度解直角三角形
28.2 应用举例 方位角、坡度、坡角

因为在 Rt△EBD 中,i=DB∶EB=1∶1, 所以 BD=EB,所以 CD+BC=AE+AB, 即 2+x=4+ 5 x,解得 x=12,所以 BC=12 米.
上,则船C到海岸线l的距离是
km. 3
4.(2017海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供 的方案是水坝加高2米(即CD=2米),背水坡DE的坡度i=1∶1(即DB∶EB=1∶1),如图所示,已 知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin 50°≈0.77, cos 50°≈0.64,tan 50°≈1.20)
探究点二:坡度与坡角问题 【例2】 如图,水坝的横断面为梯形ABCD,已知上底长CB=5米,迎水面坡度为1∶ 面坡度为1∶1,坝高为4米,求:坝底AD和迎水面CD的长及坡角α 和β .
,背3 水
【导学探究】 1.作CE⊥AD,BF⊥AD,由坡度可得,CE∶ DE =1∶ 2.由坡度是坡角的 正切 值可得坡角.
第2课时 方位角、坡度、坡角
一、方位角 1.平面测量时,经常以正北、正南方向为基准描述物体运动的方向,这种表示方向的角叫 做方位角. 2.如图,射线OA,OB,OC,OD分别表示北偏东30°,南偏东70°,南偏西50°,北偏西35°.
二、坡度、坡角 1.坡度:坡面的铅直高度(h)与水平宽度(l)的比叫做坡面的坡度(或坡比),记作 i,即 i= h .
在 Rt△BCD 中,∠CBD=30°,tan 30°= CD = 3 ,所以 CD= 3 BD≈115(km),
人教版九年级下册数学 28.2.2解直角三角形的应用举例 例5 航海——方位角(共18张PPT)

险区。这渔船如果继续向东追赶鱼群,有没有进入危险 将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);
方位角
区的可能? (3)边角之间的关系:
某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向
的速度沿西偏北30°方向前进,乙船以每小时15千米的速度沿东北 方向前进,甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上, 于是甲船快速(匀速)沿北偏东75°的方向追赶,结果两船在B处 相遇。 (1)甲船从C处追赶上乙船用了多长时间? (2)甲船追赶乙船的速度北是每小时多少千米?
B
D
C 75°
45°
西走60米到达C点,测得点B在点C的北偏东60°方向。 这渔船如果继续向东追赶鱼群,有没有进入危险区的可能?
C
为有效开发海洋资源,保护海洋权益,我国对南海诸岛
2解直角三角形的应用举例
北 为有效开发海洋资源,保护海洋权益,我国对南海诸岛
进行了全面调查,一测量船在A岛测得B岛2解直角三角形的应用举例 航海问题——方位角
北 M东
B
A
D
N
解直角三角形的依据
(1)三边之间的关系: (2)锐角之间的关系:
(3)边角之间的关系:
B
c a
A
bC
仰角俯角
A
?
E 34
F
18
D
10米
B
方位角
北
C
西
O
B
东
南
利用锐角三角函数解决航海问题
如图,一艘海伦位于灯塔P的北偏东65°方向,距离灯 塔80海里的A处,它沿正南方向航行一段时间后,到达 位于灯塔P的南偏东34°方向的B处。这时,B处距离 灯塔P有多远?(结果取整数)(cos25°=0.9063, sin34°=0.5291, )
部审人教版九年级数学下册教学设计28.2.2 第3课时《利用方位角、坡度解直角三角形》

部审人教版九年级数学下册教学设计28.2.2 第3课时《利用方位角、坡度解直角三角形》一. 教材分析人教版九年级数学下册第28.2.2节《利用方位角、坡度解直角三角形》是学生在学习了三角函数基础知识之后的一个实践应用部分。
本节内容通过实际问题引入方位角和坡度的概念,让学生了解在实际问题中如何利用三角函数知识解决问题。
教材通过实例分析,引导学生掌握利用方位角、坡度解直角三角形的方法,培养学生解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了初中阶段的三角函数知识,对直角三角形有一定的认识。
但是,将理论知识应用于实际问题解决中,特别是涉及到方位角和坡度的问题,对学生来说还是一个新的挑战。
因此,在教学过程中,需要教师引导学生将理论知识与实际问题相结合,提高学生解决问题的能力。
三. 教学目标1.知识与技能:让学生理解方位角、坡度的概念,掌握利用方位角、坡度解直角三角形的方法。
2.过程与方法:通过实际问题,培养学生解决实际问题的能力,提高学生的动手操作能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、勇于探索的精神。
四. 教学重难点1.重点:方位角、坡度的概念及应用。
2.难点:如何将方位角、坡度与直角三角形相结合,解决实际问题。
五. 教学方法采用问题驱动法、案例教学法、分组讨论法等,引导学生主动探究、合作交流,提高学生解决问题的能力。
六. 教学准备1.准备相关的实际问题,用于引入方位角、坡度的概念。
2.准备一些图片或实物,用于展示直角三角形的应用。
3.分组讨论的素材,让学生在课堂上进行实践操作。
七. 教学过程1. 导入(5分钟)教师通过展示一些实际问题,如建筑工人测量高度、航海员确定船只位置等,引导学生思考如何利用数学知识解决这些问题。
让学生认识到方位角、坡度在实际生活中的重要性。
2. 呈现(10分钟)教师讲解方位角、坡度的概念,并通过实例解释其在实际问题中的应用。
同时,引导学生回顾直角三角形的知识,为后续解直角三角形打下基础。
九年级数学下册 利用方位角、坡度解直角三角形教案

28.2.2 应用举例第3课时利用方位角、坡度解直角三角形1.知道测量中方位角、坡角、坡度的概念,掌握坡度与坡角的关系;(重点)2.能够应用解直角三角形的知识解决与方位角、坡度有关的问题.(难点)一、情境导入在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.如图,坡面的铅垂高度(h)和水平长度(l)的比叫做坡面的坡度(或坡比),记作i,即i=hl.坡度通常写成1∶m的形式,如i=1∶6.坡面与水平面的夹角叫做坡角,记作α,有i =hl=tanα.显然,坡度越大,坡角α就越大,坡面就越陡.我们这节课就解决这方面的问题.二、合作探究探究点一:利用方位角解直角三角形【类型一】利用方位角求垂直距离如图所示,A、B两城市相距200km.现计划在这两座城市间修筑一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上.已知森林保护区的范围在以P点为圆心,100km为半径的圆形区域内,请问:计划修筑的这条高速公路会不会穿越保护区(参考数据:3≈1.732,2≈1.414).解析:过点P作PC⊥AB,C是垂足.AC与BC都可以根据三角函数用PC表示出来.根据AB的长得到一个关于PC的方程,求出PC的长.从而可判断出这条高速公路会不会穿越保护区.解:过点P作PC⊥AB,C是垂足.则∠APC=30°,∠BPC=45°,AC=PC·tan30°,BC=PC·tan45°.∵AC+BC=AB,∴PC·tan30°+PC·tan45°=200,即33PC+PC=200,解得PC≈126.8km>100km.答:计划修筑的这条高速公路不会穿越保护区.方法总结:解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】利用方位角求水平距离“村村通”公路工程拉近了城乡距离,加速了我区农村经济建设步伐.如图所示,C村村民欲修建一条水泥公路,将C村与区级公路相连.在公路A处测得C村在北偏东60°方向,沿区级公路前进500m,在B处测得C村在北偏东30°方向.为节约资源,要求所修公路长度最短.画出符合条件的公路示意图,并求出公路长度.(结果保留整数)解析:作CD⊥AB于D,在Rt△ACD中,据题意有∠CAD=30°,求得AD.在Rt△CBD 中,据题意有∠CBD=60°,求得BD.又由AD-BD=500,从而解得CD.解:如图,过点C作CD⊥AB,垂足落在AB的延长线上,CD即为所修公路,CD的长度即为公路长度.在Rt△ACD中,据题意有∠CAD=30°,∵tan∠CAD=CDAD,∴AD=CDtan30°=3CD.在Rt△CBD中,据题意有∠CBD=60°,∵tan∠CBD=CDBD,∴BD=CDtan60°=33 CD.又∵AD-BD=500,∴3CD-33CD=500,解得CD≈433(m).答:所修公路长度约为433m.方法总结:在解决有关方位角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方位角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.变式训练:见《学练优》本课时练习“课后巩固提升”第4题探究点二:利用坡角、坡度解直角三角形【类型一】利用坡角、坡度解决梯形问题如图,某水库大坝的横截面为梯形ABCD,坝顶宽BC=3米,坝高为2米,背水坡AB的坡度i=1∶1,迎水坡CD的坡角∠ADC为30°.求坝底AD的长度.解析:首先过B、C作BE⊥AD、CF⊥AD,可得四边形BEFC是矩形,又由背水坡AB 的坡度i=1∶1,迎水坡CD的坡角∠ADC为30°,根据坡度的定义,即可求解.解:分别过B、C作BE⊥AD、CF⊥AD,垂足为E、F,可得BE∥CF,又∵BC∥AD,∴BC=EF,BE=CF.由题意,得EF=BC=3,BE=CE=2.∵背水坡AB的坡度i=1∶1,∴∠BAE=45°,∴AE=BEtan45°=2,DF=CFtan30°=23,∴AD=AE+EF+DF=2+3+23=5+23(m).答:坝底AD的长度为(5+23)m.方法总结:解决此类问题一般要构造直角三角形,并借助于解直角三角形的知识求解.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型二】利用坡角、坡度解决三角形问题如图,某地下车库的入口处有斜坡AB,它的坡度为i=1∶2,斜坡AB的长为65 m,斜坡的高度为AH(AH⊥BC),为了让行车更安全,现将斜坡的坡角改造为14°(图中的∠ACB=14°).(1)求车库的高度AH;(2)求点B与点C之间的距离(结果精确到1m,参考数据:sin14°≈0.24,cos14°≈0.97,tan14°≈0.25).解析:(1)利用坡度为i=1∶2,得出AH∶BH=1∶2,进而利用勾股定理求出AH的长;(2)利用tan14°=6BC+12,求出BC的长即可.解:(1)由题意可得AH∶BH=1∶2,设AH=x,则BH=2x,故x2+(2x)2=(65)2,解得x=6,故车库的高度AH为6m;(2)∵AH=6m,∴BH=2AH=12m,∴CH=BC+BH=BC+12m.在Rt△AHC中,∠AHC =90°,故tan∠ACB=AHCH,又∵∠ACB=14°,∴tan14°=6BC+12,即0.25=6BC+12,解得BC=12m.答:点B与点C之间的距离是12m.方法总结:本题考查了解直角三角形的应用中坡度、坡角问题,明确坡度等于坡角的正切值是解题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第6题三、板书设计1.方位角的意义;2.坡度、坡比的意义;3.应用方位角、坡度、坡比解决实际问题.将解直角三角形应用到实际生活中,有利于培养学生的空间想象能力,即要求学生通过对实物的观察或根据文字语言中的某些条件,画出适合他们的图形.这一方面在教学过程应由学生展开,并留给学生思考的时间,给学生充分的自主思考空间和时间,让学生积极主动地学习.。
28.2.2“化斜为直”构造直 角三角形的四种常用方法

解:如图,延长BC,AD交于点E. ∵∠A=60°,∠B=90°, ∴∠E=30°.
在Rt△ABE中,BE=
AB tan E
2 tan 30
=2
解:如图,过点A作AE⊥BC于点E.
∵AB=AC=5,
∴BE=
1 2
BC=
1 2
×8=4,
1 ∠ ∵B∠ABEP=C=2 ∠12 ∠BABCA.C, ∴∠BPC=∠BAE.
在Rt△BAE中,由勾股定理得:
AE= AB2 BE2 52 42 =3,
∴tan
∠BPC=tan
∠BAE=
BE AE
4 3
3,
在Rt△CDE中,EC=2CD=2,
∴DE=EC·cos 30°=2× 3 3 . 2
∴S四边形ABCD=SRt△ABE-SRt△ECD=
1 AB·BE- 1 CD·ED=
2
2
12×2×2
3
-
1 2
×1×
33 3 2
.
返回
方法 3 有三角函数值不能直接利用时作垂线
3.如图,在△ABC中,点D为AB的中点,DC⊥AC,
在Rt△ACD中,∵∠C=45°,
ห้องสมุดไป่ตู้
∴∠CAD=90°-∠C=45°.
∴∠C=∠CAD.∴CD=AD= 3 x.
∵BC=1+ 3 ,∴ 3 x+x=1+ 3 ,
解得x=1,即BD=1.
在Rt△ABD中,∵cos ∴AB= BD 1
B= =2.
BD AB
九年级数学下册28.2.2解直角三角形的简单应用第3课时利用方位角坡度角解直角三角形预习学案新版新人教版

28.2.2解直角三角形的简单应用第3课时利用方位角、坡度角解直角三角形一、预习目标及范围1.了解解直角三角形解决方位角问题;2.理解解直角三角形解决坡度问题;3.预习课本76—77页,掌握方位角、坡度角解直角三角形.二、预习要点1.方位角的定义:指北或指南方向线与目标方向线所成的_______________的角叫做方位角.同方向的方向线_______________2.坡角、坡度的定义:坡面AB与水平面的夹角叫做__________坡面的________________________________之比叫做坡度(或坡比),记作i,坡度等于坡角的___________________.即i=___________________=_____________________________三、预习检测1.(1)坡度i是指__________与_________的比,这个值与坡角的__________值相等;(2)坡度i一般写成1∶m的形式,坡度i的值越大,表明坡角越__________,即坡越陡.2.填空:(1)若某坡面的坡角为45°,则坡度i=__________;(2)若某坡面的坡度为1∶3,则坡角是__________.3.如图,一艘海轮位于灯塔P的北偏东50°方向,距离灯塔P为10海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向B处,那么海轮航行的距离AB的长是()A. 10海里B. 10sin50°海里C. 10cos50°海里D. 10tan50°海里4.如图,在A处测得点P在北偏东60°方向上,在B处测得点P在北偏东30°方向上,若AB=2 m,则点P到直线AB的距离PC为()A. 3 mB. 3mC. 2 mD. 1 m我的疑惑在预习过程中的存在哪些困惑与建议填写在下面,并与同学交流。
__________________________________________________________________________ ____________________________________________________________________________参考答案预习要点1.小于90°互相平行2.坡角垂直高度与水平宽度正切值预习检测1.(1)解:竖直高度;水平距离;正切(2)大2、1∶1 ;3003、C4、B。
人教版九年级下册28.2.2应用举例方位角(教案)

1.理论介绍:首先,我们要了解方位角的基本概念。方位角是表示物体方向与参考方向之间的角度,它是解决方向定位问题的关键。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了方位角在航海导航中的应用,以及如何帮助我们准确确定航向。
3.重点难点解析:在讲授过程中,我会特别强调方位角的计算方法和实际应用这两个重点。对于难点部分,如方位角与坐标轴的关系,我会通过举例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与方位角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用指南针测量物体与正北方向的方位角。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
首先,对方位角定义的讲解可能还不够透彻,有些同学在后续的计算和应用环节出现了一些困惑。我意识到,对于这个概念,需要通过更多具体的例子和图示来进行解释,让学生能够更直观地理解。
其次,在案例分析环节,我发现同学们在将理论知识运用到实际问题中时,还存在一定的难度。这说明我在引导同学们分析问题时,还需要更加细致和耐心,帮助他们逐步掌握解题思路。
b.方位角的计算方法:介绍如何根据给定的坐标点计算方位角,包括起始线的选择、角度的正负以及角度的补角等。例如,如果已知一点A的坐标,要计算从A点到B点的方位角,需要考虑A点的坐标轴位置以及B点相对于A点的位置。
c.实际案例中的应用:通过具体的案例,如船舶导航、地图阅读等,解释方位角在实际情境中的使用方法。例如,给出一个航海案例,让学生根据船舶的起始位置和目的地,计算出航行的方位角,并讨论如何根据风向和洋流调整航向。
九年级数学上(人教版)课件:28.2.2 第2课时 坡度问题及其他

坡,数据如图所示,则下列关系或说法正确的是( B )
A.斜坡AB的坡度是10°
B.斜坡AB的坡度是tan 10°
C.AC=1.2tan 10°米
D.AB=
1.2 cos 10°
米
第1题图
第2题图
2.如图,某水库堤坝横断面迎水坡AB的坡比是1∶ 3,堤坝高BC=50 m,则迎水
坡面AB的长度是( A )
A.100 m
B.100 3 m
C.150 m
D.50 m
3.如图,将一个Rt△ABC形状的楔子从木桩的底端点P沿水平方向打入木
桩底下,使木桩向上运动.已知楔子斜面的倾斜角为15°,若楔子沿水
平方向前进6 cm(如箭头所示),则木桩上升了( C )
A.6sin 15° cm C.6tan 15° cm
B.6cos 15° cm D. 6 cm
tan 15°
第3题图
第4题图
第5题图
4.如图,一个小球由地面沿着坡度i=1∶2的坡面向上前进了10 m,此时小球距离地
面的高度为__ __m.
*5.(孝义模拟)如图,斜坡AB的坡度i=1∶2,坡脚B处有一棵树BC,某一时刻测得树
BC在斜坡AB上的影子BD的长度为10米,这时测得太阳光线与水平线的夹角为60°,则
(2)求山峰的高度CF.(≈1.414,结果精确到整数)
10.(山西)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为 世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其 中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300 cm,AB的 倾斜角为30°,BE=CA=50 cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F, CD垂直于地面,FE⊥AB于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相 同),均为30 cm,点A到地面的垂直距离为50 cm,求支撑角钢CD和EF的长度各是多少 厘米.(结果保留根号)