2006年高考文科数学试题及答案(福建卷)
2006年高考数学福建卷文科及参考答案

2006年高考数学福建卷文科一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知两条直线2y ax =-和(2)1y a x =++互相垂直,则a 等于(A)2 (B)1 (C)0 (D)1-(2)在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于(A)40 (B)42 (C)43 (D)45(3)"tan 1"α=是""4πα=的(A)充分而不必要条件 (B)必要不而充分条件(C)充要条件 (D)既不充分也不必要条件(4)已知3(,),sin ,25παπα∈=则tan()4πα+等于(A)17 (B)7 (C)17- (D)7-(5)已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B 等于(A)[1,4)- (B)(2,3) (C)(2,3] (D)(1,4)-(6)函数(1)1xy x x =≠-+的反函数是 (A)(1)1x y x x =≠+方 (B)(1)1x y x x =≠- (C)1(0)x y x x -=≠ (D)1(0)xy x x-=≠ (7)已知正方体外接球的体积是323π,那么正方体的棱长等于(A) (B)3 (C)3 (D)3(8)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有(A)108种 (B)186种 (C)216种 (D)270种 (9)已知向量a 与b 的夹角为120o,3,13,a a b =+=则b 等于 (A)5 (B)4 (C)3 (D)1(10)对于平面α和共面的直线m 、,n 下列命题中真命题是 (A)若,,m m n α⊥⊥则n α∥ (B)若m αα∥,n ∥,则m ∥n(C)若,m n αα⊂∥,则m ∥n (D)若m 、n 与α所成的角相等,则m ∥n(11)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F,若过点F 且倾斜角为60o的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(A)(1,2] (B)(1,2) (C)[2,)+∞ (D)(2,)+∞(12)已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a fb f ==5(),2c f =则(A)a b c << (B)b a c << (C)c b a << (D)c a b <<二.填空题:本大题共4小题,每小题4分,共16分。
2006年高考文科数学试卷及答案(全国卷2)

2006年高考试题文科数学试题(全国II 卷)一.选择题(1)已知向量a =(4,2),向量b =(x ,3),且a∥b ,则x=(A )9 (B )6 (C )5 (D )3 (2)已知集合{}2{|3},|log 1M x x N x x =<=>,则M N =∩ (A )∅ (B ){}|03x x <<(C ){}|13x x << (D ){}|23x x <<(3)函数sin 2cos 2y x x =的最小正周期是(A )2π (B )4π (C )4π(D )2π(4)如果函数()y f x =的图像与函数y=3-2x 的图像关于原点对称,则y=()f x 的表达式为(A ) y=2x-3 (B )y=2x+3(C ) y=-2x+3 (D )y=-2x-3(5)已知ABC Δ的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆另外一个焦点在BC 边上,则ABC Δ的周长是(A) (B )6 (C) (D )12(6)已知等差数列{}n a 中,a 2=7,a 4=15,则前10项和S 10=(A )100 (B )210 (C )380 (D )400 (7)如图,平面α⊥平面β,,,A B AB αβ∈∈与两平面α、β所成的角分别为4π和6π。
过A 、B 分别作两平面交线的垂线,垂足为'A 、',B 若AB=12,则'A 'B = (A )4 (B )6 (C )8 (D )9(8)函数ln 1(0)y x x =+>的反函数为 (A )1()x y e x R +=∈ (B )1()x y e x R −=∈(C )1(1)x y ex +=> (D )1(1)x y e x −=>A'B'A B βα(9)已知双曲线22221x y a b −=的一条渐近线方程为43y x =,则双曲线的离心率为(A )53 (B )43 (C )54 (D )32(10)若(sin )3cos 2,f x x =−则(cos )f x =(A )3cos 2x − (B )3sin 2x −(C )3cos 2x + (D )3sin 2x +(11)过点(-1,0)作抛物线y=x 2+x+1的切线,其中一条切线为(A )2x+y+2=0 (B )3x-y+3=0 (C )x+y+1=0 (D )x-y+1=0(12)5名志愿者分到3所学校支教,要求每所学校至少有1名志愿者,则不同的分法共有(A )150种 (B )180种 (C )200种 (D )280种 二.填空题:(13)在4101()x x+的展开式中常数项是_____。
【高考数学】2006年高考试题分类解析--第十章排列、组合与二项式定理

2006年高考试题分类解析--第十章排列、组合与二项式定理1.(2006年福建卷)251()x x -展开式中4x 的系数是_10_(用数字作答)。
2.(2006年广东卷)在112⎪⎭⎫ ⎝⎛-x x 的展开式中,5x 的系数为 3.85112)2()2(1121111111111111=⇒=-⇒-=-=-----+r r x C xx C T r r r r r r r 所以5x 的系数为1320)2()2(3113111111-=-=---C C r r4.(2006年陕西卷)12(3x展开式中1x -的常数项为_594_(用数字作答)。
5.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有__600_种(用数字作答)。
6.( 2006年重庆卷)若(x 3 )x 1n 的展开式中各项系数之和为64,则展开式的常数项为( A)(A)-540 (B)(c)162 (D)5407.( 2006年重庆卷)将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有 ( B )(A )30种 (B )90种(C )180种 (D )270种8. (2006年上海春卷)电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有 48 种不同的播放方式(结果用数值表示).9.(2006年全国卷II )在(x 4+1x)10的展开式中常数项是 45 (用数字作答) 10.(2006年天津卷)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( A )A .10种B .20种C .36种D .52种11.(2006年天津卷)7)12(x x +的二项展开式中x 的系数是____280 (用数学作答).12. (2006年湖北卷)在2431⎪⎪⎭⎫ ⎝⎛+x x 的展开式中,x 的幂的指数是整数的项共有 (C ) A.3项 B.4项 C.5项 D.6项12.解选 C 。
2006年高考数学各章知识详解(1)

第一章 集合与简易逻辑1.(2006年福建卷)已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B 等于(C) (A )[1,4)- (B )(2,3) (C )(2,3] (D )(1,4)-【答案】 C【分析】:()()(),13,,2,4,A B =-∞-+∞=则[]()(]()1,32,42,3U C A B =-=【高考考点】绝对值不等式、集合的交集与补集运算 【易错点】:有关集合运算中的区间端点的取舍,常常出现失误【备考提示】 在这类运算中采用集合的区间表示或数轴表示,易于避免失误2.(2006年安徽卷)设集合{}22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C A B 等于( )A .RB .{},0x x R x ∈≠ C .{}0 D .∅ 【答案】 B【分析】:A ={x |0≤x ≤4},B ={y |-4≤y ≤0},则A ∩B ={0},故ðU (A ∩B )={x |x ∈R ,x ≠0},而选(B).【高考考点】集合的运算:交集、补集 【备考提示】: 对集合的交集、并集、补集等运算要熟练.3.(2006年陕西卷)已知集合{}|110,P x N x =∈≤≤集合{}2|60,Q x R x x =∈+-=则P Q 等于(B )(A ){}1,2,3 (B ){}2,3 (C ){}1,2 (D ){}2【答案】:B 【分析】: Q={ x ∈R|-3≤x ≤2},所以P ∩Q 等于{1,2} 【高考考点】:一元二次不等式的解法,集合的运算性质 【易错点】:忽视集合P 的取值范围 【备考提示】正确和熟练掌握集合的运算性质以及不等式的解法,在复习中注意和三角函数,一元二次不等式等知识的结合使用4.( 2006年重庆卷)已知集合U ={1,2,3,4,5,6,7}, A ={2,4,5,7},B ={3,4,5},则(u A )∪(u B )=( D)(A){1,6} (B){4,5}(C){1,2,3,4,5,7} (D){1,2,3,6,7} 【答案】:D 【分析】:用文恩图或直接计算:{1,3,6}A =U ð,{1,2,6,7}B =U ð,所以()(){1,2,3,6,7}A B =U U 痧,故选D ; 【高考考点】:集合的交、并、补运算。
2006年高考数学试题及答案(全国卷)

2006年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)一.选择题(1)已知向量a 、b 满足|a |=1,|b |=4,且ab =2,则a 与b 的夹角为(A )6π (B )4π (C )3π (D )2π(2)设集合M={x|x 2-x<0},N={x||x|<2},则(A )M φ=N (B )M M N =(C )M N M =(D )R N M =(3)已知函数y=e x 的图象与函数y=f(x)的图象关于直线y=x 对称,则(A )f(2x)=e 2x (x )R ∈ (B )f(2x)=ln2lnx(x>0)(C )f(2x)=2e 2x (x )R ∈(D )f(2x)= lnx+ln2(x>0)(4)双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m=(A )-41 (B )-4 (C)4 (D )41 (5)设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=(A )8 (B )7 (C )6(D )5(6)函数f(x)=tan(x+4π)的单调递增区间为 (A )(k π-2π, k π+2π),k Z ∈ (B )(k π, (k+1)π),k Z ∈(C) (k π-43π, k π+4π),k Z ∈ (D )(k π-4π, k π+43π),k Z ∈(7)从圆x 2-2x+y 2-2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为(A )21(B )53(C )23 (D )0(8)∆ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c ,且c=2a ,则cosB=(A )41 (B )43 (C )42 (D )32 (9)已知各顶点都在一个球面上的正四棱锥高为4,体积为16,则这个球的表面积是(A )16 π (B )20π (C )24π (D )32π (10)在(x-x21)10的展开式中,x 4的系数为 (A )-120 (B )120 (C )-15 (D )15 (11)抛物线y=-x 2上的点到4x+3y-8=0直线的距离的最小值是(A )34 (B )57 (C )58 (D )3(12)用长度分别为2、3、4、5、6(单位:cm)的细木棒围成一个三角形(允许连接,但不允许折断),能够得到期的三角形面积的最大值为(A )85cm 2(B )610cm 2 (C )355cm 2(D )20cm 2第Ⅱ卷(13)已知函数f(x)=a-121+x,若f(x)为奇函数,则a = 。
2006年高考文科数学试题(全国卷3)

2006 年一般高等学校招生全国一致考试文科数学 ( 全国卷 3)本试卷分第Ⅰ卷 ( 选择题 ) 和第Ⅱ卷 ( 非选择题 ) 两部分。
第Ⅰ卷 1 至 2 页。
第Ⅱ卷 3 至 4 页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1. 答题前,考生在答题卡上务必用黑色署名笔将自己的姓名、准考据号填写清楚,并贴好条形码。
请仔细批准条形码上的准考据号、姓名和科目。
2.每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案标号,在试题卷上作答无效。
3.本卷共12 小题,每题 5 分,共 60 分。
在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
参照公式:假如时间 A、 B 互斥,那么P( A B) P( A) P(B)假如时间 A、 B 相互独立,那么P(A B)P( A) P(B)假如事件 A 在一次试验中发生的概率是P,那么 n 次独立重复试验中恰巧发生k 次的概n k率 P n k C n k P k 1 P球的表面积公式S 4 R2,此中R表示球的半径43球的体积公式 V R ,此中R表示球的半径一、选择题⑴、已知向量 a、 b 知足a1, b 4,,且 a b 2 ,则a与 b 的夹角为A.B.C.3D.264⑵、设会合 M x x2x0 , N x x2,则A.M N B. M N MC.M N M D. M N R⑶、已知函数 y e x的图象与函数 y f x的图象对于直线 y x 对称,则A.C.f2x e2x ( x R)B. f2x ln 2 ln x(x0) f2x2x (x R)D.f2x ln x ln 2(x0) e⑷、双曲线 mx2y2 1 的虚轴长是实轴长的 2 倍,则m1 B.4C. 4D 1 A ..44⑸、设 S n 是等差数列 a n 的前 n 项和,若 S 735 ,则 a 4A . 8B. 7C. 6D. 5⑹、函数 f x tanx的单一增区间为4A . k, k , k Z22C . k3,k , k Z44B. k , k 1 , k ZD. k , k 3 , k Z44⑺、从圆 x 2 2x y 2 2y 10 外一点 P 3,2 向这个圆作两条切线,则两切线夹角的余弦值为A .1B.3C.3 D. 0252⑻、 ABC 的内角 A 、B 、C 的对边分别为a 、b 、c ,若 a 、b 、c 成等比数列, 且 c 2a ,则 cosBA .1B.3C.2D. 24443⑼、已知各极点都在一个球面上的正四棱柱高为4,体积为 16,则这个球的表面积是A . 16 B. 20C. 24D. 32抛物线 y x 2 上的点到直线 4x 3 y8 0 距离的最小值是A .4B.7C.8D. 33551⑽、在x2x10的睁开式中, x 4 的系数为A . 120B . 120C . 15D. 15⑾、抛物线 y x 2 上的点到直线 4x 3y8 0 距离的最小值是A .4B.7C.8D. 3355⑿、用长度分别为 2、 3、 4、5、 6(单位: cm )的 5 根细木棒围成一个三角形(同意连结,但不一样意折断),可以获得的三角形的最大面积为A . 8 5cm 2B . 6 10cm 2C . 3 55cm 2D . 20cm 22006 年一般高等学校招生全国一致考试理科数学 第Ⅱ卷注意事项:1. 答题前, 考生在答题卡上务必用黑色署名笔将自己的姓名、准考据号填写清楚, 并贴好条形码。
2006高考文科数学试卷及答案全国1

2006年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一.选择题(1)已知向量a 、b 满足|a |=1,|b |=4,且ab =2,则a 与b 的夹角为(A )6π (B )4π (C )3π (D )2π(2)设集合M={x|x 2-x<0},N={x||x|<2},则(A )M φ=N (B )M M N =(C )M N M =(D )R N M =(3)已知函数y=e x 的图象与函数y=f(x)的图象关于直线y=x 对称,则(A )f(2x)=e 2x (x )R ∈ (B )f(2x)=ln2lnx(x>0)(C )f(2x)=2e 2x (x )R ∈(D )f(2x)= lnx+ln2(x>0)(4)双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m=(A )-41 (B )-4 (C)4 (D )41 (5)设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=(A )8 (B )7 (C )6(D )5(6)函数f(x)=tan(x+4π)的单调递增区间为 (A )(k π-2π, k π+2π),k Z ∈ (B )(k π, (k+1)π),k Z ∈(C) (k π-43π, k π+4π),k Z ∈ (D )(k π-4π, k π+43π),k Z ∈(7)从圆x 2-2x+y 2-2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为(A )21(B )53(C )23(D )0(8)∆ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c ,且c=2a ,则cosB=(A )41 (B )43(C )42 (D )32(9)已知各顶点都在一个球面上的正四棱锥高为4,体积为16,则这个球的表面积是(A )16 π (B )20π (C )24π (D )32π (10)在(x-x21)10的展开式中,x 4的系数为 (A )-120 (B )120 (C )-15 (D )15 (11)抛物线y=-x 2上的点到4x+3y-8=0直线的距离的最小值是(A )34 (B )57 (C )58 (D )3(12)用长度分别为2、3、4、5、6(单位:cm)的细木棒围成一个三角形(允许连接,但不允许折断),能够得到期的三角形面积的最大值为(A )85cm 2(B )610cm 2 (C )355cm 2(D )20cm 2第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。
2006年普通高等学校招生全国统一考试文科数学

2006年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果时间A 、B 互斥,那么()()()P A B P A P B +=+ 如果时间A 、B 相互独立,那么()()()P A B P A P B =如果事件A 在一次试验中发生的概率是P,那么n 次独立重复试验中恰好发生k 次的概率()()1n kk kn n P k C P P -=-球的表面积公式24S R π=,其中R 表示球的半径 球的体积公式343V R π=,其中R 表示球的半径 一、选择题⑴、已知向量a b 、满足1,4,a b ==,且2a b =,则a 与b 的夹角为 A.6π B.4π C.3π D.2π ⑵、设集合{}20M x x x =-<,{}2N x x =<,则 A.M N =∅ B.M N M = C.MN M = D.MN R =⑶、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A.()22()x f x e x R =∈ B.()2ln 2ln (0)f x x x => C.()22()x f x e x R =∈ D.()2ln ln 2(0)f x x x =+> ⑷、双曲线221mx y +=的虚轴长是实轴长的2倍,则m =A.14-B.4-C.4D.14⑸、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a = A.8 B.7 C.6 D.5⑹、函数()tan 4f x x π⎛⎫=+ ⎪⎝⎭的单调增区间为A.,,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭ B.()(),1,k k k Z ππ+∈C.3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭D.3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭⑺、从圆222210x x y y -+-+=外一点()3,2P 向这个圆作两条切线,则两切线夹角的余弦值为A.12B.35C.2D.0 ⑻、ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c,若a 、b 、c 成等比数列,且2c a =,则cos B =A.14B.34 ⑼、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是 A.16π B.20πC.24πD.32π 抛物线2y x =-上的点到直线4380x y +-=距离的最小值是A.43B.75C.85D.3 ⑽、在1012x x ⎛⎫- ⎪⎝⎭的展开式中,4x 的系数为A.120-B.120C.15-D.15 ⑾、抛物线2y x =-上的点到直线4380x y +-=距离的最小值是A.43B.75C.85D.3 ⑿、用长度分别为2、3、4、5、6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为A.2B.2C.2D.220cm2006年普通高等学校招生全国统一考试理科数学第Ⅱ卷注意事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年高考文科数学试题(福建卷)一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知两条直线2y ax =-和(2)1y a x =++互相垂直,则a 等于(A )2 (B )1 (C )0 (D )1-(2)在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于(A )40 (B )42 (C )43 (D )45(3)"tan 1"α=是""4πα=的(A )充分而不必要条件 (B )必要不而充分条件(C )充要条件 (D )既不充分也不必要条件(4)已知3(,),sin ,25παπα∈=则tan()4πα+等于(A )17 (B )7 (C )17- (D )7-(5)已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B 等于(A )[1,4)- (B )(2,3) (C )(2,3] (D )(1,4)-(6)函数(1)1xy x x =≠-+的反函数是 (A )(1)1x y x x =≠+方 (B )(1)1xy x x =≠-(C )1(0)x y x x -=≠ (D )1(0)xy x x-=≠(7)已知正方体外接球的体积是323π,那么正方体的棱长等于(A ) (B (C (D (8)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有(A )108种 (B )186种 (C )216种 (D )270种 (9)已知向量a 与b 的夹角为120o,3,13,a a b =+=则b 等于 (A )5 (B )4 (C )3 (D )1 (10)对于平面α和共面的直线m 、,n 下列命题中真命题是 (A )若,,m m n α⊥⊥则n α∥ (B )若m αα∥,n ∥,则m ∥n(C )若,m n αα⊂∥,则m ∥n (D )若m 、n 与α所成的角相等,则m ∥n(11)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60o的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(A )(1,2] (B )(1,2) (C )[2,)+∞ (D )(2,)+∞(12)已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a fb f ==5(),2c f =则(A )a b c << (B )b a c << (C )c b a << (D )c a b <<二.填空题:本大题共4小题,每小题4分,共16分。
把答案填在答题卡的相应位置。
(13)251()x x-展开式中4x 的系数是_____(用数字作答)。
(14)已知直线10x y --=与抛物线2y ax =相切,则______.a =(15)已知实数x 、y 满足1,1,y y x ≤⎧⎪⎨≥-⎪⎩则2x y +的最大值是____。
(16)已知函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,则ω的最小值是____。
三.解答题:本大题共6小题,共74分。
解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)已知函数22()sin cos 2cos ,.f x x x x x x R =+∈(I )求函数()f x 的最小正周期和单调增区间;(II )函数()f x 的图象可以由函数sin 2()y x x R =∈的图象经过怎样的变换得到?(18)(本小题满分12分) 每次抛掷一枚骰子(六个面上分别标以数字1,2,3,4,5,6). (I )连续抛掷2次,求向上的数不同的概率;(II )连续抛掷2次,求向上的数之和为6的概率;(III )连续抛掷5次,求向上的数为奇数恰好出现3次的概率。
(19)(本小题满分12分) 如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2,CA CB CD BD AB AD ======(I )求证:AO ⊥平面BCD ; (II )求异面直线AB 与CD 所成角的大小; (III )求点E 到平面ACD 的距离。
(20)(本小题满分12分) 已知椭圆2212x y +=的左焦点为F ,O 为坐标原点。
(I )求过点O 、F ,并且与椭圆的左准线l 相切的圆的方程; (II )设过点F 的直线交椭圆于A 、B 两点,并且线段AB 的中点在直线0x y +=上,求直线AB 的方程。
(21)(本小题满分12分)已知()f x 是二次函数,不等式()0f x <的解集是(0,5),且()f x 在区间[]1,4-上的最大值是12。
(I )求()f x 的解析式;(II )是否存在实数,m 使得方程37()0f x x+=在区间(,1)m m +内有且只有两个不等的实数根?若存在,求出m 的取值范围;若不存在,说明理由。
(22)(本小题满分14分) 已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈(I )证明:数列{}1n n a a +-是等比数列;BE(II )求数列{}n a 的通项公式;(II )若数列{}n b 满足12111*44...4(1)(),n n b b b b n a n N ---=+∈证明{}n b 是等差数列。
2006年高考(福建卷)数学文试题答案一.选择题:本大题考查基本概念和基本运算。
每小题5分,满分60分。
(1)D (2)B (3)B (4)A (5)C (6)A (7)D (8)B (9)B (10)C (11)C (12)D 二.填空题:本大题考查基础知识和基本运算。
每小题4分满分16分。
(13)10 (14)14 (15)4 (16)32三.解答题:本大题共6小题,共74分。
解答应写出文字说明,证明过程或演算步骤。
(17)本小题主要考查三角函数的基本公式、三角恒等变换、三角函数的图象和性质等基本知识,以及推理和运算能力。
满分12分。
解:(I)1cos 2()2(1cos 2)22x f x x x -=+++132cos 2223sin(2).62x x x π=++=++ ()f x ∴的最小正周期2.2T ππ== 由题意得222,,262k x k k Z πππππ-≤+≤+∈即 ,.36k x k k Z ππππ-≤≤+∈()f x ∴的单调增区间为,,.36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(II )方法一:先把sin 2y x =图象上所有点向左平移12π个单位长度,得到sin(2)6y x π=+的图象,再把所得图象上所有的点向上平移32个单位长度,就得到3sin(2)62y x π=++的图象。
方法二:把sin 2y x =图象上所有的点按向量3(,)122a π=-平移,就得到3sin(2)62y x π=++的图象。
(18)本小题主要考查概率的基本知识,运用数学知识解决实际问题的能力。
满分12分。
解:(I )设A 表示事件“抛掷2次,向上的数不同”,则655().666P A ⨯==⨯答:抛掷2次,向上的数不同的概率为5.6(II )设B 表示事件“抛掷2次,向上的数之和为6”。
向上的数之和为6的结果有(1,5)、(2,4)、(3,3)、(4,2)、(5,1) 5种,55().6636P B ∴==⨯答:抛掷2次,向上的数之和为6的概率为5.36(III )设C 表示事件“抛掷5次,向上的数为奇数恰好出现3次”,即在5次独立重复试验中,事件“向上的数为奇数”恰好出现3次, 3325511105()(3)()().223216P C P C ∴====答:抛掷5次,向上的数为奇数恰好出现3次的概率为5.16(19)本小题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力。
满分12分。
方法一: (I )证明:连结OC ,,.BO DO AB AD AO BD ==∴⊥ ,,.BO DO BC CD CO BD ==∴⊥在AOC ∆中,由已知可得1,AO CO == 而2,AC =222,AO CO AC ∴+=90,o AOC ∴∠=即.AO OC ⊥,BD OC O =AO ∴⊥平面BCD(II )解:取AC 的中点M ,连结OM 、ME 、OE ,由E 为BC 的中点知ME ∥AB,OE ∥DC∴直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角 在OME ∆中,11,1,222EM AB OE DC ====OM 是直角AOC ∆斜边AC 上的中线,11,2OM AC ∴==cos 4OEM ∴∠=ABMDEOC∴异面直线AB 与CD所成角的大小为(III )解:设点E 到平面ACD 的距离为.h,11....33E ACD A CDE ACD CDE V V h S AO S --∆∆=∴=在ACD ∆中,2,CA CD AD ===122ACD S ∆∴==而211,22CDE AO S ∆===1.72CDE ACDAO S h S ∆∆∴===∴点E 到平面ACD的距离为7方法二:(I )同方法一。
(II )解:以O 为原点,如图建立空间直角坐标系,则(1,0,0),(1,0,0),B D -1(0,0,1),((1,0,1),(1,2C A E BA CD =-=-.2cos ,4BA CD BA CD BA CD∴<>==∴异面直线AB 与CD 所成角的大小为 (III)解:设平面ACD 的法向量为(,,),n x y z =则.(,,).(1,0,1)0,.(,,1)0,n AD x y z n AC x y z ⎧=--=⎪⎨=-=⎪⎩y0,0.x zz+=⎧⎪∴-=令1,y=得(3,1,n=-是平面ACD的一个法向量。
又1(2EC=-∴点E 到平面ACD的距离.377EC nhn===(20)本小题主要考查直线、圆、椭圆和不等式等基本知识,考查平面解析几何的基本方法,考查运算能力和综合解题能力。
满分12分。
解:(I)222,1,1,(1,0),: 2.a b c F l x==∴=-=-圆过点O、F,∴圆心M在直线12x=-上。
设1(,),2M t-则圆半径13()(2).22r=---=由,OM r=3,2=解得t=∴所求圆的方程为2219()(.24x y++±=(II)设直线AB的方程为(1)(0),y k x k=+≠代入221,2xy+=整理得2222(12)4220.k x k x k+++-=直线AB过椭圆的左焦点F,∴方程有两个不等实根,记1122(,),(,),A x yB x y AB中点00(,),N xy则21224,21kx xk+=-+2012002212(),(1),22121k k x x x y k x k k =+=-=+=++线段AB 的中点N 在直线0x y +=上,∴2002220,2121k k x y k k +=-+=++0k ∴=,或1.2k =当直线AB 与x 轴垂直时,线段AB 的中点F 不在直线0x y +=上。