药化重点总结

合集下载

《药物化学》复习重点资料整理总结

《药物化学》复习重点资料整理总结

《药物化学》复习重点资料整理总结名词解释:1.稳态血药浓度:以半衰期为给药间隔时间,连续恒量给药后,体内药量逐渐累积,给药4、5次后,血药浓度基本达到稳态水平。

2.药物:是指调节机体生理、生化和病理过程,用以预防、诊断、治疗疾病的物质。

3.药理学:是研究药物与机体之间相互作用及其规律的一门学科,包括药物效应动力学、药物代谢动力学两个方面。

4.首关消除:有些口服药物在经胃肠壁及肝脏时,会被此处的酶代谢失活。

5.肝肠循环:有的药经胆汁排泄再经肠黏膜上皮细胞吸收,由门静脉重新进入全身循环,这种在小肠、肝脏、胆汁间的循环称为肝肠循环。

6.治疗指数:药物的半数致死量LD5a与半数有效量ED50的比值。

7.处方药:必须凭执业医师或执业助理医师处方才可调配。

8.肾上腺素升压作用的翻转:预先给予α受体阻断药能阻断肾上腺素激动α受体的缩血管作用,保留激动β受体的血管舒张作用,使升压作用翻转为降压作用。

9.耐受性:机体对药物的敏感性降低,需增加剂量才能发挥原有药效。

10.反跳现象:长期大剂量使用某药物后突然停药,导致原有病情再现或加重。

11.二重感染:长期使用广谱抗菌药,使得敏感菌被抑制,不敏感菌大量繁殖,引发新的感染。

模块-1、在机体方面,影响药物作用的因素有哪些?(填空题)年龄性别个体差异病理状态心里精神因素遗传因素2、“三致”反应致畸致癌致突变3、药物的二重作用包括什么?P5~防治作用和不良反应4、药物作用的主要类型包括哪些?P4-5兴奋作用和抑制作用局部作用和吸收作用选择性作用和普遍作用直接作用与间接作用预防作用和治疗作用模块二1、药品贮存条件中阴凉处、凉暗处、冷处、常温的条件P28阴凉处:系指不超过20℃阴暗处:系指避光并不超过20℃冷处:系指2℃~10℃常温:系指10℃~30℃2、批准文号的代表字母和数字各自的含义,批号的含义P27字母:化学药品:H 中药:Z 保健:B 生物制品:S体外化学诊断试剂:T 药用辅:F 进口分包装药品:J数字第1、2位为原批准文号的来源代码,第3、4位为换发批准文号之后(公元年号)的后两位数字,第5~8位为顺序号批号的含义:在药品生产过程中,将同一次投料、同一生产工艺所生产的药品定为同一个批号。

药学课程总结模板药物化学

药学课程总结模板药物化学

药学课程总结模板药物化学药物化学是药学专业课程中非常重要的一门学科,通过学习药物化学,我们深入了解了药物的结构与性质,掌握了药物的合成方法和药效评价等知识。

本文将从以下几个方面对药物化学课程进行总结。

一、课程目标与重点药物化学课程旨在培养学生对药物分子结构与性质的认识和理解,掌握药物化学基本原理和应用技术,为将来的药学研究和药物设计打下基础。

其主要重点包括:1.药物分子结构分析与对应的性质分析;2.合成药物的方法与技术;3.药效评价与药效预测;4.了解与药物化学相关的药理学知识。

二、知识框架与学习方法1.知识框架在学习药物化学的过程中,我们需要掌握以下知识点:(1)药物的分子结构与功能基团;(2)药物合成的基本原理与方法;(3)药物的性质与活性的关系;(4)药物的药效评价与药效预测。

2.学习方法为了有效学习药物化学课程,我们可以采取以下方法:(1)理论学习:认真听课、做好课堂笔记,结合教材进行系统性学习;(2)实验操作:通过实验操作,提高对药物化学实践的理解;(3)文献阅读:扩大学习视野,阅读相关的文献资料,了解行业最新动态;(4)小组讨论:与同学一起探讨与药物化学相关的问题,提高学习效果。

三、实践应用与意义药物化学是药学专业的基础课程,对于我们今后的学习和研究有着重要的意义:1.药物设计与发现:通过学习药物化学,我们能够掌握药物合成与设计的基本原理,为今后的药物研发打下基础;2.药物安全性评价:了解药物的结构与性质有助于我们评价其安全性与毒性,确保药物在应用过程中的安全性;3.药物质量控制:药物化学知识使我们能够掌握药物质量检测的技术,保证生产合格的药物;4.提高药物治疗效果:通过了解药物的结构活性关系,我们能够更好地优化药物的治疗效果。

总结:药物化学课程是药学专业中不可或缺的一门学科,通过学习,我们深入了解了药物的结构与性质,掌握了药物的合成方法和药效评价等相关知识。

通过合理的学习方法和实践应用,我们可以更好地应用药物化学知识,为药物研发、质量控制以及提高药物治疗效果做出贡献。

药物化学考试重点总结

药物化学考试重点总结

药物化学考试重点总结
一、药物化学基础知识
1. 药物的分类与作用机制:了解各类药物的基本作用机制和分类,如抗生素、抗肿瘤药、抗炎药等。

2. 药物的化学结构与性质:理解药物的化学结构与其理化性质、稳定性及生物活性的关系。

3. 药物代谢:掌握药物在体内的代谢过程,包括代谢酶及代谢产物的性质和作用。

二、药物合成与工艺
1. 药物合成方法:掌握常见的药物合成方法和技术,如还原反应、氧化反应、酯化反应等。

2. 药物合成工艺:理解工业化生产中药物的合成工艺流程及优化方法。

3. 药物合成路线的设计与选择:了解药物合成路线的评价标准,掌握设计药物合成路线的思路与方法。

三、药物分析
1. 药物分析方法:掌握药物分析中常用的检测方法和技术,如色谱法、光谱法等。

2. 药物质量控制:理解药物质量控制的标准和要求,掌握药品质量控制的常用方法。

3. 药物制剂分析:了解药物制剂的分析方法,掌握药物制剂的质量控制标准。

四、药物设计与新药开发
1. 药物设计的原理与方法:掌握基于结构的药物设计、基于片段的药物设计等原理与方法。

2. 新药发现的途径与方法:了解新药发现的途径和策略,如高通量筛选、虚拟筛选等。

3. 新药开发的流程与评估:理解新药开发的流程和评估标准,掌握新药开发的风险与机遇。

药物化学专业知识点总结

药物化学专业知识点总结

药物化学专业知识点总结一、药物化学的基本概念药物是指能够在生物体内起特定药理活性,并能够预防、治疗、诊断和改善疾病的化合物。

药物化学是研究药物的化学结构、性质及其合成途径的科学。

药物化学的研究内容主要包括:1. 药物的化学结构与性质:药物的化学结构决定了其生物活性和药理效应,药物的理化性质决定了其药代动力学特征。

2. 药物的合成研究:药物的合成方法研究是药物化学的核心内容。

合成药物的目标是简捷、经济且高产率,具有可控性和可重复性。

3. 药物的作用机制研究:药物的作用机制研究是药物化学和药理学的交叉领域。

药物的作用机制包括药物与靶分子的结合、生物途径的调控等。

二、药物分类根据药品的疗效、化学结构和用途,药物可以分为很多类。

根据药物的用途,药物可以分为:1. 治疗药物:用于治疗疾病的化合物,如抗生素、抗癌药、抗感染剂等。

2. 预防药物:用于预防疾病的化合物,如疫苗、预防性抗生素等。

3. 诊断用药:用于帮助诊断疾病的化合物,如放射性核素、造影剂等。

4. 应急药品:用于急救和紧急情况下的药物,如止血剂、解热镇痛药等。

根据药物的化学结构,药物可以分为:1. 有机化合物药物:由有机化合物合成的药物,包括多种结构类型的化合物。

2. 无机化合物药物:由无机化合物合成的药物,如氧化铁、氧化亚铁等。

根据药物的作用机制,药物可以分为:1. 靶向药物:通过作用于特定的生物靶标来发挥药理效应的药物。

2. 非靶向药物:通过影响生物系统其他组成部分的功能来发挥药理效应的药物。

三、药物合成药物的合成方法是药物化学的核心内容。

药物的合成方法主要包括:1. 有机合成:有机合成是药物合成的基础,包括常见的反应类型如亲核-亲电加成反应、消除反应、取代反应等。

2. 天然产物全合成:大部分天然药物都具有复杂的结构,需要进行全合成来得到纯品,这对有机合成技术提出了更高的要求。

3. 合成方法研究:随着有机合成方法学的发展,药物化学家在研究过程中积累了大量合成方法,用于合成更加复杂的分子。

药物化学复习总结

药物化学复习总结

药物化学复习1. 引言药物化学是研究药物的化学性质和药物分子的结构与功能关系的学科。

它是药物研发过程中的重要组成部分,对于合成新药、改良药物和研究药物机制都起到了关键的作用。

本文将对药物化学的一些基本概念和常见的化学反应进行复习。

2. 药物化学基础知识2.1 药物分子的结构与功能药物分子通常由两部分组成:药效团和辅助基团。

药效团是药物分子中负责与目标生物分子相互作用的部分,它决定了药物的治疗效果。

辅助基团则是为了改变药物分子的物化性质、增强药物的溶解度和稳定性等而加入的。

2.2 药物分子的立体化学药物分子的立体结构对于其与靶标分子的结合和生物活性至关重要。

立体化学主要包括手性和反式异构体的概念。

药物分子的手性可以影响药物分子与生物体内的酶、受体等之间的相互作用,进而影响其生物活性。

2.3 药物的代谢和结构修饰代谢是指药物在生物体内发生化学变化的过程。

药物代谢可以通过改变药物分子的结构来影响其药效、药代动力学参数和毒性。

结构修饰是指通过对药物分子的化学修饰来改变其药物性质和生物活性,常见的修饰方法包括取代、合并和分子递减等。

3. 常见的药物化学反应在药物化学领域,有许多常见的反应被广泛应用于药物的合成和结构修饰过程。

以下是一些常见的药物化学反应的简要介绍:3.1 酯化反应酯化反应是指酸与醇反应生成酯的过程。

这种反应常用于药物分子的修饰和合成,例如酯类药物的合成和羟基酯药物的合成等。

3.2 还原反应还原反应是指还原剂与物质反应生成对应的还原物的过程。

在药物化学中,还原反应常用于合成醇类药物和氧化还原酶的抑制剂等。

3.3 氧化反应氧化反应是指氧化剂与物质反应生成对应的氧化物的过程。

在药物化学中,氧化反应常用于合成酮类药物和氧化酶的抑制剂等。

3.4 反应活性相关的修饰药物分子的反应活性和生物活性之间存在相关性。

一些修饰反应可以增加药物分子的反应活性,提高药物的疗效。

例如加成反应、酰化反应和取代反应等。

4.药物化学是研究药物分子结构和功能的学科,对于药物研发和改良具有重要意义。

医用化学知识点总结

医用化学知识点总结

医用化学知识点总结一、化学基础知识1. 元素周期表:元素周期表是元素按原子序数排列的表格,元素的物理和化学性质都随原子序数的增加而呈周期性变化。

2. 原子结构:原子由原子核和绕核运动的电子组成,原子核由质子和中子组成,电子围绕原子核运动。

3. 分子结构:分子是由原子结合而成的,分子的结构和化学键类型决定了分子的性质。

4. 化学键:化学键是化学元素之间通过电子共享或转移而形成的连接。

5. 反应热力学:包括热力学第一定律、第二定律和化学反应的热力学方程。

6. 化学平衡:化学平衡是指化学反应达到动态平衡状态的情况,平衡常数描述了化学反应的平衡状态。

二、药物分子结构与性质1. 药物分子的立体结构:药物分子的立体结构决定了药物的生物活性和药效。

2. 药物的结构与活性关系:结构活性关系研究了药物分子结构和生物活性之间的定量关系,有助于设计新的药物分子。

3. 极性与非极性药物:极性和非极性药物在体内的吸收、分布、代谢和排泄等方面有不同特点。

4. 药物分子的溶解度:药物分子的溶解度直接影响了其生物利用度和药效。

5. 药物分子的稳定性:药物分子的稳定性与其在贮存和使用过程中的效力和安全性有关。

三、药物化学1. 药物分类:按照药物的化学结构、作用方式、治疗疾病等不同标准进行分类。

2. 药物合成与分离:药物合成是指合成新的药物分子或者合成药物原料,药物分离是指从天然产物中分离出有用的化合物。

3. 药物设计:药物设计是指研究药物分子结构与生物活性、药效、毒性之间的关系,将这些关系应用于设计新的药物。

4. 药物分析:药物分析是指对药物品质、成分和含量进行分析鉴定,包括定性和定量分析。

5. 药物代谢:药物在体内的代谢过程包括吸收、分布、代谢和排泄等过程。

6. 药物毒性:药物的毒性是指药物在一定条件下对生物体产生的有害效应。

四、药物作用机制1. 药物与靶点结合:药物通过与生物分子靶点结合发挥药效。

2. 药物的途径与生物利用度:药物在体内的吸收、分布、代谢和排泄过程决定了其在体内的药效。

药物化学知识点总结

药物化学知识点总结

药物化学知识点总结第一章绪论1药物的概念药物是用来预防、治疗、诊断疾病,或为了调节人体功能、提高生活质量、保持身体健康的特殊化学品。

2药物化学是一门发现与发明新药、合成化学药物、阐明药物化学性质、研究药物分子与机体细胞之间相互作用规律的综合性学科。

3药物化学的研究内容及任务既要研究化学药物的化学结构特征,与此相联系的理化性质,稳定性状况,同时又要了解药物进入体内后的生物效应、毒副作用及药物进入体内的生物转化等化学内容。

为了设计、发现和发明新药,必须研究和了解药物的构效关系,药物分子在生物体中作用的靶点以及药物与靶点结合的方式。

(3) 药物合成也是药物化学的重要内容。

第二章中枢神经系统药物一、巴比妥类1 异戊巴比妥HNN H OOO中等实效巴比妥类镇静催眠药,【体内代谢】巴比妥类药物多在肝脏代谢,代谢反应主要是5位取代基上氧化和丙二酰脲环的水解,然后形成葡萄糖醛酸或硫酸酯结合物排出体外。

异戊巴比妥的5位侧链上有支链,具有叔碳原子,叔碳上的氢更易被氧化成羟基,然后与葡萄糖醛酸结合后易溶于水,从肾脏消除,故为中等时效的药物。

【临床应用】本品作用于网状兴奋系统的突触传递过程,阻断脑干的网状结构上行激活系统,使大脑皮质细胞的兴奋性下降,产生镇静、催眠和抗惊厥作用。

久用可致依赖性,对严重肝、肾功能不全者禁用。

二、苯二氮卓类1. 地西泮(Diazepam, 安定,苯甲二氮卓)【结构】NNOCl结构特征为具有苯环和七元亚胺内酰胺环并合的苯二氮卓类母核【体内代谢】本品主要在肝脏代谢,代谢途径为N -1去甲基、C -3的羟基化,代谢产物仍有活性(如奥沙西泮和替马西泮被开发成药物)。

形成的3-羟基化代谢产物再与葡萄糖醛酸结合排出体外。

第三节 抗精神病药1. 盐酸氯丙嗪(Chlorpromazine Hydrochloride) 【结构】. HClNSClN【体内代谢】主要在肝脏经微粒体药物代谢酶氧化代谢,体内代谢复杂,尿中存在20多种代谢物,代谢过程主要有N -氧化、硫原子氧化、苯环羟基化、侧链去N -甲基和侧链的氧化等,氧化产物和葡萄糖醛酸结合通过肾脏排出。

药物化学重点知识点总结

药物化学重点知识点总结

药物化学重点知识点总结1 绪论细目要点要求1.药物化学的定义及研究内容———掌握2.药物化学的任务———掌握3.药物的名称通用名和化学名掌握一、药物化学的定义及研究内容药物化学是一门发现与发明新药、合成化学药物、阐明药物化学性质、研究药物分子与机体细胞(生物大分子)之间相互作用规律的综合性学科,是连接化学与生命科学使其融合为一体的交叉学科。

研究内容包括化学药物的化学结构、理化性质、合成工艺、构效关系、体内代谢、作用机制以及寻找新药的途径与方法。

(二)药物化学的任务1.为有效利用现有化学药物提供理论基础;2.为生产化学药物提供先进、经济的方法和工艺;3.为创制新药探索新的途径和方法;(三)药物名称国际非专有药名(INN)INN是新药开发者在新药研究时向世界卫生组织申请,由世界卫生组织批准的药物的正式名称并推荐使用的名称。

该名称不能取得任何知识产权的保护,任何该产品的生产者都可使用,也是文献、教材及资料中以及在药品说明书中标明的有效成分的名称。

中国药品通用名称通用名是中国药品命名的依据,是中文的INN。

简单有机化合物可用其化学名称。

化学名(1)英文化学名(2)中文化学名如:阿司匹林,中文化学名为:2-(乙酰氧基)苯甲酸商品名生产厂家为了保护自己利益,在通用名不能得到保护的情况下,利用商品名来保护自己并努力提高产品的声誉。

商品名可申请知识产权保护举例:对乙酰氨基酚扑热息痛、泰诺、百服宁ParacetamolN–(4-羟基苯基)乙酰胺通用名中文的INN商品名国际非专有药名化学名2 麻醉药细目要点要求局部麻醉药(1)局部麻醉药分类、构效关系掌握(2)盐酸普鲁卡因、盐酸利多卡因结构特点、性质和用途熟练掌握(3)盐酸丁卡因的性质和用途了解麻醉药按作用部位分为全身麻醉药和局部麻醉药。

全身麻醉药作用于中枢神经系统,使其受到可逆性抑制;局部麻醉药作用于神经末梢或神经干,阻滞神经冲动的传导。

一、全身麻醉药(一)全身麻醉药的分类全身麻醉药根据给药途径可分为吸入性麻醉药和非吸入性麻醉药,即静脉麻醉药。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论1.药物的概念:药物,无论是天然药物(植物药、抗生素、生化药物)、合成药物和基因工程药物,就其化学本质而言都是一些如C、H、O、N、S等化学元素组成的化学品。

然而药物不仅仅是一般的化学品,它们是人类用来预防、治疗、诊断疾病,或者为了调节人体功能、提高生活质量,保持身体健康的特殊化学品。

2.药物的命名1)通用名:又称国际非专利名(INN),在世界范围内使用不受任何限制,不能取得专利和行政保护。

2)化学名:以药物的化学结构命名,一个化学物质只有一个化学名,在新药报批和药品说明中都要用到化学名,化学名复杂难记,与药理作用毫无联系,医生跟药师一般不易掌握和记忆。

3)商品名:一般针对药物的上市产品而言,通常是由药品的制造企业所选定的名称,并在国家商标或专利局注册,受行政和法律的保护。

商品名多于通用名。

PS.新药开发者在向政府主管部门提出新药申报时,三种名称都需要提供。

通用名和化学名主要针对原料药,也是上市药品主要成分的名称;商品名是指批准上市后的药品名称,常用于医生的处方中,临床医生和药师都很熟悉。

第二章中枢神经系统药物1.镇静催眠药-巴比妥类1)巴比妥类药物的理化性质➢巴比妥酸在水溶液中存在三酮式(原形)、单内酰亚胺、双内酰亚胺和三内酰亚胺之间的平衡➢酸性:互变异构烯醇式呈现弱酸性,可溶于氢氧化钠和碳酸钠溶液中生成钠盐。

➢水解性:酰脲结构,其钠盐水溶液放置易水解2)巴比妥类药物的构效关系1PS.巴比妥类药物5位的两个取代基是不同的,一般采用先引入体积大的基团,再引入体积较小的基团的合成方法,以控制生成的中间体的质量。

2.抗癫痫药-GABA 衍生物普洛加胺(progabibe )结构特点=活性部分+载体部分。

载体联结前药:一个活性药物(原药)和一个可被酶除去的载体部分联结的前药,通常在体内经酶水解释放出原药。

3.镇痛药-吗啡1) 吗啡的来源:最早应用的镇痛片是阿片生物碱,系从罂粟或者白花罂粟未能成熟果实的乳汁中提取而得。

吗啡是其中的主要成分。

2) 吗啡的基本性质➢ 吗啡结构中3位有酚羟基,呈弱酸性;17位的叔氮原子呈碱性;-酸碱两性,临床上常用其盐酸盐➢ 稳定性a. 3位酚羟基的存在,使吗啡及其盐的水溶液不稳定,放置过程中,受光催化易被空气中的氧氧化变色,生成毒性大的双吗啡(或称伪吗啡)和N-氧化吗啡。

b.吗啡的稳定性受pH 和温度影响。

pH=4最稳定,中性和碱性条件下极易被氧化;吗啡注射液,pH=3-5,充入氮气,加焦亚硫酸钠、亚硫酸氢钠等抗氧化剂。

3) 吗啡的构效关系第三章 外周神经系统药物1.胆碱受体激动剂与M 受体拮抗剂的异同这一结构跟胆碱受体激动剂有相似之处,这是因为M 受体拮抗剂与激动剂共同竞争M 受体,均通过含氮的正离子部分与受体的负离子位点结合,而分子中其他部分与受体的附加结合,则产生拮抗剂与激动剂的区别。

2.肾上腺素1) 肾上腺素的性质➢ 分子中存在邻苯二酚结构。

遇空气或其他弱氧化剂、日光、热及微量金属离子均能使其氧化生失活。

➢ 加入抗氧剂如焦亚硫酸钠可防止氧化。

储藏时应避光且避免与空气接触。

➢ β碳上的醇羟基通过形成氢键与受体相互结合,其立体结构对活性有显著影响。

12倍。

3组胺H 1受体拮抗剂.1) 经典H 1抗组胺药物(第一代):脂溶性很高,通过血脑屏障进入中枢,产生中枢抑制和镇静的副作用。

另外对H1受体的针对性不强,出现了抗其他神经递质的副作用。

2) 非镇静H 1受体拮抗剂-限制进入中枢和提高H 1受体的选择性的新型抗组胺药➢ 丙胺类:引入亲水基团使药物难以通过血脑屏障进入中枢,克服镇静作用。

➢ 氨基醚类:对外周H 1受体有较高选择性,避免中枢副作用。

➢ 其他的非镇静抗组胺药大多属于哌啶类选择性外周H1受体拮抗剂,以及少数三环类和哌嗪类药物。

阿托品合成M 受体拮抗剂的结构通式胆碱酯类M 受体激动剂R1Y Z (CH 2)n N R 2R 34.局部麻醉剂1) 局部麻醉剂的概念局部麻醉药作用于神经末梢或神经干,可逆性地阻断感觉神经冲动的传导,在意识清醒的条件下引起局部组织暂时痛觉消失,以便顺利地进行外科手术。

以普鲁卡因为代表的酯类和以利多卡因为代表的酰胺类为主。

还包括氨基醚类、氨基酮类、氨基甲酸酯类、脒类等多种结构类型。

2) 局部麻醉药的构效关系➢ 亲脂性部分可为芳烃、芳杂环,以苯环作用较强。

苯环上邻对位给电子取代基如氨基,烷氧基有利于增加活性;而吸电基会使活性下降。

➢ 中间部分-决定药物稳定性作用时间:-CH2CO->-CONH->-COS->-COO-作用强度: -COS->-COO-> -CH2CO-> -CONH-通常以n = 2-3碳原子为最好。

在苯环和羰基之间插入-CH2-,-O-,破坏了 共轭体系,活性下降;插入-CH=CH-,则保持活性。

➢ 亲水性部分可为仲胺和叔胺,或脂环胺如吡咯烷、哌啶、吗啉等,以叔胺最为常见。

不可以是伯胺,不稳定而且毒性大。

第六章 镇痛药和非甾体抗炎药1.镇痛解热药-水杨酸类药物-阿司匹林1) 阿司匹林的基本性质2) 阿司匹林的副作用在水杨酸结构中,羧酸基团是产生抗炎作用的重要基团,也是引起胃肠道刺激的主要官能团。

长期服用本品会引起胃出血,这主要是前列腺素对胃黏膜具有保护作用,而本品抑制了前列腺素的生物合成使得粘膜易于受到损伤;另外,由于前列腺素E2.非甾体抗炎药1) 芳基烷酸类药物➢ 芳基乙酸类---吲哚美辛亲脂性部分 中间部分 亲水部分➢ 芳基丙酸类代表药物:布洛芬 、 萘普生 第七章 抗肿瘤药1.生物烷化剂1) 生物烷化剂的定义在体内能形成缺电子活泼中间体或其他具有活泼的亲电性基团的化合物,进而与生物大分子 (如DNA 、RNA 或某些重要的酶类)中含有丰富电子的基团(如氨基、巯基、羟基、羧基、磷酸基等)发生共价结合,使其丧失活性或者使DNA 分子发生断裂。

2) 生物烷化剂的毒副反应属于细胞毒类药物杀死肿瘤细胞的同时,对增生较快的正常细胞(如骨髓细胞、肠上皮细胞、毛发细胞和生殖细胞)同样产生抑制作用,会产生严重的副反应(如恶心、呕吐、骨髓抑制、脱发等)。

同时易产生耐药性而失去治疗作用。

3) 生物烷化剂的分类按化学结构,分为 代表药物氮芥类 芥子气、脂肪氮芥、芳香氮芥乙撑亚胺类 塞替派亚硝基脲类 卡莫司汀、洛莫司汀、司莫司汀磺酸酯类 白消安金属铂配合物 顺铂、卡铂、奥沙利铂2.抗代谢药物1) 抗代谢药物的定义通过干扰DNA 合成中所需的叶酸、嘌呤、嘧啶及嘧啶核苷的合成途径,从而抑制肿瘤细胞的生存和复制所必需的代谢途径,导致肿瘤细胞死亡的抗肿瘤药物。

抗代谢物是应用代谢拮抗原理设计的,在结构上与正常代谢物类似,一般是将正常代谢物的结构作细小改变,例如应用电子等排原理将代谢物结构中的-H布洛芬 萘普生结构活性 (S)异构体的活性比(R )异构体强28倍 (S)异构体的活性比(R )异构体强35倍光学活性 有 有作用强度 1/10 1对前列腺素生物合成 相对萘普生较弱 相对布洛芬较强,约为3~4倍待补充换为-F或-CH3;将-OH换为-SH或-NH2,使肿瘤细胞不能再继续利用,进行正常的增殖,而发生死亡。

第八章抗生素2.分类方式二:1)干扰细菌细胞壁合成:使细胞破裂死亡。

哺乳动物的细胞没有细胞壁,此类抗生素的毒性较小。

─包括青霉素类和头孢菌素类2)损伤细菌细胞膜:抗生素与细菌的细胞膜相互作用而影响膜的通透性,使菌体内蛋白质、核苷酸和氨基酸等重要物质外泄,导致细胞死亡。

─包括多黏菌素和短杆菌素3)抑制细菌蛋白质合成:干扰必需的酶的合成。

─包括大环内酯类、氨基苷类、四环素类和氯霉素4)抑制细菌核酸合成:阻止细胞分裂和酶的合成。

─包括利福平等第九章化学治疗药1) 吡啶酮酸的A 环是抗菌作用必需的基本药效基团,变化较小。

其中3位COOH和4位C=O与DAN螺旋酶和拓扑异构酶Ⅳ结合,为抗菌活性不可缺少的部分。

3位的羧基被磺酸基、乙酸基、磷酸基、磺酰氨基等酸性替团替代以及4位酮羰基被硫酮基、亚氨基等取代均使抗菌活性减弱。

2) B环可作较大改变,可以是并合的苯环(X=CH,Y=CH)、吡啶环(X=N,Y=CH)、嘧环(X=N,Y=N)等。

3) 1位N上若为脂肪烃基取代时,在甲基、乙基、乙烯基、氟乙基、正丙基、羟乙基中,以乙基或与乙基体积相似的乙烯基、氟乙基抗菌活性最好;若为脂环烃取代时,在环丙基、环丁基、环戊基、环己基、1(或2)-甲基环丙基中,其抗菌作用最好的取代基为环丙基、且其抗菌活性大于乙基衍生物。

1位N上可以为苯基或其它芳香基团取代,若为苯取代时,其抗菌活性与乙基相似,其中2,4-二氟苯基较佳,对革兰氏阳性菌作用较强。

4) 2位上引入取代基后,其活性减弱或消失,这可能源于2位取代基的空间位阻作用干扰喹诺酮类药物与受体的结合时,对1位和3位取代基立体构象的要求所致。

5) 5位取代基中,以氨基的抗菌作用最佳。

其他基团取代时,活性减少。

5位取代基的存在,从空间张力的角度可干扰4位羰基与靶位的结合,取代基体积越大这种干扰越作用越强。

所以抗菌活性减弱。

但从电性效应的角度考虑,向其母核共轭π键提供电子的取代基,均使4位羰基氧原子上的电荷密度有不同程度的提高,从而增加与靶位的结合力,使其抗菌活性增加,因此5位取代基对活性的影响为电性和立体因素的综合表现。

6) 6位不同的取代基对活性的贡献大小顺序为F>Cl>CN≥NH2≥H,6位引入氟原子较6位为H的类似物的抗菌活性大30倍,这归因于6位氟代化物是药物与细菌DNA回螺旋酶的亲和力增加2~17倍,对细菌细胞壁的穿透性增加1~70倍。

三代以后基本所有喹诺酮类药物6位均为-F。

7) 7位引入各种取代基均可明显增加抗菌活性,特别为五元或六元杂环取代时,抗菌活性明显增加,尤其是哌嗪取代基最好。

哌嗪等取代基进一步加强与细菌DNA回螺旋酶的结合能力。

但也增加对GABA受体的亲和力,因而产生中枢的副作用。

8) 8位以氟、甲氧基、氯、硝基、氨基取代均可使活性增加,其中以氟取代最佳,取代或与1位单原子以氧烷基成为含氧杂环,可使活性增加但光毒性也增加,若为甲基、甲氧基取代和乙基取代,光毒性减少。

若1位与8位间成环,产生的光学异构体的活性有明显的差异。

2.利福平的作用机制利福霉素类抗生素能与分枝杆菌敏感菌的DNA依赖性RNA聚合酶(DNA-dependent RNA polymerase,DDRP)形成稳定的复合物,抑制该酶的活性,从而在细菌合成RNA时,抑制初始RNA链的形成,但并不抑制RNA链的延伸,此类抗生素的作用靶点为RNA多聚酶的β-亚单位。

来自其他细胞的RNA多聚酶不与其结合,故对其RNA合成没有影响。

其研究结果已经表明,rifampin萘核π-π键合到DDRP蛋白质的芳香氨基酸的芳核上。

相关文档
最新文档