九年级数学上册-解直角三角形及其应用第3课时方位角与方向角坡度与坡角2坡度与斜率问题教案沪科版

合集下载

九年级数学上册《用直角三角形解实际中的方位角坡角问题》教案、教学设计

九年级数学上册《用直角三角形解实际中的方位角坡角问题》教案、教学设计
(五)总结归纳
1.学生总结:邀请学生分享本节课的收获,总结方位角和坡角的概念及计算方法。
-让学生用自己的语言表述所学知识,提高他们的表达能力和逻辑思维。
2.教师点评:针对学生的总结,给予肯定和鼓励,并对本节课的重点内容进行梳理和强调。
-指出学生在学习过程中存在的问题,为后续学习提出建议。
五、作业布置
-视频内容要贴近生活,富有教育意义,能引发学生对本节课主题的思考。
(二)讲授新知
1.理论知识讲解:介绍方位角和坡角的概念,以及它们在直角三角形中的表示方法。
-结合教材,详细讲解方位角的定义,以及如何通过直角三角形来计算实际中的方位角和坡角。
2.图形演示:利用几何画板或幻灯片,动态演示方位角和坡角的变化,帮助学生形象地理解概念。
九年级数学上册《用直角三角形解实际中的方位角坡角问题》教案、教学设计
一、教学目标
(一)知识与技能
1.理解方位角和坡角的概念,掌握它们在实际问题中的应用。
-了解方位角是指从正北方向顺时针旋转到目标方向的角度,坡角是指地面与水平线的夹角。
-学会使用直角三角形来计算方位角和坡角。
2.能够运用三角函数(正弦、余弦、正切)解决实际问题中的方位角和坡角问题。
-例如,要求学生测量学校附近一座小山的坡角,或根据地图上的方位角描述行走路线。
3.探究性作业:鼓励学生自主选择一个实际情境,如规划一次徒步旅行路线,使用直角三角形和三角函数解决相关问题。
-此类作业旨在培养学生的探究精神和独立解决问题的能力,同时加强数学知识与实践的联系。
4.小组合作作业:布置需要小组合作完成的作业,要求学生在小组内部分工协作,共同解决一个综合性的问题。
-预习作业要难度适中,旨在培养学生自主学习的能力和良好的学习习惯。

九年级数学上册4.4解直角三角形的应用与坡度、方位角有关的应用问题

九年级数学上册4.4解直角三角形的应用与坡度、方位角有关的应用问题
h 的比叫作坡度,通常用字母 i 表示,即 i= l (坡度通常写成 1∶m 的形式).
3.坡度 i 与坡角 α 的关系 关 系:i=hl =tan α.坡度越大,山坡越陡.
12/11/2021
第五页,共二十七页。
归类探究
类型之一 与方位角有关的应用问题 [2018·贺州]如图 4-4-11,一艘游轮在 A 处测得北偏东 45°的方向上有
12/11/2021
图 4-4-16
第十七页,共二十七页。
3.某地一人行天桥如图 4-4-17 所示,天桥高 6 m,坡面 BC 的坡度为 1∶1, 为了方便行人过天桥,有关部门决定降低坡度,使新坡面 AC 的坡度为 1∶ 3.
(1)求新坡面的坡角 α. (2)原天桥底部正前方 8 m 处(PB 的长)的文化墙 PM 是否需要拆除?请说明理由.
12/11/2021
第 4 题答图
第二十三页,共二十七页。
则 KG=PC=0.9 m,AG=EH=43FH=12 m. ∴BK=BA+AG-KG=22.5+12-0.9=33.6(m). ∵BPKK≥1.25, ∴PK≥1.25BK=1.25×33.6=42(m). ∴CG≥42 m. ∵FH=9 m,HG=EA=4 m, ∴CF≥29 m. 答:底部 C 距 F 处至少 29 m.
要在南沙某海岛附近进行捕鱼作业,当渔船航行至 B 处时,测得该岛位于正北方
向 10(1+ 3)海里的 C 处,为了防止某国海巡警干扰,请求我 A 处的渔监船前往 C
处护航.已知 C 位于 A 处的东北方向上,A 位于 B 的北偏西 30°方向上,则 A 和
C 之间的距离为( A )
A.10 2海里
B.20 2海里
例 2 答图

新人教部编版初中九年级数学28.2.2 第3课时 利用方向角、坡度解直角三角形

新人教部编版初中九年级数学28.2.2  第3课时 利用方向角、坡度解直角三角形
在 A 港北偏东 20°方向,则 A,C 两港之间的距离为( B )
A.(30+30 3) km B.(30+10 3) km C.(10+30 3) km D.30 3 km
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
12.如图,某旅游景区为方便游客,修建了一条东西走向的木栈 道 AB,栈道 AB 与景区道路 CD 平行.在 C 处测得栈道一端 A 位于 北偏西 42°方向,在 D 处测得栈道另一端 B 位于北偏西 32°方向.已 知 CD=120 m,BD=80 m,求木栈道 AB 的长度(结果保留整数,参 考数据:sin32°≈1372,cos32°≈1270,tan32°≈58,sin42°≈2470,cos42 °≈34,tan42°≈190).
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
∴MN=EN-EM=BF-EM=BC-CF-EM =20-16-2x-2x=4(米).
即平台 MN 的长度为 4 米.
长冲中学-“四学一测”活力课堂
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
(1)若新坡面坡角为 α,求坡角 α 的度数;
解:(1)∵新坡面坡角为α,新坡面的坡度为
1∶
3,∴t a n α=
1= 3
33.
∴α=30°.
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
(2)有关部门规定,文化墙距天桥底部小于 3 米 时应拆除,天桥改造后,该文化墙 PM 是否需要拆 除?请说明理由.
形,坝内一斜坡的坡度 i=1∶ 3,则这个斜坡坡角
为( A ) A.30°
B.45°
C.60°
D.90°

新人教部编版初中九年级数学28.2.2 第3课时 利用方向角、坡度解直角三角形

新人教部编版初中九年级数学28.2.2 第3课时 利用方向角、坡度解直角三角形

长冲中学“四学一测”活力课堂
解:如图,过 B 作 BD⊥AC 于点 D, 则∠BDC=90°, ∠CBD=90°-45°=45°. 在 Rt△ABD 中,∠BAD=60°, AB=4 千米, ∴BD=AB·sin∠BAD=4×23=2 3(千米).
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
分析:
解:过点 P 作 PC⊥AB 于点 C.由题意可知∠A=30°, ∠B=64°. 在 Rt△APC 中,∵∠ACP=90°, ∠A=30°,AP=80 海里,
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
∴PC=AP·sin30°=80×12=40(海里). 在 Rt△PBC 中, ∵∠BCP=90°,∠B=64°, ∴PB=siPn6C4°≈04.09≈44.4(海里). 答:海轮所在的 B 处与灯塔 P 的距离约为 44.4 海里.
在 Rt△BCD 中,∠CBD=45°, BD=2 3千米,
∴BC=cos∠BDCBD=2
3 2 =2
6(千米).
2
答:B,C 两地的距离是 2 6千米.
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
5.(教材 P77 练习 T2 变式) 如图,某公园内有座桥,桥 的高度是 5 米,CB⊥DB,坡 面 AC 的倾斜角为 45°.为方便老人过桥,市政部门 决定降低坡度,使新坡面 DC 的坡度为 i= 3∶3. 若新坡角外需留下 2 米宽的人行道,问离原坡角(A 点 处 )6 米 的 一 棵 树 是 否 需 要 移 栽 ( 参 考 数 据 :
长冲中学-“四学一测”活力课堂

九年级数学28.2.3 解直角三角形的应用--方位角与坡度课件

九年级数学28.2.3 解直角三角形的应用--方位角与坡度课件
(2)拦水坝横断面面积(结果保留根号)
β
α
2、如图,小岛A在港口P的南偏西45°
方向,距离港口81海里处,甲船从小岛
A出发,沿AP方向以9海里/时的速度驶
向港口;乙船从港口P出发,沿南偏东
60°方向,以18海里/时的速度驶离港
口。两船同时出发。 (1)出发后几小时两船与 港口P的距离相等?
北 P东
解直角三角形 ----方位角和坡度
知识回忆
1、仰角和俯角
视线

仰角

线
俯角
水平线
视线
一、方位角的定义:
指北或指南方向线与目标方向线所 成的小于90°的角叫做方位角。
如:北偏东30°

A
30°
南偏西45° 西
O

45°
B

例1 海中有一个小岛A,它的周围8海
里内有暗礁,鱼船跟踪鱼群由西向东航
(2)出发后几小时乙船在
甲船的正东方向?
A
i h tan 的形式。
l
坡度越大
h
坡角越大
坡面越陡
l
稳固练习
1、一段坡面的坡角为60°,那么坡度
i0°
lE
例题尝试
例2 如图,某一拦水坝的横断面为梯形ABCD,
AD∥BC,斜坡AB的长10 2米,坝顶宽16米,
坝高10米,斜面CD的坡比i=1:3
求:(1)坡角α和β;
行。在B点测得小岛A在北偏东60°方向
上,航行12海里到达点D,这时测得小
岛A在北偏东30°方向
上,如果鱼船不改变
A
航线继续向东航行,
有没有触礁的危险?
B D
二、坡度

2019-2020年度湘教版九年级数学上册《解直角三角形的应用-坡度和方位角》教学设计-优质课教案

2019-2020年度湘教版九年级数学上册《解直角三角形的应用-坡度和方位角》教学设计-优质课教案

4.4解直角三角形的应用(2)第2课时坡度和方位角问题教学目标【知识与技能】1.了解测量中坡度、坡角的概念;2.掌握坡度与坡角的关系,能利用解直角三角形的知识,解决与坡度、与弧长的有关实际问题.【过程与方法】通过对例题的学习,使学生能够利用所学知识解决实际问题.【情感态度】进一步培养学生把实际问题转化为数学问题的能力.【教学重点】能利用解直角三角形的知识,解决与坡度、与弧长有关的实际问题.【教学难点】能利用解直角三角形的知识,解决与坡度、与弧长的有关实际问题.教学过程一、情景导入,初步认知如图所示,斜坡AB和斜坡A1B1,哪一个倾斜程度比较大?显然,斜坡A1B1的倾斜程度比较大,说明∠A1>∠A.即tanA1>tanA.【教学说明】通过实际问题的引入,提高学生学习的兴趣.二、思考探究,获取新知1.坡度的概念,坡度与坡角的关系.如上图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平前进的距离的比叫作坡度(或坡比),记作i,即i=AC/BC,坡度通常用l∶m的形式,例如上图中的1∶2的形式.坡面与水平面的夹角叫作坡角,记作α.从三角函数的概念可以知道,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡.2.如图,一山坡的坡度为i=1∶2,小刚从山脚A出发,沿山坡向上走了240米到达点C,这座山坡的坡角是多少度?小刚上升了多少米?(角度精确到0.01°,长度精确到0.1米)3.如图,一艘船以40km/h的速度向正东航行,在A处测得灯塔C在北偏东60°方向上,继续航行1h到达B处,这时测得灯塔C在北偏东30°方向上,已知在灯塔C的四周30km内有暗礁.问这艘船继续向东航行是否安全?【教学说明】教师引导学生分析题目中的已知条件分别代表的是什么,将图形中的信息转化为图形中的已知条件,再分析图形求出问题.学生独立完成.三、运用新知,深化理解1.如图,在山坡上种树,要求株距(相邻两树间的水平距离)是5.5m,测得斜坡的倾斜角是24°,求斜坡上相邻两树的坡面距离是多少(精确到0.1m).分析:引导学生将实际问题转化为数学问题画出图形.解:已知:在Rt△ABC中,∠C=90°,AC=5.5,∠A=24°,求AB.在Rt△ABC中,cosA=AC/AB,∴AB=AC/cosA=5.5/0.9135≈6.0(米)答:斜坡上相邻两树间的坡面距离约是6.0米.2.同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m).解:作BE⊥AD,CF⊥AD,在Rt△ABE和Rt△CDF中,BE/AE=1/3,CF/FD=1/2.5∴AE=3BE=3×23=69(m).FD=2.5CF=2.5×23=57.5(m).∴AD=AE+EF+FD=69+6+57.5=132.5(m).因为斜坡AB的坡度i=tanα=1/3≈0.3333,所以α≈18°26′.∵BE/AB=sinα,∴AB=BE/sinα=23/0.3162≈72.7(m).答:斜坡AB的坡角α约为18°26′,坝底宽AD为132.5米,斜坡AB的长约为72.7米.3.庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度i=1∶3,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)解:过点A作AD⊥BC于点D,答:李强以122米/分钟的速度攀登才能和庞亮同时到达山顶A.4.某公园有一滑梯,横截面如图所示,AB表示楼梯,BC表示平台,CD表示滑道.若点E,F均在线段AD上,四边形BCEF是矩形,且sin∠BAF=2/3,BF=3米,BC=1米,CD=6米.求:(1) ∠D的度数;(2)线段AE的长.解:(1)∵四边形BCEF是矩形,∴∠BFE=∠CEF=90°,CE=BF,BC=FE,∴∠BFA=∠CED=90°,∵CE=BF,BF=3米,∴CE=3米,∵CD=6米,∠CED=90°,∴∠D=30°.(2)∵sin∠BAF=2/3,∴BFAB=2/3,∵BF=3米,∴AB=92米,.5.日本福岛发生核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场监测与海水采样,针对核泄漏在极端情况下对海洋环境的影响及时开展分析评估.如图,上午9时,海检船位于A处,观测到某港口城市P位于海检船的北偏西67.5°方向,海检船以21海里/时的速度向正北方向行驶,下午2时海检船到达B处,这时观察到城市P位于海检船的南偏西36.9°方向,求此时海检船所在B处与城市P的距离.(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)分析:过点P作PC⊥AB,构造直角三角形,设PC=x海里,用含有x的式子表示AC,BC的值,从而求出x的值,再根据三角函数值求出BP的值即可解答.解:过点P作PC⊥AB,垂足为C,设PC=x海里.在Rt△APC中,∵tanA=PCAC,∴AC=PC/tan67.5°=5x/12在Rt△PCB中,∵tanB=PC/BC,∴BC=x/tan36.9°=4x/3∵从上午9时到下午2时要经过五个小时,∴AC+BC=AB=21×5,∴5x/12+4x/3=21×5,解得x=60.∵sin∠B=PC/PB,∴PB=PC/sinB=60sin36.9°=60×5/3=100(海里)∴海检船所在B处与城市P的距离为100海里.【教学说明】通过练习,巩固本节课所学内容.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题4.1”中第1、6、7 题.教学反思通过本节课的学习,使学生知道坡度、坡角的概念,能利用解直角三角形的知识解决与坡度、坡角有关的实际问题,特别是与梯形有关的实际问题,懂得通过添加辅助线把梯形问题转化为直角三角形来解决.。

九年级数学上册 第23章 解直角三角形23.2解直角三角形及其应用第3课时 方位角与方向角、坡度与坡

九年级数学上册 第23章 解直角三角形23.2解直角三角形及其应用第3课时 方位角与方向角、坡度与坡

23.2 解直角三角形及其应用第3课时方位角与方向角、坡度与坡角1.方位角问题【知识与技能】使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决.【过程与方法】逐步培养学生分析问题、解决问题的能力.【情感态度】渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识.【教学重点】要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.【教学难点】要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.一、情景导入,初步认知海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后,到达该岛的南偏西25°的C处,之后,货轮继续往东航行,你认为货轮继续向东航行途中会有触礁的危险吗?你是如何想的?与同伴进行交流.【教学说明】经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题的过程中的应用.二、思考探究,获取新知如图,一艘船以20nmile/h的速度向东航行,在A处测得灯塔C在北偏东60°的方向上,继续航行1h达到B处,再测得灯塔C在北偏东30°的方向上,已知灯塔C四周10nmile 内有暗礁,问这船继续向东航行是否安全?【分析】这船继续向东航行是否安全,取决于灯塔C到航线AB的距离是否大于10nmile.解:过点C作CD⊥AB于点D,设CD=xnmile答:这船继续向东航行是安全的.【教学说明】利用实际问题,提高学生学习兴趣.教师要帮助学生学会把实际问题转化为解直角三角形问题,从而解决问题.三、运用新知,深化理解1.如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处.这时海轮所在的B处距离灯塔P有多远(精确到0.01海里)?解:如图,在Rt△APC中,PC=PA·cos(90°-65°)=80×cos25°≈72.505.在Rt△BPC中,∠B=34°.因此,当海轮到达位于灯塔P的南偏东34°方向时,它距离灯塔P大约129.66海里.°°方向,求此时海检船所在B处与城市P的距离?°≈3/°≈3/°≈12/°≈12/5)【分析】过点P作PC⊥AB,构造直角三角形,设PC=x海里,用含有x的式子表示AC,BC的值,从而求出x的值,再根据三角函数值求出BP的值即可解答.解:过点P作PC⊥AB,垂足为C,设PC=x海里,∵从上午9时到下午2时要经过五个小时,∴AC+BC=AB=21×5,,∴海检船所在B处与城市P的距离为100海里.3.某型号飞机机翼形状如图所示,根据图中数据计算AC、BD和CD的长度(精确到0.1米).作AF垂直直线CD于F,在直角三角形AFC中,∠ACF=∠CAF=45°,所以有CF=AF=BE=5,则有CD=(CF+FE)-ED=(CF+AB)-ED≈≈BD=2ED=2×≈5.8;所以CD,AC,BD的长分别约为3.4米,7.1米和5.8米.【教学说明】巩固所学知识.要求学生学会把实际问题转化成数学问题;会根据题意思考题目中的每句话对应图中的哪个角或边,清楚本题已知什么,求什么.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“”中第7题.本节课,主要是学习在方位角问题中利用三角函数解决相关问题,对于学生来说,把实际问题转化成数学问题有一定的难度.所有应该对此方面的问题多加练习.。

初三数学上册第23章解直角三角形解直角三角形及其运用(第3课时)方位角在解直角三角形中的运用课件(新版

初三数学上册第23章解直角三角形解直角三角形及其运用(第3课时)方位角在解直角三角形中的运用课件(新版

•2.(5分)如图,C,D是两个村庄,分别位于一个湖的南、北两端A和B的 正东方向上,且D位于C的北偏东30°方向上,CD=6 km,则AB= __________km.
•3.(5分)如图,小明同学在东西方向的环海路A处,测得海中灯塔P在北 偏东60°方向上,在A处东500米的B处,测得海中灯塔P在北偏东30°方向 上,则灯塔P到环海路的距离PC=___________米.(用根号表示)
பைடு நூலகம்B
•A
初三数学上册第23章解直角 三角形解直角三角形及其运 用(第3课时)方位角在解 直角三角形中的运用课件(
新版)沪科版
• 1.方位角的概念:方位是指在地理坐标中,目标方向与_•_正__南__或__ __•_正__北__方__向__的夹角,一般叙述为“南偏东×度或南偏西×度或北偏东× 度或北偏西×度”,可借助十字坐标帮助理解. • 2.方位角中的十字坐标的方向口诀是上_•_北__下_•_南__,左_•西___右 _•_东__.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23.2 解直角三角形及其应用
第3课时方位角与方向角、坡度与坡角
2.坡度与斜率问题
【知识与技能】
1.了解测量中坡度、坡角的概念;
2.掌握坡度与坡角的关系,能利用解直角三角形的知识,解决与坡度有关的实际问题.
【过程与方法】
通过对例题的学习,使学生能够利用所学知识解决实际问题.
【情感态度】
进一步培养学生把实际问题转化为数学问题的能力.
【教学重点】
能利用解直角三角形的知识,解决与坡度、与弧长有关的实际问题.
【教学难点】
能利用解直角三角形的知识,解决与坡度的有关的实际问题.
一、情景导入,初步认知
在本章第一节的内容中,我们对坡度的有关知识有了一定的了解.本节课我们继续学习与坡度有关的计算.
【教学说明】
引入新课,告诉学生本节课所学习的内容.
二、思考探究,获取新知
如图:铁路路基的横断面是四边形ABCD,AD∥BC,路基顶宽BC=9.8m,路基高BE=5.8m,斜坡AB的坡度i=1∶1.6,斜坡CD的坡度i=1∶2.5,求铁路路基下底宽AD的值(精确到0.1m)与斜坡的坡角α和β(精确到1°)的值.
解:过点C作CF⊥AD于点F,得
CF=BE,EF=BC,∠A=α,∠D=β
∴AE=1.6×5.8=9.28m,
DF=2.5×5.8=14.5m,
∴AD=AE+EF+DF=9.28+9.8+14.5≈33.6m.
由tanα=1/1.6, tanβ=1/2.5,得
α≈32°,β=22°
答:铁路路基下底宽33.6m,斜坡的坡角分别为32°和22°.
【教学说明】
教师引导学生分析题目中的已知条件分别代表的是什么,将图形中的信息转化为图形中的已知条件,再分析图形求出问题.
三、运用新知,深化理解
1.教材P130例7.
2.如图,在山坡上种树,要求株距(相邻两树间的水平距离)是5.5m,测得斜坡的倾斜角是24°,求斜坡上相邻两树的坡面距离(精确到0.1m).
【分析】
引导学生将实际问题转化为数学问题画出图形.已知:在Rt△ABC中,∠C=90°,AC=5.5米,∠A=24°,求AB.
答:斜坡上相邻两树间的坡面距离约是6.0米.
3.同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m).
解:作BE⊥AD,CF⊥AD,在Rt△ABE和Rt△CDF中,
∴AE=3BE=3×23=69(m).
FD=2.5CF=2.5×23=57.5(m).
∴AD=AE+EF+FD=69+6+57.5=132.5(m).
因为斜坡AB的坡度i=tanα=1/3
≈0.3333,
α≈18°26′
答:斜坡AB的坡角α约为18°26′,坝底宽AD为132.5米,斜坡AB的长约为72.7米.
4.庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)
解:过点A作AD⊥BC于点D,
在Rt△ABD中,∠B=45°
答:李强以122米/分钟的速度攀登才能和庞亮同时到达山顶A.
5.某公园有一滑梯,横截面如图所示,AB表示楼梯,BC表示平台,CD表示滑道.若点E,F 均在线段AD上,四边形BCEF是矩形,且sin∠BAF=2/3,BF=3米,BC=1米,CD=6米.求:
(1)∠D的度数;
(2)线段AD的长.
解:(1)∵四边形BCEF是矩形,
∴∠BFE=∠CEF=90°,CE=BF,BC=FE,
∴∠BFA=∠CED=90°,
∵CE=BF,BF=3米,
∴CE=3米,
∵CD=6米,∠CED=90°,
∴∠D=30°.
(2)∵sin∠BAF=2/3,∴BFAB=2/3,
【教学说明】
通过练习,巩固本节课所学内容.
四、师生互动、课堂小结
先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.
布置作业:教材“习题23.2”中第5、8题.
知道坡度、坡角的概念,能利用解直角三角形的知识解决与坡度、坡角有关的实际问题,特别是与梯形有关的实际问题,懂得通过添加辅助线把梯形问题转化为直角三角形来解决.。

相关文档
最新文档