复合场1

合集下载

带电粒子在复合场中的运动1

带电粒子在复合场中的运动1

带电粒子在复合场中的运动一、两种模型1、组合场:即电场与磁场有明显的界线,带电粒子分别在两个区域内做两种不同的运动,即分段运动,该类问题运动过程较为复杂,但对于每一段运动又较为清晰易辨,往往这类问题的关键在于分段运动的连接点时的速度,具有承上启下的作用.2、复合场:即在同一区域内同时有电场和磁场,些类问题看似简单,受力不复杂,但仔细分析其运动往往比较难以把握。

二、三种场力比较电场磁场重力场力的大小①F=qE②与电荷的运动状态无关,在匀强电场中,电场力为恒力。

与电荷的运动状态有关,①电荷静止或v∥B时,不受f洛,②v⊥B时洛仑兹力最大f洛= q B v①G=mg②与电荷的运动状态无关力的方向正电荷受力方向与E方向相同,(负电荷受力方向与E相反)。

f洛方向⊥(B和v)所决定的平面,(可用左手定则判定)总是竖直向下力做功特点做功多少与路径无关,只取决于始末两点的电势差,W=q UAB=ΔEf洛对电荷永不做功,只改变电荷的速度方向,不改变速度的大小做功多少与路径无关,只取决于始末位置的高度差,W=mgh=ΔEp一、带电粒子在复合场中的运动的分类1、带电微粒在三个场共同作用下做匀速圆周运动:必然是电场力和重力平衡,而洛伦兹力充当向心力.2、带电微粒在三个场共同作用下做直线运动:重力和电场力是恒力,它们的合力也是恒力。

当带电微粒的速度平行于磁场时,不受洛伦兹力,因此可能做匀速运动也可能做匀变速运动;当带电微粒的速度垂直于磁场时,一定做匀速运动。

3、较复杂的曲线运动当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.4、分阶段运动带电粒子可能一次通过几个情况不同的复合区域,其运动情况随区域发生变化.该类问题运动过程较为复杂,但对于每一段运动又较为清晰易辨,往往这类问题的关键在于分段运动的连接点时的速度,具有承上启下的作用.【典例训练1】(2009·辽宁、宁夏高考)医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度. 电磁血流计由一对电极a和b以及一对磁极N和S构成,磁极间的磁场是均匀的.使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图5-2-6所示.由于血液中的正负离子随血流一起在磁场中运动,电极a、b之间会有微小电势差.在达到平衡时,血管内部的电场可看做是匀强电场,血液中的离子所受的电场力和磁场力的合力为零.在某次监测中,两触点间的距离为3.0 mm,血管壁的厚度可忽略,两触点间的电势差为160 μV,磁感应强度的大小为0.040 T.则血流速度的近似值和电极a、b的正负为( )A.1.3 m/s,a正、b负B.2.7 m/s,a正、b负C.1.3 m/s,a负、b正D.2.7 m/s,a负、b正【【典例训练2】(2009·北京高考)如图5-2-7所示的虚线区域内,充满垂直于纸面向里的匀强磁场和竖直向下的匀强电场.一带电粒子a(不计重力)以一定的初速度由左边界的O点射入磁场、电场区域,恰好沿直线由区域右边界的O′点(图中未标出)穿出.若撤去该区域内的磁场而保留电场不变,另一个同样的粒子b(不计重力)仍以相同初速度由O点射入,从区域右边界穿出,则粒子b()A.穿出位置一定在O′点下方B.穿出位置一定在O′点上方C.运动时,在电场中的电势能一定减小D.在电场中运动时,动能一定减小3在如图1所示的空间中,存在场强为E 的匀强电场,同时存在沿x 轴负方向、磁感应强度为B 的匀强磁场.一质子(电荷量为e)在该空间恰沿y 轴正方向以速度v 匀速运动.据此可以判断出( ) A.质子所受电场力大小等于eE,运动中电势能减小;沿z 轴正方向电势升高 B.质子所受电场力大小等于eE,运动中电势能增大;沿z 轴正方向电势降低 C.质子所受电场力大小等于evB,运动中电势能不变;沿z 轴正方向电势升高 D.质子所受电场力大小等于evB,运动中电势能不变;沿z 轴正方向电势降低4如图所示,在两平行带电金属板间有垂直纸面向里的匀强磁场,质子、氘核、氚核沿平行于金属板方向,从两极板正中间以相同动能射入两极板间,最后都能从极板间射出,其中氘核沿直线运动未发生偏转,则下列说法正确的是(不计三种粒子的重力)( ) A.质子和氚核也不会偏转 B.质子偏向上极板 C.氚核偏向上极板D.射出时动能最大的是氚核5在一绝缘、粗糙且足够长的水平管道中有一带电量为q 、质量为m 的带电球体,管道半径略大于球体半径。

复合场知识点总结

复合场知识点总结

复合场知识点总结在物理学中,复合场是一个重要且富有挑战性的概念。

复合场通常指的是电场、磁场和重力场中的两个或多个同时存在于同一空间区域的情况。

理解和掌握复合场的相关知识,对于解决许多物理问题至关重要。

首先,让我们来了解一下电场。

电场是由电荷产生的,它对处在其中的电荷有力的作用。

电场强度是描述电场强弱和方向的物理量,用E 表示。

电场强度的定义式为 E =F / q,其中 F 是电荷所受的电场力,q 是电荷量。

磁场则是由电流或磁体产生的。

磁场对运动电荷或电流有力的作用,这个力被称为洛伦兹力或安培力。

磁感应强度 B 用来描述磁场的强弱和方向。

当电场和磁场同时存在时,就形成了电磁场。

在电磁场中,带电粒子的运动情况较为复杂。

如果带电粒子的初速度与电场和磁场的方向都垂直,那么它将做匀速圆周运动。

此时,洛伦兹力提供向心力,即qvB = mv²/ r,由此可以得出半径 r = mv /(qB) 。

重力场是我们日常生活中最为熟悉的场之一,物体在重力场中会受到重力的作用。

重力的大小 G = mg,其中 m 是物体的质量,g 是重力加速度。

在复合场中,带电粒子的运动情况取决于电场、磁场和重力场的强度、方向以及带电粒子的初速度、电荷量和质量等因素。

如果电场力和重力平衡,而磁场力不为零,带电粒子将在磁场中做匀速圆周运动。

例如,在速度选择器中,电场力和洛伦兹力平衡,只有速度满足特定条件的带电粒子才能通过。

当电场力、磁场力和重力三力平衡时,带电粒子将做匀速直线运动。

这种情况在实际问题中也较为常见。

还有一种情况是,带电粒子在复合场中的运动轨迹是复杂的曲线。

解决这类问题时,通常需要将带电粒子的运动分解为沿着电场、磁场和重力场方向的分运动,然后分别进行分析和计算。

在解决复合场问题时,我们需要熟练运用牛顿运动定律、动能定理、能量守恒定律等物理规律。

例如,当带电粒子在复合场中做非匀变速运动时,动能定理和能量守恒定律往往能发挥重要作用。

复合场1复合场的分类叠加场电场磁场重力

复合场1复合场的分类叠加场电场磁场重力

复合场1.复合场的分类: (1)叠加场:电场、磁场、重力场共存,或其中某两场共存. (2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁场交替出现.二、带电粒子在复合场中的运动形式1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动. 2.匀速圆周运动:当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动:当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动:带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动 过程由几种不同的运动阶段组成.1.[带电粒子在复合场中的直线运动]某空间存在水平方向的匀强电场带电小球沿如图所示的直线斜向下由A 点沿直线向B 点运动,此空间同时存在由A 指向B 的匀强磁场,则下列说法正确的是( ) A .小球一定带正电B .小球可能做匀速直线运动C .带电小球一定做匀加速直线运动D .运动过程中,小球的机械能增大2.[带电粒子在复合场中的匀速圆周运动]如图所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,则下列说法正确的是( ) A .小球一定带正电 B .小球一定带负电 C .小球的绕行方向为顺时针 D .改变小球的速度大小,小球将不做圆周运动3.[质谱仪原理的理解]如图所示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有磁感应强度为B 0的匀强磁场.下列表述正确的是( ) A .质谱仪是分析同位素的重要工具 B .速度选择器中的磁场方向垂直纸面向外 C .能通过狭缝P 的带电粒子的速率等于E /B D .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小4.[回旋加速器原理的理解]回旋加速器,工作原理示意图如图置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B 的匀强磁场与盒面垂直,高频交流电频率为f ,加速电压为U .若A 处粒子源产生的质子质量为m 、电荷量为+q ,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是( ) A .质子被加速后的最大速度不可能超过2πRf B .质子离开回旋加速器时的最大动能与加速电压U 成正比 C .质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1 D .不改变磁感应强度B 和交流电频率f ,该回旋加速器的最大动能不变规律总结:带电粒子在复合场中运动的应用实例1.质谱仪: (1)构造:如图由粒子源、加速电场、偏转磁场和照相底片等构成. (2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU =12mv 2.粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式qvB =m v 2r.由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷. r =1B 2mUq ,m =qr 2B 22U ,q m =2U B 2r2. 2.回旋加速器: (1)构造:如图D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形盒处于匀强磁场中. (2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由qvB =mv 2r , 图6得E km =q 2B 2r 22m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒半径r 决定,与加速电压无关. 特别提醒 这两个实例都应用了带电粒子在电场中加速、在磁场中偏转(匀速圆周运动)的原理.3.速度选择器:(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器. (2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =qvB ,即v =E B .4.磁流体发电机:(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,如图中的B 是发电机正极. (3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =q U L =qvB 得两极板间能达到的最大电势差U =BLv .5.电磁流量计工作原理:如图9所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子),在洛伦兹力的作用下横向偏转,a 、b 间出现电势差,形成电场,当自由电荷 所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定,即:qvB =qE =q U d ,所以v =U Bd ,因此液体流量Q =Sv =πd 24·U Bd =πdU 4B. 带电粒子在叠加场中的运动:1.带电粒子在叠加场中无约束情况下的运动情况分类 (1)磁场力、重力并存:①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题. (2)电场力、磁场力并存(不计重力的微观粒子):①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题. (3)电场力、磁场力、重力并存:①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.2.带电粒子在叠加场中有约束情况下的运动:带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.例 1 如图带电平行金属板相距为2R ,在两板间有垂直纸面向里、磁感应强度为B的圆形匀强磁场区域 ,与两板及左侧边缘线相切.一个带正电的粒子(不计重力)沿两板间中心线O 1O 2从左侧边缘O 1点以某一速度射入,恰沿直线通过圆形磁场区域,并从极板边缘飞出,在极板间运动时间为t 0.若撤去磁场,质子仍从O 1点以相同速度射入,则经t 02时间打到极板上. (1)求两极板间电压U ; (2)若两极板不带电,保持磁场不变,该粒子仍沿中心线O 1O 2从O 1点射入,欲使粒子从两板左侧间飞出,射入的速度应满足什么条件?突破训练1 如图空间存在着垂直纸面向外的水平匀强磁场, 磁感应强度为B ,在y 轴两侧分别有方向相反的匀强电场,电场强度均为E ,在两个电场的交界处左侧,有一带正电的液滴a 在电场力和重力作用下静止,现从场中某点由静止释放一个带负电的液滴b ,当它的运动方向变为水平方向时恰与a 相撞,撞后两液滴合为一体,速度减小到原来的一半,并沿x 轴正方向做匀速直线运动,已知液滴b 与a 的质量相等,b 所带电荷量是a 所带电荷量的2倍,且相撞前a 、b 间的静电力忽略不计. (1)求两液滴相撞后共同运动的速度大小; (2)求液滴b 开始下落时距液滴a 的高度h .例2 如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔S 1、S 2,两极板间电压的变化规律如图乙所示,正反向电压的大小均为U 0,周期为T 0.在t =0时刻将一个质量为m 、电荷量为-q (q >0)的粒子由S 1静止释放,粒子在电场力的作用下向右运动,在t =T 02时刻通过S 2垂直于边界进入右侧磁场区.(不计粒子重力,不考虑极板外的电场) (1)求粒子到达S 2时的速度大小v 和极板间距d . (2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件. (3)若已保证了粒子未与极板相撞,为使粒子在t =3T 0时刻再次到达S 2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小.突破训练2 如图所示装置中,区域Ⅰ和Ⅲ中分别有竖直向上和水平向右的匀强电场,电场强度分别为E 和E2;区域Ⅱ内有垂直向外的水平匀强磁场,磁感应强度为B .一质量为m 、带电荷量为q 的带负电粒子(不计重力)从左边界O 点正上方的M 点以速度v 0水平射入电场,经水平分界线OP 上的A 点与OP 成60°角射入区域Ⅱ的磁场,并垂直竖直边界CD 进入Ⅲ区域的匀强电场中.求: (1)粒子在区域Ⅱ匀强磁场中运动的轨迹半径; (2)O 、M 间的距离; (3)粒子从M 点出发到第二次通过CD 边界所经历的时间.突破训练3 如图甲所示,与纸面垂直的竖直面MN 的左侧空间中存在竖直向上的场强大小为E =2.5×102N/C 的匀强电场(上、下及左侧无界).一个质量为m =0.5kg 、电荷量为q =2.0×10-2 C 的可视为质点的带正电小球,在t =0时刻以大小为v 0的水平初速度向右通过电场中的一点P ,当t =t 1时刻在电场所在空间中加上一如图乙所示随时间周期性变化的磁场,使得小球能竖直向下通过D 点,D 为电场中小球初速度方向上的一点,PD 间距为L ,D 到竖直面MN 的距离DQ 为L /π.设磁感应强度垂直纸面向里为正.(g =10 m/s 2) (1)如果磁感应强度B 0为已知量,使得小球能竖直向下通过D 点,求磁场每一次作用时间t 0的最小值(用题中所给物理量的符号表示); (2)如果磁感应强度B 0为已知量,试推出满足条件的时刻t 1的表达式(用题中所给物理量的符号表示); (3)若小球能始终在电磁场所在空间做周期性运动,则当小球运动的周期最大时,求出磁感应强度B 0及运动的最大周期T 的大小(用题中所给物理量的符号表示).高考题组1.如图一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线从圆上的a 点射入柱形区域,从圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为35R .现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线从a 点射入柱形区域,也从b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.2.如图所示,两块水平放置、相距为d 的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷 出质量均为m 、水平速度均为v 0、带相等电荷量的墨滴.调节电源电压至U ,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M 点. (1)判断墨滴所带电荷的种类,并求其电荷量; (2)求磁感应强度B 的值; (3)现保持喷口方向不变,使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板M 点,应将磁感应强度调至B ′,则B ′的大小为多少?3.有人设计了一种带电颗粒的速率分选装置,其原理如图所示,两带电金属板间有匀强电场,方向竖直向上,其中PQNM矩形区域内还有方向垂直纸面向外的匀强磁场.一束比荷(电荷量与质量之比)均为1k 的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O ′O 进入两金属板之间,其中速率为v 0的颗粒刚好从Q 点处离开磁场,然后做匀速直线运动到达收集板,重力加速度为g ,PQ =3d ,NQ =2d ,收集板与NQ 的距离为l ,不计颗粒间的相互作用.求: (1)电场强度E 的大小; (2)磁感应强度B 的大小; (3)速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离.4. 如图所示,坐标平面第Ⅰ象限内存在大小为E =4×105 N/C 、方向水平向左的匀强电场,在第Ⅱ象限内存在方向垂直纸面向里的匀强磁场.质荷比为m q =4×10-10 N/C 的带正电粒子从x 轴上的A 点以初速度v 0=2×107 m/s 垂直x 轴射入电场,OA =0.2 m ,不计重力.求: (1)粒子经过y 轴时的位置到原点O 的距离; (2)若要求粒子不能进入第三象限,求磁感应强度B 的取值范围(不考虑粒子第二次进入电场后的运动情况.)5.如图甲,在以O 为坐标原点的xOy 平面内,存在着范围足够大的电场和磁场,一个带正电小球在t =0时刻以v 0=3gt 0的初速度从O 点沿+x方向(水平向右)射入该空间,在t 0时刻该空间同时加上如图乙所示的电场和磁场,其中电场方向竖直向上,场强大小E 0=mg q ,磁场垂直于xOy 平面向外,磁感应强度大小B 0=πm qt 0,已知小球的质量为m ,带电荷量为q ,时间单位为t 0,当地重力加速度为g ,空气阻力不计.试求: (1)t 0末小球速度的大小; (2)小球做圆周运动的周期T 和12t 0末小球速度的大小; (3)在给定的xOy 坐标系中,大体画出小球在0到24t 0内运动轨迹的示意图;(4)30t 0内小球距x 轴的最大距离.►题组1. 在水平匀强电场和垂直纸面向里的匀强磁场中,有一竖直足够长固定绝缘杆MN ,小球P 套在杆上,已知P 的质量为m ,电荷量为+q ,电场强度为E ,磁感应强度为B ,P 与杆间的动摩擦因数为μ,小球由静止开始下滑直到稳定的过程中( ) A .小球的加速度一直减小B .小球的机械能和电势能的总和保持不变C .下滑加速度为最大加速度一半时的速度可能是v =2μqE -mg 2μqBD .下滑加速度为最大加速度一半时的速度可能是v =2μqE +mg 2μqB2. 如图所示,已知一带电小球在光滑绝缘的水平面上从静止开始经电压U 加速后,水平进入互相垂直的匀强电场E 和匀强磁场B 的复合场中(E 和B 已知),小球在此空间的竖直面内做匀速圆周运动,则 ( ) A .小球可能带正电 B .小球做匀速圆周运动的半径为r =1B 2UE g C .小球做匀速圆周运动的周期为T =2πEBg D .若电压U 增大,则小球做匀速圆周运动的周期增加3.如图空间的某个复合场区域内存在着方向相互垂直的匀强电场和匀强磁场.质子由静止开始经一加速电场加速后,垂直于复合场的界面进入并沿直线穿过场区,质子从复合场区穿出时的动能为E k .那么氘核同样由静止开始经同一加速电场加速后穿过同一复合场后的动能E k ′的大小是( )A .E k ′=E kB .E k ′>E kC .E k ′<E kD .条件不足,难以确定4.如图两块平行金属极板MN 水平放置,板长L =1 m .间距d =33 m ,两金属板间电压U MN =1×104 V ;在平行金属板右侧依次存在ABC 和FGH 两个全等的正三角形区域,正三角形ABC 内存在垂直纸面向里的匀强磁场B 1,三角形的上顶点A 与上金属板M 平齐,BC 边与金属板平行,AB 边的中点P 恰好在下金属板N 的右端点;正三角形FGH 内存在垂直纸面向外的匀强磁场B 2.已知A 、F 、G 处于同一直线上,B 、C 、H 也处于同一直线上.AF 两点的距离为23m .现从平行金属板MN 左端沿中心轴线方向入射一个重力不计的带电粒子,粒子质量m =3×10-10 kg ,带电荷量q =+1×10-4 C ,初速度v 0=1×105 m/s. (1)求带电粒子从电场中射出时的速度v 的大小和方向; (2)若带电粒子进入中间三角形区域后垂直打在AC 边上,求该区域的磁感应强度B 1; (3)若要使带电粒子由FH 边界进入FGH 区域并能再次回到FH 界面,求B 2应满足的条件.5. 如图一个质量为m 、电荷量为q 的正离子,在D 处沿图示方向以一定的速度射入磁感应强度为B 的匀强磁场中,磁场方向垂直纸面向里.结果离子正好从距A 点为d 的小孔C 沿垂直于电场方向进入匀强电场,此电场方向与AC 平行且向上,最后离子打在G 处,而G 处距A 点2d(AG ⊥AC ).不计离子重力,离子运动轨迹在纸面内.求: (1)此离子在磁场中做圆周运动的半径r ; (2)离子从D 处运动到G 处所需时间; (3)离子到达G 处时的动能.6.如图甲所示,水平直线MN 下方有竖直向上的匀强电场,现将一重力不计、比荷q m =106C/kg 的正电荷置于电场中的O 点由静止释放,经过π15×10-5 s 后,电荷以v 0=1.5×104 m/s 的速度通过MN 进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B 按图乙所示规律周期性变化(图乙中磁场以垂直纸面向外为正,以电荷第一次通过MN 时为t =0时刻).求: (1)匀强电场的电场强度E ; (2)图乙中t =4π5×10-5 s 时刻电荷与O 点的水平距离; (3)如果在O 点右方d =68 cm 处有一垂直于MN 的足够大的挡板,求电荷从O 点出发运动到挡板所需的时间.7.如图甲所示,在xOy 平面内有足够大的匀强电场,电场方向竖直向上,电场强度E =40 N/C ,在y 轴左侧平面内有足够大的瞬时磁场,磁感应强度B 1随时间t 变化的规律如图乙所示,15π s 后磁场消失,选定磁场垂直纸面向里为正方向.在y 轴右侧平面内还有方向垂直纸面向外的恒定的匀强磁场,分布在一个半径为r =0.3 m 的圆形区域(图中未画出),且圆的左侧与y 轴相切,磁感应强度B 2=0.8 T .t =0时刻,一质量m =8×10-4 kg 、电荷量q =2×10-4 C 的微粒从x 轴上x P =-0.8 m 处的P 点以速度v =0.12 m/s 向x 轴正方向入射.(g取10 m/s 2,计算结果保留两位有效数字) (1)求微粒在第二象限运动过程中离y 轴、x 轴的最大距离. (2)若微粒穿过y 轴右侧圆形磁场时,速度方向的偏转角度最大,求此圆形磁场的圆心坐标(x ,y ).1.答案 CD 解析 由于重力方向竖直向下,空间存在磁场,且直线运动方向斜向下,与磁场方向相同,故不受洛伦兹力作用,电场力必水平向右,但电场具体方向未知,故不能判断带电小球的电性,选项A 错误;重力和电场力的合力不为零,故不可能做匀速直线运动,所以选项B 错误;因为重力与电场力的合力方向与运动方向相同,故小球一定做匀加速直线运动,选项C 正确;运动过程中由于电场力做正功,故机械能增大,选项D 正确.2.答案 BC 解析 小球做匀速圆周运动,重力必与电场力平衡,则电场力方向竖直向上,结合电场方向可知小球一定带负电,A 错误,B 正确;洛伦兹力充当向心力,由曲线运动轨迹的弯曲方向结合左手定则可得绕行方向为顺时针方向,C 正确,D 错误.3.答案 ABC 解析 粒子在题图中的电场中加速,说明粒子带正电,其通过速度选择器时,电场力与洛伦兹力平衡,则洛伦兹力方向应水平向左,由左手定则知,磁场的方向应垂直纸面向外,选项B 正确;由Eq =Bqv 可知,v =E /B ,选项C 正确;粒子打在胶片上的位置到狭缝的距离即为其做匀速圆周运动的直径D =2mv Bq,可见D 越小,则粒子的比荷越大,D 不同,则粒子的比荷不同,因此利用该装置可以分析同位素,A 正确,D 错误.4.答案 AC 解析 粒子被加速后的最大速度受到D 形盒半径R 的制约,因v =2πR T=2πRf ,故A 正确;粒子离开回旋加速器的最大动能E km =12mv 2=12m ×4π2R 2f 2=2m π2R 2f 2,与加速电压U 无关,B 错误;根据R =mv Bq ,Uq =12mv 21,2Uq =12mv 22,得质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1,C 正确;因回旋加速器的最大动能E km =2m π2R 2f 2与m 、R 、f 均有关,D 错误.例1解析 (1)设粒子从左侧O 1点射入的速度为v 0,极板长为L ,粒子在初速度方向上做匀速直线运动L ∶(L -2R )=t 0∶t 02,解得L =4R 粒子在电场中做类平抛运动:L -2R =v 0·t 02 a =qE m R =12a (t 02)2 在复合场中做匀速运动:q U 2R =qv 0B 联立各式解得v 0=4R t 0,U =8R 2B t 0(2)设粒子在磁场中做圆周运动的轨迹如图所示,设其轨道半径为r ,粒子恰好从上极板左边缘飞出时速度的偏转角为α,由几何关系可知:β=π-α=45°,r +2r =R 因为R =12qE m (t 02)2,所以qE m =qv 0B m =8R t 20 根据牛顿第二定律有qvB =m v 2r ,解得v =22-1Rt 0 所以,粒子在两板左侧间飞出的条件为0<v <22-1R t 0突破训练1 解析 液滴在匀强磁场、匀强电场中运动,同时受到洛伦兹力、电场力和重力作用. (1)设液滴a 质量为m 、电荷量为q ,则液滴b 质量为m 、电荷量为-2q ,液滴a 平衡时有qE =mg ① a 、b 相撞合为一体时,质量为2m ,电荷量为-q ,速度为v ,由题意知处于平衡状态,重力为2mg ,方向竖直向下,电场力为qE ,方向竖直向上,洛伦兹力方向也竖直向上,因此满足qvB +qE =2mg ②由①、②两式,可得相撞后速度v =E B(2)对b ,从开始运动至与a 相撞之前,由动能定理有W E +W G =ΔE k ,即(2qE+mg )h =12mv 20 ③ a 、b 碰撞后速度减半,即v =v 02,则v 0=2v =2E B 再代入③式得h =mv 204qE +2mg =v 206g =2E 23gB2 例2 解析 (1)粒子由S 1至S 2的过程,根据动能定理得qU 0=12mv 2 ① 由①式得v = 2qU 0m ②设粒子的加速度大小为a ,由牛顿第二定律得q U 0d =ma ③ 由运动学公式得d =12a (T 02)2 ④联立③④式得d =T 04 2qU 0m ⑤(2)设磁感应强度的大小为B ,粒子在磁场中做匀速圆周运动的半径为R ,由牛顿第二定律得qvB =m v 2R⑥ 要使粒子在磁场中运动时不与极板相撞,需满足2R >L 2 ⑦ 联立②⑥⑦式得B <4L 2mU 0q(3)设粒子在两边界之间无场区向左匀速运动的过程所用时间为t 1,有d =v t 1 ⑧ 联立②⑤⑧式得t 1=T 04 ⑨ 若粒子再次到达S 2时速度恰好为零,粒子回到极板间应做匀减速运动,设匀减速运动的时间为t 2,根据运动学公式得d =v 2t 2 ⑩ 联立⑧⑨⑩式得t 2=T 02 ⑪ 设粒子在磁场中运动的时间为t t =3T 0-T 02-t 1-t 2 ⑫ 联立⑨⑪⑫式得t =7T 04⑬设粒子在匀强磁场中做匀速圆周运动的周期为T ,由⑥式结合运动学公式得T =2πm qB ⑭ 由题意可知T =t ⑮ 联立⑬⑭⑮式得B =8πm 7qT 0. 突破训练2 解析 (1)粒子的运动轨迹如图所示,其在区域Ⅰ的匀强电场中做类平抛运动,设粒子过A 点时速度为v ,由类平抛运动规律知v =v 0cos 60°粒子在匀强磁场中做匀速圆周运动,由牛顿第二定律得Bqv =m v 2R ,所以R =2mv 0qB (2)设粒子在区域Ⅰ的电场中运动时间为t 1,加速度为a .则有qE =ma ,v 0tan 60°=at 1,即t 1=3mv 0qE O 、M 两点间的距离为L =12at 21=3mv 202qE(3)设粒子在Ⅱ区域磁场中运动时间为t 2 则由几何关系知t 2=T 16=πm 3qB 设粒子在Ⅲ区域电场中运动时间为t 3,a ′=q E2m =qE 2m 则t 3=22v 0a ′=8mv 0qE 粒子从M 点出发到第二次通过CD 边界所用时间为t =t 1+t 2+t 3=3mv 0qE +πm 3qB +8mv 0qE =8+3mv 0qE +πm 3qB 例3解析 (1)粒子在磁场中运动时qvB =mv 2R T =2πR v 解得T =2πm qB =4×10-3 s (2)粒子的运动轨迹如图所示,t =20×10-3 s 时粒子在坐标系内做了两个圆周运动和三段类平抛运动,水平位移x =3v 0T =9.6×10-2m 竖直位移y =12a (3T )2 Eq =ma 解得y =3.6×10-2 m 故t =20×10-3 s 时粒子的位置坐标为: (9.6×10-2 m ,-3.6×10-2 m)(3)t =24×10-3 s 时粒子的速度大小、方向与t =20×10-3 s 时相同,设与水平方向夹角为α 则v =v 20+v 2yv y =3aT tan α=v y v 0 解得v =10 m/s 与x 轴正向夹角α为37°(或arctan 34)斜向右下方突破训练3 解析 (1)当小球仅有电场作用时:mg =Eq ,小球将做匀速直线运动.在t 1时刻加入磁场,小球在时间t 0内将做匀速圆周运动,圆周运动周期为T 0,若竖直向下通过D 点,由图甲分析可知: t 0=3T 04=3πm 2qB 0(2)PF -PD =R ,即: v 0t 1-L =R qv 0B 0=mv 20/R 所以v 0t 1-L =mv 0qB 0,t 1=L v 0+m qB 0(3)小球运动的速率始终不变,当R 变大时,T 0也增加,小球在电磁场中的运动的周期T 增加,在小球不飞出电磁场的情况下,当T 最大时有: DQ =2R =L π=2mv 0qB 0 B 0=2πmv 0qL ,T 0=2πR v 0=L v 0由图分析可知小球在电磁场中运动的最大周期: T =8×3T 04=6L v 0,小球运动轨迹如图乙所示. 1. 解析 粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛伦兹力公式得qvB =m v 2r①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 点和d 点.由几何关系知,线段ac 、bc 和过a 、b 两点的圆弧轨迹的两条半径(未画出)围成一正方形.因此ac =bc =r② 设cd =x ,由几何关系得ac =45R +x ③bc =35R +R 2-x 2 ④ 联立②③④式得r =75R ⑤ 再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE =ma ⑥粒子在电场方向和直线方向运动的距离均为r ,由运动学公式得r =12at 2 ⑦ r =vt ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得E =14qRB 25m. 2.解析 (1)墨滴在电场区域做匀速直线运动,有q U d =mg ① 由①式得:q =mgd U ②由于电场方向向下,电荷所受电场力向上,可知:墨滴带负电荷.(2)墨滴垂直进入电场、磁场共存区域后,重力仍与电场力平衡,合力等于洛伦兹力,墨 滴做匀速圆周运动,有qv 0B =m v 20R ③ 考虑墨滴进入电场、磁场共存区域和下板的几何关系,可知。

复合场解题方法

复合场解题方法

重点知识点复合场:1.复合场:同时存在电场和磁场的区域,同时存在磁场和重力场的区域,同时存在电场、磁场和重力的区域,都叫做叠加场,也称为复合场.三种场力的特点:①重力的大小为mg,方向竖直向下。

重力做功与路径无关,其数值除与带电粒子的质量有关外,还与始、终位置的高度差有关.②电场力的大小为qE,方向与电场强度E及带电粒子所带电荷的性质有关。

电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与始、终位置的电势差有关。

③洛伦兹力的大小跟速度与磁场方向的夹角有关,当带电粒子的速度与磁场方向平行时,F洛=0;当带电粒子的速度与磁场方向垂直时,F洛=qvB。

洛伦兹力的方向垂直于速度v和磁感应强度B所决定的平面.无论带电粒子做什么运动,洛伦兹力都不做功.注:注意:电子、质子、α粒子、离子等微观粒子在叠加场中运动时,一般都不计重力。

但质量较大的质点(如带电尘粒)在叠加场中运动时,不能忽略重力。

2。

带电粒子在电磁组合场中运动时的处理方法:1.电磁组合场电磁组合场是指由电场和磁场组合而成的场,在空间同一区域只有电场或只有磁场,在不同区域中有不同的场。

2.组合场中带电粒子的运动带电粒子在电场内可做加速直线运动、减速直线运动、类平抛运动、类斜抛运动,需要根据粒子进入电场时的速度方向、所受电场力,再南力和运动的关系来判定其运动形式。

粒子在匀强磁场中可以做直线运动,也可以做匀速圆周运动和螺旋运动,但在高中阶段通常涉及的是带电粒子所做的匀速圆周运动,通常需要确定粒子在磁场内做圆周运动进出磁场时的位置、圆心的位置、转过的圆心角、运动的时间等。

在电磁组合场问题中,需要通过连接点的速度将相邻区域内粒子的运动联系起来,粒子在无场区域内是做匀速直线运动的.解决此类问题的关键之一是画好运动轨迹示意图。

3.粒子在正交电磁场中做一般曲线运动的处理方法:如图所示,一带正电的粒子从静止开始运动,所受洛伦兹力是一变力,粒子所做的运动是一变速曲线运动,若用动力学方法来处理其运动时,可将其运动进行如下分解:①初速度的分解因粒子初速度为零,可将初速度分解为水平向左和水平向右的两等大的初速度,令其大小满足②受力分析按上述方法将初速度分解后,粒子在初始状态下所受外力如图所示。

复合场

复合场

带电粒子在复合场中的运动一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场.带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要.二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.三、电场力和洛仑兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsin α,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、对于重力的考虑重力考虑与否分三种情况.(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.(3)对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.五、复合场中的特殊物理模型1.带电粒子在复合场中的运动(组合场)例1 如图所示,在x轴上方有垂直于xy平面向里的匀强磁场,磁感应强度为B,在X轴下方有沿y轴负方向的匀强电场,场强为E.一质量为m,电量为-q 的粒子从坐标原点O沿着y轴正方向射出.射出之后,第三次到达X轴时,它与点O的距离为L.求此粒子射出时的速度V和运动的总路程(重力不计).例2.如图所示,在y>0的空间中存在匀强电场,场强沿y轴负方向;在y<0的空间中,存在匀强磁场,磁场方向垂直xy平面(纸面)向外。

高考物理必考点之复合场

高考物理必考点之复合场

高考物理必考点之复合场复合场是指重力场、电场、磁场并存,或其中两场并存。

分布方式或同一区域同时存在,或分区域存在。

复合场是高中物理中力学、电磁学综合问题的高度集中。

既体现了运动情况反映受力情况、受力情况决定运动情况的思想,又能考查电磁学中的重点知识,因此,近年来这类题备受青睐。

通过上表可以看出,由于复合场的综合性强,覆盖考点较多,预计在高考中仍是一个热点。

复合场的出题方式:复合场可以图文形式直接出题,也可以与各种仪器(质谱仪,回旋加速器,速度选择器等)相结合考查。

一、重力场、电场、磁场分区域存在(例如质谱仪,回旋加速器)此种出题方式要求熟练掌握平抛运动、类平抛运动、圆周运动的基本公式及解决方式。

重力场:平抛运动电场:1.加速场:动能定理2.偏转场:类平抛运动或动能定理磁场:圆周运动二、重力场、电场、磁场同区域存在(例如速度选择器)带电粒子在复合场做什么运动取决于带电粒子所受合力及初速度,因此,把带电粒子的运动情况和受力情况结合起来分析是解决此类问题的关键。

(一)若带电粒子在复合场中做匀速直线运动时应根据平衡条件解题,例如速度选择器。

则有Eq=qVB(二)当带电粒子在复合场中做圆周运动时,则有Eq=mgqVB=mv2/R(2009年天津10题)如图所示,直角坐标系xOy位于竖直平面内,在水平的x轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy平面向里,电场线平行于y轴。

一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M点进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开电场和磁场,MN之间的距离为L,小球过M点时的速度方向与x轴的方向夹角为θ。

不计空气阻力,重力加速度为g,求(1)电场强度E的大小和方向;(2)小球从A点抛出时初速度v0的大小;(3)A点到x轴的高度h。

解析:本题考查平抛运动和带电小球在复合场中的运动。

小球先做平抛再做圆周运动(1)小球在电场、磁场中恰能做匀速圆周运动,说明电场力和重力平衡(恒力不能充当圆周运动的向心力),有Eq=mg得E=mg/q 重力的方向竖直向下,电场力方向只能向上,由于小球带正电,所以电场强度方向竖直向上。

带电粒子在复合场中的运动(1)知识讲解

带电粒子在复合场中的运动(1)知识讲解

M
N O
Q
q, m U
R0
O

P
r
2r
B
热点1 带电粒子在组合场中的运动问题
【典例1】 (2013届揭阳市一模拟考试理综物理36)
(18分)如图所示,在xOy平面内y≥0的区域存在电场
与磁场,ON为电场与磁场的分界线,ON与y轴的夹角
为45°,电场强度大小为32N/C,磁感应强度为0.1T,
一质量为
注意挖掘带电粒子整个运动 过程中包含的隐含条件.
(1)离子在平行板间运动的速度大小; (2)离子打到荧光屏上的位置C的坐标; (3)现只改变AOy区域内磁场的磁感应强度大小, 使离子都不能打到x轴上,磁感应强度大小B2′应满足什么条件?
确定研 正离子 究对象
审题流程
正离子不受重力作用
受力 分析
在B1、E1区受力平衡
带电粒子在复合场中的运动(1)
解题绝招 带电粒子在有界匀强磁场中运动时的常见情形
1. 单边界(粒子进出磁场具有对称性,有多大角度进就有多大角 度出)
v
B
v
B
B
v
O
O
a
v
bv
不相交,不可以
c
v
O
解题绝招 带电粒子在有界匀强磁场中运动时的常见情形

2.双边界(临界条件突破口: 相切)
3.圆形边界:粒子进出磁场 具有对称性:沿径向射入必 沿径向射出.
为45°,电场强度大小为32N/C,磁感应强度为0.1T,
一质量为
,带电荷量为

正粒子从O点沿x轴负方向以速度 磁场,不计粒子重力,求:
射入
(2)粒子在磁场中运动的时间;
热点1 带电粒子在组合场中的运动问题

第17讲复合场问题(1)

第17讲复合场问题(1)

复合场问题(1)姓名____________班级___________学号____________分数______________ 选择题1 .如图所示,在两个水平放置的平行金属板之间,电场和磁场的方向相互垂直.一束带电粒子(不计重力)沿着直线穿过两板间的空间而不发生偏转.则这些粒子一定具有相同的( ) A .质量mB .电量qC .运动速度vD .比荷m q2 .如图所示,匀强电场E 方向竖直向下,水平匀强磁场B 垂直纸面向里,三个油滴a 、b 、c带有等量同种电荷.已知a 静止,b 、c 在纸面内按图示方向做匀速圆周运动(轨迹未画出).忽略三个油滴的静电力作用,比较三个油滴的质量及b 、c 的运动情况,以下说法中正确的是 ( )A .三个油滴质量相等,b 、c 都沿顺时针方向运动B .a 的质量最大,c 的质量最小,b 、c 都沿逆时针方向运动C .b 的质量最大,a 的质量最小,b 、c 都沿顺时针方向运动D .三个油滴质量相等,b 沿顺时针方向运动,c 沿逆时针方向运动填空题解答题3 .如图所示,二块水平放置、相距为d 的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m 、水平速度均为v 0、带相等电荷量的墨滴.调节电源电压至U,墨滴在电场区域恰能沿水平向右做匀速直线运动,进入电场、磁场共存区域后,最终垂直B打在下板的M 点.(1)判断墨滴所带电荷的种类,并求其电荷量;(2)求磁感应强度B 的值;(3)现保持喷口方向不变,使其竖直下移到两板中间位置.为了使墨滴仍能到达下板M 点应将磁感应强度调至B',则B'的大小为多少?4 .如图所示,坐标系xOy 在竖直平面内,x 轴正方向水平向右,y 轴正方向竖直向上.空间有垂直于坐标平面向外的匀强磁场,磁感应强度大小为B ,在x >0的空间里有沿x 轴正方向的匀强电场,场强的大小为E ,一个带正电的小球经过图中x 轴上的a 点,沿着与水平方向成θ=30°角的斜向下直线做匀速运动,经过y 轴上的b 点进入x <0区域,要使小球进入x <0区域后做匀速圆周运动,则需在x <0区域内另加一匀强电场.若带电小球做圆周运动通过x 轴上的c 点,且Oa =Oc ,设重力加速度为g ,求:(1)小球运动速率的大小;(2)在x <0的区域所加电场大小和方向;(3)小球从b 点运动c 点所用时间及Oa 的长度.5 .如图,坐标系xOy 在竖直平面内.x 轴下方有匀强电场和匀强磁场,电场强度为E 、方向竖直向下,磁感应强度为B 、方向垂直纸面向里.将一个带电小球从y 轴上P (0,h )点以初速度v 0竖直向下抛出,小球穿过x 轴后,恰好做匀速圆周运动.不计空气阻力,已知重力加速度为g .求:(1)小球到达O 点时速度的大小;(2)小球做圆周运动的半径;(3)小球从P 点到第二次经过x 轴所用的时间.θ B a b c y x O E O y x P (0,h ) B Ev 0 ╳╳ ╳ ╳ ╳ ╳ ╳ ╳╳ ╳ ╳ ╳参考答案选择题1. C2. A填空题解答题3. 【答案】mgd q U =,02v U B gd =,024'5v U B gd= 【考点】带电粒子在复合场中运动【解析】(1) 墨滴在电场区域做匀速直线运动,有U qmg d= 得mgd q U =, 由于电场方向向下,电荷所受电场力向上,可知:墨滴带负电荷.(2) 进入电场、磁场共存区域后,重力与电场力平衡,磁场力做匀速圆周运动的向心力,20o v qv B m R= 考虑墨滴进入磁场和挡板的几何关系,可知墨滴在该区域恰完成四分之一圆周运动,则半径R=d,由此可得:02v U B gd =(3)根据题设,墨滴运动轨迹如图,设圆周运动半径为'R ,有20''o v qv B m R = 由图示可得:222'(')2d R d R =+-得:5'4R d =,联立求得:024'5v U B gd=4. 油滴从a 运动到b 的过程中,油滴受重力、电场力和洛仑兹力作用而处于平衡状态,由题设条件知:qBvqE =︒30sin 所以油滴的运动速率为:B E v 2=(2)油滴在x <0的区域做匀速圆周运动,则油滴的重力与所受的电场力平衡,洛仑兹力提供油滴作圆周运动的向心力.所以:E q mg '= 又mgqE =︒30tan 所以E E 3=' 方向竖直向上(3)连接bc ,过b 作ab 的垂线交x 轴于O ′.因为︒='∠'∆︒=∠60,30b O a ,O ab 中所以在θ又Oa=Oc 故︒=∠=∠30θOcb所以b O c O O cb '='︒='∠,30 则O '为油滴做圆周运动的圆心设油滴作圆周运动的半径为R ,周期为T ,则Rv m qBv R b O c O 2=='='且 所以qB m v R = qBm v R T ππ22== 由于︒='∠120b O c ,油滴从b 运动到c 的时间为qBm T t 32311π== 又R b O O O bO O 2121,30='='︒='∠所以 所以qBmv R Oa R R R Oc 23232321===+=即 又g E q m 3=是 所以 gB E t 3321π= 2233gB E Oa = 5. 解:(1)设小球经过O 点时的速度为v ,从P 到O 2v ―20v = 2gh解得:gh v v 2+=20(2)小球穿过x 轴后恰好做匀速圆周运动,画出小球运动的轨迹示意图 有qE = mg从O 到A ,根据牛顿第二定律rv m qvB 2= 求出 gBgh v E r 220+= (3)从P 到O ,小球第一次经过x 轴,所用时间为t 1v = v 0 + gt 1从O 到A ,小球第二次经过x 轴,所用时间为t 2qBm v r T ππ22== gB E T t π==22 求出 t = t 1 + t 2 =g v gh v 0202-++gB E π。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自由的带点粒子在复合场中作的直线运动通常都是匀 速直线运动,除非粒子沿磁场方向飞入不受洛仑兹力 作用。因为重力、电场力均为恒力,若两者的合力不 能与洛仑兹力平衡,则带点粒子速度的大小和方向将 会改变,不能维持直线运动了。
2、 匀速圆周运动。 自由的带电粒子在复合场中作匀速圆周运动时,必定 满足电场力和重力平衡,则当粒子速度方向与磁场方 向垂直时,洛仑兹力提供向心力,使带电粒子作匀速 圆周运动。
例4:如图所示,套在很长的绝缘直棒上的小球,质量为 m,带电量为+q,小球可在直棒上滑动,将此棒竖直放 在互相垂直,电场强度为E,磁场强度为B,小球与棒的 动摩擦因素为μ,求:小球由静止沿棒下落的最大加速度 和最大速度(设小球电量不变)
(1)加如图电场E,运动情况如何 B
mg Eq 若μEq≥mg 小球静止 a 若μEq<mg 匀加速 m
流体为:导电液体 目的:测流量
跟踪训练4
Bqv=Eq=qu/d得v=U/Bd
流量: Q=Sv=πdU/4B
名师161页
例: 如图所示为一电磁流量计的示意图, 截面为正方形的非磁性管,其边长为d,内 有导电液体流动,在垂直液体流动方向加一 指向纸里的匀强磁场,磁感应强度为B.现 测得液体a、b两点间的电势差为U,求管内 导电液体的流量Q为多少?
三、霍耳效应
厚度b,宽为a的金属导电薄片,沿x轴通有电流强度I,当 在y轴方向加以匀强磁场B时,在导电薄片两侧A, A ) (
产生一电位差 U H ,这一现象称为霍耳效应
A
I
Z y B
U H RH
IB b
a
A
I B
I x
b
RH---霍耳系数
那面电势高?
四、电磁流量计
× × × × × a · 导电 d× × × × × 液体 · b × × × × ×
mv2/R=qvB (2)
m=qB2R2/2U。 (3)
如果B、u和q是已知 的,测出R后就可由(3) 式算出带电粒子的质量。
测定带电粒子质量的仪器
班布瑞基(Bainbridge)设计的质谱仪的原理
e E=evB R=mv/qB m=qBR/v
名师对话158页 典例1
如果B、V和q是已知的, 测出R后就可算出带电粒子的质量。
3
求: (1)粒子到达P2点时速度的大小和方向; (2)第三象限空间中电场强度和磁感应强度的大小; (3)带电质点在第四象限空间运动过程中最小速度
的大小和方向。
解:(1) 质点从P1到P2,由平抛运动规律 1 2 2h h gt v0 v y gt y 2 t 2 P1 v v 0 v 2 2 gh 求出 y P2 h 2h O 方向与x轴负方向成45°角
a0
ag
N=0
v
N反向
a
组合场
例题 如图所示,在X轴上方有垂直于XY平面向里 的匀强磁场,磁感应强度为B;在X轴下方有沿Y轴负 方向的匀强电场,场强为E.一质量为m,电量为-q 的粒子从坐标原点O沿Y轴正方向射出,射出之后第 三次到达X轴时,它与O的距离为L,求此粒子射出时 的速度和运动的总路程.(重力不计)
一、带电粒子在复合场中的运动
能忽略带电体重力的情况下 (什么情况?),则只需考虑电 场和磁场。这时有两种情况:
重力场 电场 磁场
1、电场和磁场成独立区域 处理方法: 分阶段求解 2、电场和匀强磁场共存区域
处理方法: 二力平衡~匀速直线运动 不平衡~复杂的曲线运动
功 能 关 系
带电粒子在重力场、匀强电场、匀强磁场的复合场 中运动的基本模型: 1、 匀速直线运动。
五、磁流体发电机
总结-------对比
三、霍耳效应 金属 电子
四、电磁流量计
五、磁流体发电机
液态 正负离子
气态 正负离子
名师对话160页跟踪训练3
六、质谱仪
思考:质谱仪的主要作用是什么?
测定带电粒子的质量和分析同位素
这就是丹普斯特(Dempster)设计的质谱仪的原理。
mv2/2=qU (1)
练习1: 在两平行金属板间有正交的匀强电场和 匀强磁场,一个带电粒子垂直于电场和磁场方 向射入场中,射出时粒子的动能减少了,为了 使粒子射出时动能增加,在不计重力的情况下, 可采取的办法是: BC A.增大粒子射入时的速度 B.减小磁场的磁感应强度 C.增大电场的电场强度 D.改变粒子的带电性质
045.南京市金陵中学07—08学年一轮复习检测(一)9 9.如图,电源电动势为E,内阻为r,滑动变阻器电 阻为R,开关S闭合。两平行极板间有匀强磁场,一带 电粒子正好以速度v匀速穿过两板,以下说法正确的 是( AB ) A.保持开关S闭合,将滑片P向上滑动一 点,粒子 将可能从上极板边缘射出 B.保持开关S闭合,将滑片P向下滑动一点,粒子 将可能从下极板边缘射出 a C.保持开关S闭合,将a极板向下 R P v 移动一点,粒子将继续沿直线穿出 Er b D.如果将开关S断开,粒子将继 S 续沿直线穿出
L=4r
d
qvB=mv2/R S=2πR+2d
d
d
拓展题1
拓展题2
2mv0 答案: r 1. qB
2. (3 3 2 )m t 3qB
拓展题3
2 m 答案: t t1 t 2 (3 ) 1. 3 qB
2.
1 E Bv0 3
045.南京市金陵中学07—08学年一轮复习检测(一)17 17.(17分)如图所示的坐标系,x轴沿水平方向,y 轴沿竖直方向。在x轴上方空间的第一、第二象限内, 既无电场也无磁场,第三象限,存在沿y轴正方向的匀 强电场和垂直xy平面(纸面)向里的匀强磁场,在第 四象限,存在沿y轴负方向、场强大小与第三象限电场 场强相等的匀强电场。一质量为m、电量为q的带电质 点,从y轴上y=h处的P1点以一定的水平初速度沿x轴负 y 方向进入第二象限。然后经过 x轴上x=-2h处的P2点进入第 P1 P2 三象限,带电质点恰好能做匀 O x 速圆周运动,之后经过y轴上 y=-2h处的P3点进入第四象限。 已知重力加速度为g。 P
E (2)再加如图磁场B,运动情况如何
若μEq≥mg 小球静止 若μEq<mg
变加速
若μEq<mg 加速
μN

竖直方向
水平方向
mg N a m
N= f洛+Eq
N
f洛
Eq
a
v
f洛
a
mg (3)若B再反向,又如何?
v 最大,匀速直线运动
f洛+ N= Eq f洛
N
a0
v
a
v v
a
v 最大,匀速直线运动
【例2】一个带电微粒在图示的正交匀强电场和匀强 磁场中在竖直面内做匀速圆周运动。则该带电微粒必 逆时针 然带_____,旋转方向为_____。 负电
E B
结论:带电微粒在三个场 共同作用下做匀速圆周运 动。必然是电场力和重力 平衡,而洛伦兹力充当向 心力。
049.西安市重点中学2008届4月份理综试题17 3、如图所示,匀强磁场沿水平方向,垂直纸面向 里,磁感强度B=1T,匀强电场方向水平向右,场
七、回旋加速器
(1)有关物理学史知识和回旋加速器的基本结构和原理
回旋加速器(劳伦斯1939获Nobel prize) T 2m
qB
a、原理: 磁场什么作用? 使粒子在D形盒内________。 电场什么作用?重复多次对粒子______. 最终速度取决于什么量? 两个D形金属盒做外壳的作用是什么? b、条件: 交变电压的周期等于粒子圆周运动的周期 交变电压频率=粒子回旋频率 c、优点和缺点:
(2)带电粒子在D形金属盒内运动的轨道半径是不等距分布的 设粒子的质量为m,电荷量为q,两D形金属盒间的加速电压为U, 匀强磁场的磁感应强度为B,粒子第一次进入D形金属盒Ⅱ,被 电场加速1次,以后每次进入D形金属盒Ⅱ都要被电场加速2次。 粒子第n次进入D形金属盒Ⅱ时,已经被加速(2n-1)次。
问题:带电粒子在D形金属盒 内任意两个相邻的圆形轨道 半径之比为 多少?
rn rn 1
2n 1 2n 1
可见带电粒子在D形金属盒内运动时,轨道是不等距分布的, 越靠近D形金属盒的边缘,相邻两轨道的间距越小。
(3)带电粒子在回旋加速器内运动,决定其最终能量的因素 为………………
q B r Ek= 2m
2
2 2 n
可见,粒子获得的能量与回旋加速器的直径有关,直径越大, 粒子获得的能量就越大。 (4)决定带电粒子在回旋加速器内运动时间长短的因素
v min vபைடு நூலகம்cos 45 2 gh
方向沿x轴正方向。
题目
解题思路归纳 解答步骤: 1.选取研究对象进行受力分析。 2.确定粒子运动轨迹,作好辅助线。 3.充分利用平抛运动规律,计算时间和速度。 4.充分利用圆周运动的有关特性和公式定理、 圆的对称性等几何知识是解题关键,如弦切角 等于圆心角的一半、速度的偏转角等于圆心角。 5.粒子在磁场中的运动时间与速度方向的偏转 角成正比。
二、粒子速度选择器
速度选择器:
(1)任何一个正交的匀强磁场和匀强电场组成速度选择器。 (2)带电粒子必须以唯一确定的速度 (包括大小、方向)才能匀速(或者说
+++++++
v
----―――
沿直线)通过速度选择器。否则将发生
偏转。即有确定的入口和出口。
(3)这个结论与粒子带何种电荷、电荷多少都无关。 若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向 电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也 将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复 杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力 将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复 杂曲线。
相关文档
最新文档